STAT 511
 Lecture 5: Discrete Random Variables, Distributions and Moments

Devore: Section 3.1-3.3

Prof. Michael Levine

January 23, 2019

Random Variables

- For a given sample space S, a random variable (RV) is any mapping $Y: S \rightarrow R$.
- Essentially, it is a function whose domain is the sample space and whose range is R.
- It is also possible to consider complex-valued random variables. We will not do it in the current course, however.
- A set is denumerable if and only if its elements can be placed in one-to-one correspondence with natural numbers.
- A set is countable if and only if it is either finite or denumerable.
- Example of a denumerable set : a set of all even natural numbers...Why? $2^{1}, 4^{2}, 6^{3}, 8^{4}, \ldots$
- Another example: a set of all integers...Indeed, $\ldots,-3^{7},-2^{5},-1^{3}, 0^{1}, 1^{2}, 2^{4}, 3^{6}, 4^{8}, \ldots$
- A discrete random variable is a RV whose possible values make up a countable sequence.
- Ex.(Discrete) A person attempts to log on to a power-sharing system; the outcome is either a success, coded by 1 , or failure coded by zero. Thus, with $S=\{S, F\}$, we have

$$
X(S)=1, X(F)=0
$$

- Any RV that only takes values 0 or 1 is called Bernoulli RV, in honor of Jacob Bernoulli (1654-1705).

Example

- The quality control process: we sample batteries (or any other industrially manufactured product) as it comes off the conveyor line. Let F denote the faulty and S the good one. The sample space is $\mathcal{S}=\{S, F S, F F S, \ldots\}$. Let X be the number of batteries that is examined before the experiment stops. The, $X(S)=1, X(F S)=2, \ldots$

Example of a non-discrete random variable

- Consider measuring the elevation above the sea level of a randomly chosen point within the continental US map (in feet).
- It will be

$$
-282 \leq y \leq 14,494
$$

where the left bound corresponds to the Death Valley and the right one to Mt. Whitney.

- This random variable is continuous.

Probability Distributions

- The probability distribution or probability mass function (pmf) of a discrete RV is defined for every number x as

$$
p(x)=P(X=x)=P(\mathrm{all} s \in S: X(s)=x)
$$

- pmf specifies the probability of observing the value x when the experiment is performed
- It must satisfy:

1. $p(x) \geq 0$
2. $\sum_{\text {all possible } x} p(x)=1$

Example

- Record preferences of a customer as

$$
X=\left\{\begin{array}{l}
1 \text { if laptop } \\
0 \text { if desktop }
\end{array}\right.
$$

- Assume that 20% of all customers selected a laptop. Then,

$$
\begin{array}{r}
p(0)=P(X=0)=0.8 \\
p(1)=P(X=1)=0.2 \\
p(x)=P(X=x)=0 \text { if } x \neq 0,1
\end{array}
$$

Cumulative distribution

- The cumulative distribution function (cdf) $F(x)$ of a discrete $R V$ variable X with $p m f(x)$ is

$$
F(x)=P(X \leq x)=\sum_{y: y \leq x} p(y)
$$

- It is the probability that X will be at most equal to x

Example I

- A store carries flash drives with either $1 \mathrm{~GB}, 2 \mathrm{~GB}, 4 \mathrm{~GB}, 8$ GB, or 16 GB of memory
- The accompanying table gives the distribution of Y - the amount of memory in a purchased drive

y	1	2	4	8	16
$\mathrm{p}(\mathrm{y})$.05	.10	.35	.40	.10

Example I

- E.g. $F(1)=P(Y \leq 1)=0.5$ or

$$
F(2)=P(Y \leq 2)=p(1)+p(2)=.15
$$

- But also $F(2.7)=P(Y \leq 2.7)=P(Y \leq 2)=.15$

$$
F(y)=\left\{\begin{array}{cc}
0 & y<1 \\
.05 & 1 \leq y<2 \\
.15 & 2 \leq y<4 \\
.50 & 4 \leq y<8 \\
.90 & 8 \leq y<16 \\
1 & 16 \leq y
\end{array}\right.
$$

