STAT 511

Lecture 11: Random Samples, Weak Law of Large Numbers and Central Limit Theorem Devore: Section 5.3-5.5

Prof. Michael Levine

October 15, 2018

æ

- A statistic is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result.
- A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.

- Example Consider a sample of n = 3 cars of a particular type; their fuel efficiencies may be x₁ = 30.7 mpg, x₂ = 29.4 mpg, x₃ = 31.1 mpg.
- ▶ It may also be x₁ = 28.8 mpg, x₂ = 30.0 mpg and x₃ = 31.1 mpg
- ► This implies that the value of the mean X̄ is different in these cases. Clearly, X̄ is a statistic. The first sample has the mean X̄₁ = 30.4 mpg and the second one has X̄₂ ≈ 30 mpg

- ► A sample mean X̄ of the sample X₁,..., X_n is a statistic; x̄ is one of its possible values
- The value of the sample mean from any particular sample can be regarded as a *point estimate* of the population μ.
- Another example is the sample standard deviation S, while s is its computed value
- Yet another example is the difference between the sample means for two different populations $\bar{X} \bar{Y}$

- Each statistic is a random variable and, as such, has its own distribution
- Consider two samples of size n = 2; if X₁ = X₂ = 0, X̄ = 0 with probability P(X₁ = 0 ∩ X₂ = 0)
- On the other hand, if $X_1 = 1$ but $X_2 = 0$ or $X_1 = 0$ and $X_2 = 1$, we have $\overline{X} = 0.5$ with probability $P(X_1 = 1 \cap X_2 = 0) + P(X_1 = 0 \cap X_2 = 1)$
- This distribution is called the sampling distribution to emphasize its description of how the statistic varies in value across all possible sample

- The probability distribution of any statistic depends on the sampling method.
- ► Consider selecting a sample of size n = 2 from the population 1, 5, 10. If the sampling is with replacement, it is possible that X₁ = X₂; then the sampling variance S² = 0 with a nonzero probability
- However, the sampling without replacement cannot produce $S^2 = 0$ and, therefore, $P(S^2 = 0) = 0$.

- ► The RVs X₁,..., X_n are said to form a simple random sample of size n if
 - ► The X_is are independent RVs.
 - Every X_i has the same probability distribution.
- The usual way to describe these two conditions is to say that X_i's are *independent and identically distributed* or *iid*.

- A certain brand of MP3 player comes in three configurations: a model with 2 GB of memory, costing 80, a 4 GB model priced at 100, and an 8 GB version with a price tag of 120
- 20% of all purchasers choose the 2 GB model, 30% choose the 4 GB model, and 50% choose the 8 GB model.
- The probability distribution of the cost X of a single randomly selected MP3 player purchase is given by

Х	80	100	120
p(x)	0.2	0.3	0.5

• Here, μ 106 and $\sigma^2 = 244$

- ► On a particular day only two MP3 players are sold. Let X₁ = the revenue from the first sale and X₂ = the revenue from the second
- ► X₁ and X₂ are independent from the same tabled distribution above

<i>x</i> ₁	<i>x</i> ₂	$p(x_1, x_2)$	x	s^2	
80	80	.04	80	0	
80	100	.06	90	200	
80	120	.10	100	800	
100	80	.06	90	200	
100	100	.09	100	0	
100	120	.15	110	200	
120	80	.10	100	800	
120	100	.15	110	200	
120	120	.25	120	0	

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

x	80	90	100	110	120
$p_{\bar{X}}(\bar{x})$	0.04	0.12	0.29	0.30	0.25
<i>s</i> ²	0	200	800		
$p_{S^2}(s^2)$	0.38	0.42	0.20		

・ロト ・回ト ・ヨト

< ≣ >

Comparison of two histograms

Levine STAT 511

< ≣⇒

æ

- This is usually employed when the direct derivation is too difficult
- The following characteristics must be specified
 - 1. The statistic of interest.
 - 2. The population distribution.
 - 3. The sample size n.
 - 4. The number of replications k.

- Consider the platelet volume distribution in individuals with no known heart problems. It is commonly assumed to be normal; particular research publication assumes μ = 0.25 and σ = 0.75.
- ► Four experiments are performed, 500 replications each
- In the first experiment, 500 samples of n = 5 observations were generated; in the other three sample sizes were n = 10, n = 20 and n = 30, respectively

Let X₁,...X_n be a random sample from a distribution with mean value μ and standard deviation σ. Then

1.
$$E(\bar{X}) = \mu_{\bar{X}} = \mu$$

2. $V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$
3. $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

In addition to the above, for the sample total

 $T = X_1 + X_2 + \ldots + X_n$ we have $E T = n\mu$, $V(T) = n\sigma^2$ and $\sigma_T = \sqrt{n\sigma}$

