STAT 511

Lecture 11: Random Samples, Weak Law of Large Numbers and Central Limit Theorem Devore: Section 5.3-5.5

Prof. Michael Levine

October 15, 2018

Definition of a Statistic

- A statistic is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result.
- A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.
- Example Consider a sample of $n=3$ cars of a particular type; their fuel efficiencies may be $x_{1}=30.7 \mathrm{mpg}, x_{2}=29.4 \mathrm{mpg}$, $x_{3}=31.1 \mathrm{mpg}$.
- It may also be $x_{1}=28.8 \mathrm{mpg}, x_{2}=30.0 \mathrm{mpg}$ and $x_{3}=31.1$ mpg
- This implies that the value of the mean \bar{X} is different in these cases. Clearly, \bar{X} is a statistic. The first sample has the mean $\bar{X}_{1}=30.4 \mathrm{mpg}$ and the second one has $\bar{X}_{2} \approx 30 \mathrm{mpg}$

Statistic Examples

- A sample mean \bar{X} of the sample X_{1}, \ldots, X_{n} is a statistic; \bar{x} is one of its possible values
- The value of the sample mean from any particular sample can be regarded as a point estimate of the population μ.
- Another example is the sample standard deviation S, while s is its computed value
- Yet another example is the difference between the sample means for two different populations $\bar{X}-\bar{Y}$

Sampling distribution

- Each statistic is a random variable and, as such, has its own distribution
- Consider two samples of size $n=2$; if $X_{1}=X_{2}=0, \bar{X}=0$ with probability $P\left(X_{1}=0 \cap X_{2}=0\right)$
- On the other hand, if $X_{1}=1$ but $X_{2}=0$ or $X_{1}=0$ and $X_{2}=1$, we have $\bar{X}=0.5$ with probability $P\left(X_{1}=1 \cap X_{2}=0\right)+P\left(X_{1}=0 \cap X_{2}=1\right)$
- This distribution is called the sampling distribution to emphasize its description of how the statistic varies in value across all possible sample

Random Sample

- The probability distribution of any statistic depends on the sampling method.
- Consider selecting a sample of size $n=2$ from the population $1,5,10$. If the sampling is with replacement, it is possible that $X_{1}=X_{2}$; then the sampling variance $S^{2}=0$ with a nonzero probability
- However, the sampling without replacement cannot produce $S^{2}=0$ and, therefore, $P\left(S^{2}=0\right)=0$.

(Simple) Random Sample

- The RV s X_{1}, \ldots, X_{n} are said to form a simple random sample of size n if
- The X_{i} s are independent RVs.
- Every X_{i} has the same probability distribution.
- The usual way to describe these two conditions is to say that X_{i} 's are independent and identically distributed or iid.

Example

- A certain brand of MP3 player comes in three configurations: a model with 2 GB of memory, costing 80, a 4 GB model priced at 100, and an 8 GB version with a price tag of 120
- 20% of all purchasers choose the 2 GB model, 30% choose the 4 GB model, and 50% choose the 8 GB model.
- The probability distribution of the cost X of a single randomly selected MP3 player purchase is given by

x	80	100	120
$p(x)$	0.2	0.3	0.5

- Here, $\mu 106$ and $\sigma^{2}=244$

Experiment

- On a particular day only two MP3 players are sold. Let $X_{1}=$ the revenue from the first sale and $X_{2}=$ the revenue from the second
- X_{1} and X_{2} are independent from the same tabled distribution above

x_{1}	x_{2}	$p\left(x_{1}, x_{2}\right)$	\bar{x}	s^{2}
80	80	.04	80	0
80	100	.10	90	200
80	120	.10	100	800
100	80	.16	90	200
100	100	.09	100	0
100	120	.15	110	200
120	80	.10	100	800
120	100	.15	110	200
120	120	.25	120	0

Complete sampling distributions

\bar{x}	80	90	100	110	120
$p_{\bar{X}}(\bar{x})$	0.04	0.12	0.29	0.30	0.25
s^{2}	0	200	800		
	$p_{S^{2}}\left(s^{2}\right)$	0.38			
	0.42	0.20			

Comparison of two histograms

Simulation Experiments

- This is usually employed when the direct derivation is too difficult
- The following characteristics must be specified

1. The statistic of interest.
2. The population distribution.
3. The sample size n.
4. The number of replications k.

Example

- Consider the platelet volume distribution in individuals with no known heart problems. It is commonly assumed to be normal; particular research publication assumes $\mu=0.25$ and $\sigma=0.75$.
- Four experiments are performed, 500 replications each
- In the first experiment, 500 samples of $n=5$ observations were generated; in the other three sample sizes were $n=10$, $n=20$ and $n=30$, respectively

Distribution of sample mean

- Let $X_{1}, \ldots X_{n}$ be a random sample from a distribution with mean value μ and standard deviation σ. Then

$$
\begin{aligned}
& \text { 1. } E(\bar{X})=\mu_{\bar{X}}=\mu \\
& \text { 2. } V(\bar{X})=\sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n} \\
& \text { 3. } \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

- In addition to the above, for the sample total
$T=X_{1}+X_{2}+\ldots+X_{n}$ we have $E T=n \mu, V(T)=n \sigma^{2}$ and $\sigma_{T}=\sqrt{n} \sigma$