Example I

- The representation of a CDF below is called a step function

Example II

- Starting at a fixed time, we observe the gender of each newborn child at a hospital until a boy is born. Let $p=P(B)$ and X the number of births observed until "success"
- Then,

$$
p(x)=(1-p)^{x-1} p
$$

for $x=1,2,3 \ldots$

- Verify that

$$
F(x)=1-(1-p)^{x}
$$

for any positive integer x

- More generally,

$$
F(x)=\left\{\begin{array}{l}
0 x \leq 1 \\
1-(1-p)^{[x]} x \geq 1
\end{array}\right.
$$

where $[x]$ is the integer part of x

- As an example, if $p=0.51 F(5)=1-(0.49)^{5}=0.9718$

Family of distributions

- Suppose that $p(x)$ depends on a parameter.
- Each value of the parameter determines a different probability distribution.
- Example I: a RV X is defined as $X=1$ with prob. α and $X=0$ with probability $1-\alpha$. This is a whole family of distributions $p(x ; \alpha)$. It is called a family of Bernoulli distributions
- Example II: a RV Y that is defined as the number of "failures " before the first success with each trial being independent and the probability of "success" being p; see the example above.
- Such a family is called the family of geometric RV's with the parameter p

Proposition

- For any two numbers a and b with

$$
P(a \leq X \leq b)=F(b)-F(a-)
$$

where a - represents the largest possible X value that is strictly less than a.

- If a and b are integers,

$$
P(a \leq X \leq b)=F(b)-F(a-1)
$$

Example

- Let X be the number of days of sick leave taken by a randomly selected employee of a large company during a particular year
- If the maximum number of allowable sick days per year is 14 , possible values of X are $0,1, \ldots, 14$
- Check that $F(0)=.58, F(1)=.72, F(2)=.76, F(3)=.81$, $F(4)=.88$, and $F(5)=.94$
- E.g.

$$
P(2 \leq X \leq 5)=P(X=2,3,4, \text { or } 5)=F(5)-F(1)=.22
$$

- Or,

$$
P(X=3)=F(3)-F(2)=0.05
$$

Chevalier de Méré - Pascal-Fermat problem

- How to split the pot of an interrupted dice game? Let each of the two players select a number from the set

$$
S=\{1,2,3,4,5,6\}
$$

- For each roll of a fair die that produces one of their respective numbers, the corresponding player receives a token; the one who accumulates 5 tokens, receives 100
- What if the game is interrupted when Player A has 4 tokens and the Player B just one?
- The probability that Player B would have won the pot is that his number appears 4 more times before A 's number appears one more time...This is $0.5^{4}=0.0625$
- According to Pascal and Fermat, B is entitled to $0.0625 * 100=6.25$ from the pot and the remaining 93.75 go to Player A

Expected value

- For a random variable X with pmf $p(x)$, the expected (mean) value is

$$
E(X)=\sum_{x \in D} x p(x)
$$

where D is the set of all possible values x.

- Consider a slot machine that pays a jackpot of 1000 with $p=0.0005$ and otherwise nothing.
- Define $X=1000$ with $p=0.0005$ and $X=0$ with $1-p=0.9995$.
- The fair value is $E X=1000 * 0.0005+0 * 0.9995=0.5-$ this is what you should charge for participating in this game

Examples of lotteries

- The win is 10 if the fair coin produces H or 0 otherwise; if you don't pay, you receive 5 .
- The fair value is $10 * 0.5=5-$ a " rational" person should be indifferent...are you?
- What if the win is 10000 and you have to pay 5000 to participate? Or 2 million and 1 million?
- Now imagine that you either receive 1 million for sure or get 5 million with $p=0.5$ (tossing the fair coin). The fair value is 2.5 million...but do you REALLY want to play the game?