同 と く ヨ と く ヨ と …

Example

- Consider a notched tensile fatigue test on a titanium specimen.
- The expected number of cycles to first acoustic emission (indicates crack initiation) is μ = 28,000. The standard deviation of the number of cycles is σ = 5,000.
- ▶ Let X₁,..., X₂₅ be a random sample; each X_i is the number of cycles on a different randomly selected specimen
- ► Then, E(X) = µ = 28,000 and the expected total number of cycles for all 25 specimens is E T = nµ = 700,000.
- The standard deviations are

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{5,000}{\sqrt{25}} = 1000$$

and

$$\sigma_T = \sqrt{n}\sigma = \sqrt{25}(5,000) = 25,000$$

- Let X₁,..., X_n be a random sample from a normal distribution with mean value μ and standard deviation σ. Then for any n, X̄ is normally distributed with mean μ and standard deviation ^σ/_{√n}.
- Note that this is true no matter what n is. It need not go to infinity.

▶ Given a collection of *n* random variables X₁,..., X_n and constants a₁,..., a_n, the RV

$$Y = \sum_{i=1}^{n} a_i X_i$$

is called a **linear combination** of X_i 's

► X
 is a special case with a₁ = ... = a_n = ¹/_n while the total T is another special case with a₁ = ... = a_n = 1

- Let X₁, X₂,...,X_n be random variables with means μ₁,..., μ_n and variances σ²₁,...,σ²_n respectively.
 - 1. $E \sum_{i=1}^{n} a_i X_i = \sum_{i=1}^{n} a_i \mu_i$ 2. If X_1, \dots, X_n are independent, $V(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 \sigma_i^2$

Example

- ► A gas station sells regular, extra and super gasoline. The prices are 3.00, 3.20 and 3.40 per gallon. Let X₁, X₂, X₃ be the amounts purchased on a particular day (in gallons).
- Let X_1 , X_2 , X_3 be independent with $\mu_1 = 1000$, $\mu_2 = 500$, $\mu_3 = 300$, $\sigma_1 = 100$, $\sigma_2 = 80$ and $\sigma_3 = 50$.
- The revenue from sales is $Y = 3X_1 + 3.2X_2 + 3.4X_3$
- The average revenue is

$$E Y = 3\mu_1 + 3.2\mu_2 + 3.4\mu_3 = 5620$$

The variation in revenue is

$$\sigma_{Y} = \sqrt{9\sigma_{1}^{2} + (3.2)^{2}\sigma_{2}^{2} + (3.4)^{2}\sigma_{3}^{2}} = \sqrt{184,436} = 429.46$$

- The time *n* it takes a rat of a certain subspecies to reach the end of the maze is normal with mean $\mu = 1.5$ min and $\sigma = .35$ min.
- ▶ If we have measurements for 5 rats X_1, \ldots, X_n , what is the probability that the total time $T = X_1 + \ldots + X_n$ is between 6 and 8 min?
- ► Clearly, $T = n\bar{X}$. We know that T is normal with the mean $n\mu = 7.5$ and the variance $n\sigma^2 = .6125$.

回 と く ヨ と く ヨ と …

► Then,

$$P(6 \le T \le 8) = P\left(\frac{6-7.5}{.783} \le Z \le \frac{8-7.5}{.783}\right)$$
$$= \Phi(0.64) - \Phi(-1.92) = .7115$$

To find the probability that the average time to reach the maze exit is at most 2.0 min we need to remember that X̄ is normal with the mean µ_{X̄} = µ = 1.5 and σ_{X̄} = σ/√n = .35/√5 = .1565.
Then,

$$P(\bar{X} \le 2.0) = P\left(Z \le \frac{2.0 - 1.5}{.1565}\right)$$
$$= P(Z \le 3.19) = \Phi(3.19) = .9993$$

→ 注→ 注

- Let X_1, \ldots, X_n be a random sample from some distribution with mean value μ and variance σ^2 . Then, if *n* is sufficiently large, \bar{X} is approximately normal with mean μ and variance $\frac{\sigma^2}{n}$.
- Note that, unlike the case where the distribution of X itself is normal, this is only *approximately* true. The quality of approximation improves with large n.

- The amount of a particular impurity in a batch of a certain chemical product is a random variable with mean μ = 4 g and standard deviation σ = 1.5 g.
- What is the approximate probability P(3.5 < X̄ < 3.8) if n = 50?
- ▶ We assume that, approximately, \bar{X} is normal with mean $\mu_{\bar{X}} = 4$ and standard deviation $\sigma_{\bar{X}} = \frac{1.5}{\sqrt{50}} = .2121$

Then,

$$P(3.5 < \bar{X} < 3.8) \approx P\left(\frac{3.5 - 4.0}{.2121} < \bar{X} < \frac{3.8 - 4.0}{.2121}\right)$$
$$= \Phi(-.94) - \Phi(-2.36) = .1645$$

- The quality of approximation depends greatly on how close the original distribution of X is to the normal.
- The usual rule of thumb is to use the CLT when $n \ge 30$.