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Random Variables

I For a given sample space S , a random variable (RV) is any
mapping Y : S → R.

I Essentially, it is a function whose domain is the sample space
and whose range is R.

I It is also possible to consider complex-valued random
variables. We will not do it in the current course, however.

Levine STAT 511



I A set is denumerable if and only if its elements can be placed
in one-to-one correspondence with natural numbers.

I A set is countable if and only if it is either finite or
denumerable.

I Example of a denumerable set : a set of all even natural
numbers...Why? 21, 42, 63, 84, . . .

I Another example: a set of all integers...Indeed,
. . . ,−37,−25,−13, 01, 12, 24, 36, 48, . . .
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I A discrete random variable is a RV whose possible values
make up a countable sequence.

I Ex.(Discrete) A person attempts to log on to a power-sharing
system; the outcome is either a success, coded by 1, or failure
coded by zero. Thus, with S = {S ,F}, we have

X (S) = 1, X (F ) = 0.

I Any RV that only takes values 0 or 1 is called Bernoulli RV, in
honor of Jacob Bernoulli (1654− 1705).
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Example

I The quality control process: we sample batteries (or any other
industrially manufactured product) as it comes off the
conveyor line. Let F denote the faulty and S the good one.
The sample space is S = {S ,FS ,FFS , . . .}. Let X be the
number of batteries that is examined before the experiment
stops. The, X (S) = 1,X (FS) = 2, . . ..
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Example of a non-discrete random variable

I Consider measuring the elevation above the sea level of a
randomly chosen point within the continental US map (in
feet).

I It will be
−282 ≤ y ≤ 14, 494

where the left bound corresponds to the Death Valley and the
right one to Mt. Whitney.

I This random variable is continuous.
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Probability Distributions

I The probability distribution or probability mass function (pmf)
of a discrete RV is defined for every number x as

p(x) = P(X = x) = P(all s ∈ S : X (s) = x)

I pmf specifies the probability of observing the value x when
the experiment is performed

I It must satisfy:

1. p(x) ≥ 0
2.

∑
all possible x

p(x) = 1
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Example

I Record preferences of a customer as

X =

{
1 if laptop
0 if desktop

I Assume that 20% of all customers selected a laptop. Then,

p(0) = P(X = 0) = 0.8

p(1) = P(X = 1) = 0.2

p(x) = P(X = x) = 0 if x 6= 0, 1
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Cumulative distribution

I The cumulative distribution function (cdf) F(x) of a discrete
RV variable X with pmf p(x) is

F (x) = P(X ≤ x) =
∑
y :y≤x

p(y).

I It is the probability that X will be at most equal to x
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Example I

I A store carries flash drives with either 1 GB, 2 GB, 4 GB, 8
GB, or 16 GB of memory

I The accompanying table gives the distribution of Y - the
amount of memory in a purchased drive

I
y 1 2 4 8 16

p(y) .05 .10 .35 .40 .10
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Example I

I E.g. F (1) = P(Y ≤ 1) = 0.5 or
F (2) = P(Y ≤ 2) = p(1) + p(2) = .15

I But also F (2.7) = P(Y ≤ 2.7) = P(Y ≤ 2) = .15
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Example I

I The representation of a CDF below is called a step function

Levine STAT 511



Example II

I Starting at a fixed time, we observe the gender of each
newborn child at a hospital until a boy is born. Let p = P(B)
and X the number of births observed until ”success”

I Then,
p(x) = (1− p)x−1p

for x = 1, 2, 3 . . .
I Verify that

F (x) = 1− (1− p)x

for any positive integer x
I More generally,

F (x) =

{
0 x ≤ 1

1− (1− p)[x] x ≥ 1

where [x ] is the integer part of x
I As an example, if p = 0.51 F (5) = 1− (0.49)5 = 0.9718
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Family of distributions

I Suppose that p(x) depends on a parameter.

I Each value of the parameter determines a different probability
distribution.

I Example I : a RV X is defined as X = 1 with prob. α and
X = 0 with probability 1− α. This is a whole family of
distributions p(x ;α). It is called a family of Bernoulli
distributions

I Example II: a RV Y that is defined as the number of ”failures
” before the first success with each trial being independent
and the probability of ”success” being p; see the example
above.

I Such a family is called the family of geometric RV’s with the
parameter p
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Proposition

I For any two numbers a and b with

P(a ≤ X ≤ b) = F (b)− F (a−)

where a− represents the largest possible X value that is
strictly less than a.

I If a and b are integers,

P(a ≤ X ≤ b) = F (b)− F (a− 1)

Levine STAT 511



Example

I Let X be the number of days of sick leave taken by a randomly
selected employee of a large company during a particular year

I If the maximum number of allowable sick days per year is 14,
possible values of X are 0, 1, . . . , 14

I Check that F (0) = .58, F (1) = .72, F (2) = .76, F (3) = .81,
F (4) = .88, and F (5) = .94

I E.g.

