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Definition of a Statistic

I A statistic is any quantity whose value can be calculated from
sample data. Prior to obtaining data, there is uncertainty as
to what value of any particular statistic will result.

I A statistic is a random variable denoted by an uppercase
letter; a lowercase letter is used to represent the calculated or
observed value of the statistic.
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I Example Consider a sample of n = 3 cars of a particular type;
their fuel efficiencies may be x1 = 30.7 mpg, x2 = 29.4 mpg,
x3 = 31.1 mpg.

I It may also be x1 = 28.8 mpg, x2 = 30.0 mpg and x3 = 31.1
mpg

I This implies that the value of the mean X̄ is different in these
cases. Clearly, X̄ is a statistic. The first sample has the mean
X̄1 = 30.4 mpg and the second one has X̄2 ≈ 30 mpg
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Statistic Examples

I A sample mean X̄ of the sample X1, . . . ,Xn is a statistic; x̄ is
one of its possible values

I The value of the sample mean from any particular sample can
be regarded as a point estimate of the population µ.

I Another example is the sample standard deviation S , while s
is its computed value

I Yet another example is the difference between the sample
means for two different populations X̄ − Ȳ
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Sampling distribution

I Each statistic is a random variable and, as such, has its own
distribution

I Consider two samples of size n = 2; if X1 = X2 = 0, X̄ = 0
with probability P(X1 = 0 ∩ X2 = 0)

I On the other hand, if X1 = 1 but X2 = 0 or X1 = 0 and
X2 = 1, we have X̄ = 0.5 with probability
P(X1 = 1 ∩ X2 = 0) + P(X1 = 0 ∩ X2 = 1)

I This distribution is called the sampling distribution to
emphasize its description of how the statistic varies in value
across all possible sample
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Random Sample

I The probability distribution of any statistic depends on the
sampling method.

I Consider selecting a sample of size n = 2 from the population
1, 5, 10. If the sampling is with replacement, it is possible that
X1 = X2; then the sampling variance S2 = 0 with a nonzero
probability

I However, the sampling without replacement cannot produce
S2 = 0 and, therefore, P(S2 = 0) = 0.

Levine STAT 511



(Simple) Random Sample

I The RVs X1, . . . ,Xn are said to form a simple random sample
of size n if

I The Xi s are independent RVs.
I Every Xi has the same probability distribution.

I The usual way to describe these two conditions is to say that
Xi ’s are independent and identically distributed or iid.
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Example

I A certain brand of MP3 player comes in three configurations:
a model with 2 GB of memory, costing 80, a 4 GB model
priced at 100, and an 8 GB version with a price tag of 120

I 20% of all purchasers choose the 2 GB model, 30% choose
the 4 GB model, and 50% choose the 8 GB model.

I The probability distribution of the cost X of a single randomly
selected MP3 player purchase is given by

x 80 100 120

p(x) 0.2 0.3 0.5

I Here, µ106 and σ2 = 244
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Experiment

I On a particular day only two MP3 players are sold. Let X1 =
the revenue from the first sale and X2= the revenue from the
second

I X1 and X2 are independent from the same tabled distribution
above
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Complete sampling distributions

x̄ 80 90 100 110 120

pX̄ (x̄) 0.04 0.12 0.29 0.30 0.25

s2 0 200 800

pS2(s2) 0.38 0.42 0.20
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Comparison of two histograms
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Simulation Experiments

I This is usually employed when the direct derivation is too
difficult

I The following characteristics must be specified

1. The statistic of interest.
2. The population distribution.
3. The sample size n.
4. The number of replications k .
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Example

I Consider the platelet volume distribution in individuals with
no known heart problems. It is commonly assumed to be
normal; particular research publication assumes µ = 0.25 and
σ = 0.75.

I Four experiments are performed, 500 replications each

I In the first experiment, 500 samples of n = 5 observations
were generated; in the other three sample sizes were n = 10,
n = 20 and n = 30, respectively
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Distribution of sample mean

I Let X1, . . .Xn be a random sample from a distribution with
mean value µ and standard deviation σ. Then

1. E (X̄ ) = µX̄ = µ

2. V (X̄ ) = σ2
X̄

= σ2

n
3. σX̄ = σ√

n

I In addition to the above, for the sample total
T = X1 + X2 + . . .+ Xn we have E T = nµ, V (T ) = nσ2 and
σT =

√
nσ
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Example

I Consider a notched tensile fatigue test on a titanium
specimen.