Example

- Consider a notched tensile fatigue test on a titanium specimen.
- The expected number of cycles to first acoustic emission (indicates crack initiation) is $\mu=28,000$. The standard deviation of the number of cycles is $\sigma=5,000$.
- Let X_{1}, \ldots, X_{25} be a random sample; each X_{i} is the number of cycles on a different randomly selected specimen
- Then, $E(\bar{X})=\mu=28,000$ and the expected total number of cycles for all 25 specimens is $E T=n \mu=700,000$.
- The standard deviations are

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{5,000}{\sqrt{25}}=1000
$$

and

$$
\sigma_{T}=\sqrt{n} \sigma=\sqrt{25}(5,000)=25,000
$$

Normal Population Distribution Case

- Let X_{1}, \ldots, X_{n} be a random sample from a normal distribution with mean value μ and standard deviation σ. Then for any n, \bar{X} is normally distributed with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.
- Note that this is true no matter what n is. It need not go to infinity.

Linear combination of the random variables

- Given a collection of n random variables X_{1}, \ldots, X_{n} and constants a_{1}, \ldots, a_{n}, the RV

$$
Y=\sum_{i=1}^{n} a_{i} X_{i}
$$

is called a linear combination of X_{i} 's

- \bar{X} is a special case with $a_{1}=\ldots=a_{n}=\frac{1}{n}$ while the total T is another special case with $a_{1}=\ldots=a_{n}=1$

Properties of linear combinations of random variables

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables with means μ_{1}, \ldots, μ_{n} and variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$ respectively.

1. $E \sum_{i=1}^{n} a_{i} X_{i}=\sum_{i=1}^{n} a_{i} \mu_{i}$
2. If X_{1}, \ldots, X_{n} are independent, $V\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$

Example

- A gas station sells regular, extra and super gasoline. The prices are $3.00,3.20$ and 3.40 per gallon. Let X_{1}, X_{2}, X_{3} be the amounts purchased on a particular day (in gallons).
- Let X_{1}, X_{2}, X_{3} be independent with $\mu_{1}=1000, \mu_{2}=500$, $\mu_{3}=300, \sigma_{1}=100, \sigma_{2}=80$ and $\sigma_{3}=50$.
- The revenue from sales is $Y=3 X_{1}+3.2 X_{2}+3.4 X_{3}$
- The average revenue is

$$
E Y=3 \mu_{1}+3.2 \mu_{2}+3.4 \mu_{3}=5620
$$

- The variation in revenue is

$$
\sigma_{Y}=\sqrt{9 \sigma_{1}^{2}+(3.2)^{2} \sigma_{2}^{2}+(3.4)^{2} \sigma_{3}^{2}}=\sqrt{184,436}=429.46
$$

Example

- The time n it takes a rat of a certain subspecies to reach the end of the maze is normal with mean $\mu=1.5 \mathrm{~min}$ and $\sigma=.35 \mathrm{~min}$.
- If we have measurements for 5 rats X_{1}, \ldots, X_{n}, what is the probability that the total time $T=X_{1}+\ldots+X_{n}$ is between 6 and 8 min ?
- Clearly, $T=n \bar{X}$. We know that T is normal with the mean $n \mu=7.5$ and the variance $n \sigma^{2}=.6125$.
- Then,

$$
\begin{aligned}
& P(6 \leq T \leq 8)=P\left(\frac{6-7.5}{.783} \leq Z \leq \frac{8-7.5}{.783}\right) \\
& =\Phi(0.64)-\Phi(-1.92)=.7115
\end{aligned}
$$

- To find the probability that the average time to reach the maze exit is at most 2.0 min we need to remember that \bar{X} is normal with the mean $\mu_{\bar{x}}=\mu=1.5$ and $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=.35 / \sqrt{5}=.1565$.
- Then,

$$
\begin{aligned}
& P(\bar{X} \leq 2.0)=P\left(Z \leq \frac{2.0-1.5}{.1565}\right) \\
& =P(Z \leq 3.19)=\Phi(3.19)=.9993
\end{aligned}
$$

Central Limit Theorem (CLT)

- Let X_{1}, \ldots, X_{n} be a random sample from some distribution with mean value μ and variance σ^{2}. Then, if n is sufficiently large, \bar{X} is approximately normal with mean μ and variance $\frac{\sigma^{2}}{n}$.
- Note that, unlike the case where the distribution of X itself is normal, this is only approximately true. The quality of approximation improves with large n.

Example

- The amount of a particular impurity in a batch of a certain chemical product is a random variable with mean $\mu=4 \mathrm{~g}$ and standard deviation $\sigma=1.5 \mathrm{~g}$.
- What is the approximate probability $P(3.5<\bar{X}<3.8)$ if $n=50$?
- We assume that, approximately, \bar{X} is normal with mean $\mu_{\bar{X}}=4$ and standard deviation $\sigma_{\bar{X}}=\frac{1.5}{\sqrt{50}}=.2121$
- Then,

$$
\begin{aligned}
& P(3.5<\bar{X}<3.8) \approx P\left(\frac{3.5-4.0}{.2121}<\bar{X}<\frac{3.8-4.0}{.2121}\right) \\
& =\Phi(-.94)-\Phi(-2.36)=.1645
\end{aligned}
$$

Remark

- The quality of approximation depends greatly on how close the original distribution of X is to the normal.
- The usual rule of thumb is to use the CLT when $n \geq 30$.