P(2 ≤ X ≤ 5) = P(X = 2, 3, 4, or 5) = F (5)− F (1) = .22

I Or,
P(X = 3) = F (3)− F (2) = 0.05
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Chevalier de Méré - Pascal-Fermat problem

I How to split the pot of an interrupted dice game? Let each of
the two players select a number from the set
S = {1, 2, 3, 4, 5, 6}

I For each roll of a fair die that produces one of their respective
numbers, the corresponding player receives a token; the one
who accumulates 5 tokens, receives 100

I What if the game is interrupted when Player A has 4 tokens
and the Player B just one?

I The probability that Player B would have won the pot is that
his number appears 4 more times before A’s number appears
one more time...This is 0.54 = 0.0625

I According to Pascal and Fermat, B is entitled to
0.0625 ∗ 100 = 6.25 from the pot and the remaining 93.75 go
to Player A
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Expected value

I For a random variable X with pmf p(x), the expected (mean)
value is

E (X ) =
∑
x∈D

xp(x)

where D is the set of all possible values x .

I Consider a slot machine that pays a jackpot of 1000 with
p = 0.0005 and otherwise nothing.

I Define X = 1000 with p = 0.0005 and X = 0 with
1− p = 0.9995.

I The fair value is E X = 1000 ∗ 0.0005 + 0 ∗ 0.9995 = 0.5−
this is what you should charge for participating in this game
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Examples of lotteries

I The win is 10 if the fair coin produces H or 0 otherwise; if you
don’t pay, you receive 5.

I The fair value is 10 ∗ 0.5 = 5− a ”rational” person should be
indifferent...are you?

I What if the win is 10000 and you have to pay 5000 to
participate? Or 2 million and 1 million?

I Now imagine that you either receive 1 million for sure or get 5
million with p = 0.5 (tossing the fair coin). The fair value is
2.5 million...but do you REALLY want to play the game?
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Credit card example

I Let X be the number of credit cards a student carries.

x p(x)

0 0.08

1 0.28

2 0.38

3 0.16

4 0.06

5 0.03

6 0.01

E (X ) = x1p1+. . .+xnpn = 0∗(0.08)+1∗(0.28)+. . .+6∗(0.01) = 1.97
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Expected value of a Bernoulli random variable

I Example Consider a Bernoulli RV with pmf

p(x) =


1− p if x=0

p if x=1
0 if otherwise

E (X ) = 0 ∗ p(0) + 1 ∗ p(1) = p

I The expected value of X is the probability of success.

I Note that the expected value is the weighted mean and not
just the simple mean of outcomes which is equal to 0.5
regardless of the values of p
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Expected value of a geometric random variable

I Example Let X now be the number of children born up to
and including the first boy is

p(x) = p(1− p)x−1

for x = 1, 2, 3, . . ..

E (X ) =
∑
x∈D

x · p(x) =
∞∑
x=1

xp(1− p)x−1 =
1

p

Levine STAT 511



Expected value of a function and a St. Petersburg paradox

I If the RV X has the set of possible values D and pmf p(x),
then the expected value of any function h(X ) is denoted

E (h(X )) =
∑
x∈D

h(x) · p(x)

I Let the jackpot start at 1 and double each time T is observed
at the toss of a fair coin. When H is observed, the game is
terminated

I How much would you pay for the privilege of playing this
game? How much would you charge if you were responsible
for making the payoff?
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St. Petersburg paradox

I There is a very small possibility of a large payoff; most people
answer that they won’t pay more than 4 for the privilege of
paying this game

I Most people do request a fairly large payment, recognizing the
possibility of the large payoff

I If X is the number of tails observed until the end of the game,

f (x) = P(x consecutive T’s) = 0.5x

I The payoff is Y = 2X and

E Y =
+∞∑
x=0

2x ∗ 0.5x =∞

I In this case, the ”fair value” provides very little insight into
how much you’d want to pay to take part in this game
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Expected Value Properties

I For any two real numbers a and b

E (aX + b) = a · E (X ) + b

I Corollaries:

1.
E (aX ) = a · E (X )

2.
E (X + b) = E (X ) + b

I Let X be a discrete random variable such that P(X = c) = 1.
Then, E X = c .
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Variance

I Let X have pmf p(x), and expected value µ. Then the
variance of X is

V (X ) =
∑
x∈D

(x − µ)2 · p(x) = E [(X − µ)2]

I Alternative notations: σ2X or σ2

I The standard deviation of X is

σX =
√
σ2X

I σ2X is the population variance

I An alternative formula is Var X = E X 2 − (E X )2
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Examples

1. Variance of a Bernoulli random variable is
Var X = E (X − µ)2 = (−µ)2 ∗ (1− p) + (1− µ)2 ∗ p =
p2(1− p) + (1− p)2p = p(1− p)

2. The quiz scores for a particular student are given as 22, 25,
20, 18, 12, 24, 20, 20, 25, 24, 25, 18.

Value 12 18 20 22 24 25

Frequency 1 2 4 1 2 3

Probability .08 .15 .31 .08 .15 .23

2a. µ = 0.08 ∗ 12 + . . .+ 0.23 ∗ 25 = 21

2b.

V (X ) = p1(x1 − µ)2 + p2(x2 − µ)2 + . . .+ pn(xn − µ)2

V (X ) = .08·(12−21)2+.15·(18−21)2+. . .+.23·(25−21)2 = 13.25
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