I The expected number of cycles to first acoustic emission
(indicates crack initiation) is µ = 28, 000. The standard
deviation of the number of cycles is σ = 5, 000.

I Let X1, . . . ,X25 be a random sample; each Xi is the number
of cycles on a different randomly selected specimen

I Then, E (X̄ ) = µ = 28, 000 and the expected total number of
cycles for all 25 specimens is E T = nµ = 700, 000.

I The standard deviations are

σX̄ =
σ√
n

=
5, 000√

25
= 1000

and
σT =

√
nσ =

√
25(5, 000) = 25, 000
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Normal Population Distribution Case

I Let X1, . . . ,Xn be a random sample from a normal
distribution with mean value µ and standard deviation σ.
Then for any n, X̄ is normally distributed with mean µ and
standard deviation σ√

n
.

I Note that this is true no matter what n is. It need not go to
infinity.
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Linear combination of the random variables

I Given a collection of n random variables X1, . . . ,Xn and
constants a1, . . . , an, the RV

Y =
n∑

i=1

aiXi

is called a linear combination of Xi ’s

I X̄ is a special case with a1 = . . . = an = 1
n while the total T

is another special case with a1 = . . . = an = 1
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Properties of linear combinations of random variables

I Let X1, X2,. . .,Xn be random variables with means µ1, . . . , µn
and variances σ2

1, . . . , σ
2
n respectively.

1. E
∑n

i=1 aiXi =
∑n

i=1 aiµi

2. If X1, . . . ,Xn are independent, V (
∑n

i=1 aiXi ) =
∑n

i=1 a
2
i σ

2
i
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Example

I A gas station sells regular, extra and super gasoline. The
prices are 3.00, 3.20 and 3.40 per gallon. Let X1,X2,X3 be
the amounts purchased on a particular day (in gallons).

I Let X1, X2, X3 be independent with µ1 = 1000, µ2 = 500,
µ3 = 300, σ1 = 100, σ2 = 80 and σ3 = 50.

I The revenue from sales is Y = 3X1 + 3.2X2 + 3.4X3

I The average revenue is

E Y = 3µ1 + 3.2µ2 + 3.4µ3 = 5620

I The variation in revenue is

σY =
√

9σ2
1 + (3.2)2σ2

2 + (3.4)2σ2
3 =

√
184, 436 = 429.46
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Example

I The time n it takes a rat of a certain subspecies to reach the
end of the maze is normal with mean µ = 1.5 min and
σ = .35 min.

I If we have measurements for 5 rats X1, . . . ,Xn, what is the
probability that the total time T = X1 + . . .+ Xn is between 6
and 8 min?

I Clearly, T = nX̄ . We know that T is normal with the mean
nµ = 7.5 and the variance nσ2 = .6125.

Levine STAT 511



I Then,

P(6 ≤ T ≤ 8) = P

(
6− 7.5

.783
≤ Z ≤ 8− 7.5

.783

)
= Φ(0.64)− Φ(−1.92) = .7115

I To find the probability that the average time to reach the
maze exit is at most 2.0 min we need to remember that X̄ is
normal with the mean µX̄ = µ = 1.5 and
σX̄ = σ√

n
= .35/

√
5 = .1565.

I Then,

P(X̄ ≤ 2.0) = P

(
Z ≤ 2.0− 1.5

.1565

)
= P(Z ≤ 3.19) = Φ(3.19) = .9993

Levine STAT 511



Central Limit Theorem (CLT)

I Let X1, . . . ,Xn be a random sample from some distribution
with mean value µ and variance σ2. Then, if n is sufficiently
large, X̄ is approximately normal with mean µ and variance
σ2

n .

I Note that, unlike the case where the distribution of X itself is
normal, this is only approximately true. The quality of
approximation improves with large n.
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Example

I The amount of a particular impurity in a batch of a certain
chemical product is a random variable with mean µ = 4 g and
standard deviation σ = 1.5 g.

I What is the approximate probability P(3.5 < X̄ < 3.8) if
n = 50?

I We assume that, approximately, X̄ is normal with mean
µX̄ = 4 and standard deviation σX̄ = 1.5√

50
= .2121

I Then,

P(3.5 < X̄ < 3.8) ≈ P

(
3.5− 4.0

.2121
< X̄ <

3.8− 4.0

.2121

)
= Φ(−.94)− Φ(−2.36) = .1645
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Remark

I The quality of approximation depends greatly on how close
the original distribution of X is to the normal.

I The usual rule of thumb is to use the CLT when n ≥ 30.
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