Credit card example

- Let X be the number of credit cards a student carries.

x	$p(x)$
0	0.08
1	0.28
2	0.38
3	0.16
4	0.06
5	0.03
6	0.01

$E(X)=x_{1} p_{1}+\ldots+x_{n} p_{n}=0 *(0.08)+1 *(0.28)+\ldots+6 *(0.01)=1.97$

Expected value of a Bernoulli random variable

- Example Consider a Bernoulli RV with pmf

$$
\begin{gathered}
p(x)=\left\{\begin{array}{rlc}
1-p & \text { if } & x=0 \\
p & \text { if } & x=1 \\
0 & \text { if } & \text { otherwise }
\end{array}\right. \\
E(X)=0 * p(0)+1 * p(1)=p
\end{gathered}
$$

- The expected value of X is the probability of success.
- Note that the expected value is the weighted mean and not just the simple mean of outcomes which is equal to 0.5 regardless of the values of p

Expected value of a geometric random variable

- Example Let X now be the number of children born up to and including the first boy is

$$
p(x)=p(1-p)^{x-1}
$$

for $x=1,2,3, \ldots$.

$$
E(X)=\sum_{x \in D} x \cdot p(x)=\sum_{x=1}^{\infty} x p(1-p)^{x-1}=\frac{1}{p}
$$

Expected value of a function and a St. Petersburg paradox

- If the RV X has the set of possible values D and pmf $p(x)$, then the expected value of any function $h(X)$ is denoted

$$
E(h(X))=\sum_{x \in D} h(x) \cdot p(x)
$$

- Let the jackpot start at 1 and double each time T is observed at the toss of a fair coin. When H is observed, the game is terminated
- How much would you pay for the privilege of playing this game? How much would you charge if you were responsible for making the payoff?

St. Petersburg paradox

- There is a very small possibility of a large payoff; most people answer that they won't pay more than 4 for the privilege of paying this game
- Most people do request a fairly large payment, recognizing the possibility of the large payoff
- If X is the number of tails observed until the end of the game,

$$
f(x)=P(x \text { consecutive T's })=0.5^{x}
$$

- The payoff is $Y=2^{X}$ and

$$
E Y=\sum_{x=0}^{+\infty} 2^{x} * 0.5^{x}=\infty
$$

- In this case, the "fair value" provides very little insight into how much you'd want to pay to take part in this game

Expected Value Properties

- For any two real numbers a and b

$$
E(a X+b)=a \cdot E(X)+b
$$

- Corollaries:

1.

$$
E(a X)=a \cdot E(X)
$$

2.

$$
E(X+b)=E(X)+b
$$

- Let X be a discrete random variable such that $P(X=c)=1$. Then, $E X=c$.

Variance

- Let X have pmf $\mathrm{p}(\mathrm{x})$, and expected value μ. Then the variance of X is

$$
V(X)=\sum_{x \in D}(x-\mu)^{2} \cdot p(x)=E\left[(X-\mu)^{2}\right]
$$

- Alternative notations: σ_{X}^{2} or σ^{2}
- The standard deviation of X is

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}}
$$

- σ_{X}^{2} is the population variance
- An alternative formula is $\operatorname{Var} X=E X^{2}-(E X)^{2}$

Examples

1. Variance of a Bernoulli random variable is

$$
\begin{aligned}
& \operatorname{Var} X=E(X-\mu)^{2}=(-\mu)^{2} *(1-p)+(1-\mu)^{2} * p= \\
& p^{2}(1-p)+(1-p)^{2} p=p(1-p)
\end{aligned}
$$

2. The quiz scores for a particular student are given as 22,25 , $20,18,12,24,20,20,25,24,25,18$.

Value	12	18	20	22	24	25
Frequency	1	2	4	1	2	3
Probability	.08	.15	.31	.08	.15	.23

2a. $\mu=0.08 * 12+\ldots+0.23 * 25=21$
2b.

$$
\begin{gathered}
V(X)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\ldots+p_{n}\left(x_{n}-\mu\right)^{2} \\
V(X)=.08 \cdot(12-21)^{2}+.15 \cdot(18-21)^{2}+\ldots+.23 \cdot(25-21)^{2}=13.25
\end{gathered}
$$

