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Why are counting techniques needed?

I Sample space is too large

I The outcomes are not equally likely
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The product rule

I Ordered pairs: if the first element can be selected in n1 ways
and the second in n2 ways we have n1n2 possible ordered pairs.

I Note that this is sampling with replacement.

I An ordered k-tuple is an ordered collection of k objects.

I Example: {1, 2, 3, 4, 5, 6} is an ordered 6-tuple.

I If each of i elements can be selected in ni ways, the total
number of ordered k-tuples possible is n1n2 × . . .× nk
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Examples

I Each of the 2 clinics has 3 specialists in internal medicine, 2
general surgeons. You require the services of both and benefit
most by choosing both from the same clinic. How many
opportunities do you have to do it?

I Answer: 4× 3 = 12

I What if you also have 2 pediatricians for each clinic and need
to choose a pediatrician as well?

I Answer: 4× 3× 2 = 24.
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Example

I Consider a system of five identical components connected in a
series. Let F be a failure and S be a success for any single
component. What is the probability of an event
A = {system fails}?

I Answer: A
′

= {S ,S ,S , S , S}, thus,
P(A) = 1− P(A

′
) = 1− P(S)5.

I E.g. if P(S) = 0.9, P(A) = 1− 0.95 = 0.41.
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Sampling without replacement

I An ordered sequence of k objects taken from a set of n
distinct objects is called a permutation of size k . The
notation is Pk,n.

I The number of possible permutations is

Pk,n = n(n − 1)(n − 2)× . . .× (n − (k − 1))

I For any positive integer m,

m! = m(m − 1)× . . .× 1.

I Using factorial notation, we have

Pk,n =
n!

(n − k)!
.
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Example

I A boy has 4 beads red, white, blue, and yellow. In how many
different ways can three of the beads be strung together in a
row?

I This is a permutation since the beads will be in a row (order).
Thus, the answer is

P3,4 =
4!

(4− 3)!
= 4! = 24.
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Combinations

I Given a set of n distinct objects, any unordered subset of size
k of the objects is called a combination.

I The usual notations is either Ck,n or
(n
k

)
I To compute

(n
k

)
, note that it is(

n

k

)
=

Pk,n

k!
=

n!

k!(n − k)!
.
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Example

I Three balls are selected at random without replacement from
the jar containing 8 balls- 2 red balls, 3 blacks and 3 greens.
Find the probability that one ball is red and two are black

I The answer (2
1

)(3
2

)(8
3

) =
3

28
.

Levine STAT 511



Conditional Probability

I For any two events A and B with P(B) > 0, the conditional
probability of A given that B has occurred is defined by

P(A|B) =
P(A ∩ B)

P(B)

I A direct consequence is the multiplication rule:

P(A ∩ B) = P(A|B) · P(B)
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Interpretation of conditional probability

I Conditional probability results from restricting the outcomes
to only those that are inside B

I Therefore, instead of

P(A) =
N(A)

N(S)

we have

N(A ∩ B)

N(S ∩ B)
=

P(A ∩ B)

P(S ∩ B)
=

P(A ∩ B)

P(B)

which is exactly our definition of conditional probability
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Example

I Consider the situation where of all individuals buying a digital
camera 60% include an optional memory card, 40% - an extra
battery and 30% - both. What is the probability that a person
who buys an extra battery also buys a memory card?

I Let A = {memory card purchased } and
B = {battery purchased }

P(A|B) =
P(A ∩ B)

P(B)
=

0.3

0.4
= 0.75

P(B|A) =
P(A ∩ B)

P(A)
=

0.3

0.6
= 0.50
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Example

I Four individuals have responded to a request by a blood bank
for blood donations. Their blood types are unknown. Suppose
only type O+ is desired and only one of the four actually has
this type

I If the potential donors are selected in random order for typing,
what is the probability that at least three individuals must be
typed to obtain the desired type?

I Let B = first type not O+ and A = second type not O+ ;
clearly, P(B) = 3

4

I Given that the first type is not O+, two of the three
individuals left are not O+, so P(A|B) = 2

3

I By multiplication rule, the probability that at least three
individuals are typed is

P(A ∩ B) = P(A|B)P(B) = 0.5
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Bayes’ Theorem and its origins: an example

I HIV testing: four outcomes are D ∩+, D ∩ −, D ′ ∩+ and
D

′ ∩ −
I The prevalence of the disease P(D) is commonly known; say,

P(D) = 0.001

I +|D ′
is a false positive and −|D is a false negative.

I Diagnostic procedures undergo extensive evaluation and,
therefore, probabilities of false positives and false negatives
are commonly known

I We assume that P(+|D ′
) = 0.015 and P(−|D) = 0.003; for

more details, see E.M. Sloan et al. (1991) ”HIV testing: state
of the art”, JAMA, 266:2861-2866
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Bayes’ Theorem and its origins: an example

I The quantity of most interest is usually the predictive value
of the test P(D|+)

I By definition of conditional probability and multiplication rule,
we have

P(D|+) =
P(D ∩+)

P(+)
=

P(D ∩+)

P(D ∩+) + P(D ′ ∩+)

=
P(D) ∗ P(+|D)

P(D) ∗ P(+|D) + P(D) ∗ P(−|D)

=
P(D) ∗ [1− P(−|D)]

P(D) ∗ [1− P(−|D)] + P(D) ∗ P(−|D)

I The resulting probability will be small because false positives
are much more common then false negatives in the general
population
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I Law of the total probability:

P(B) =
k∑

i=1

P(B|Ai )P(Ai )

for mutually exclusive A1, . . . ,Ak such that

∪ki=1Ai = S
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I Now we can state Bayes’ theorem

I If P(Ai ) > 0 for any i = 1, . . . , k , then for any B such that
P(B) > 0

P(Aj |B) =
P(B|Aj)P(Aj)∑k
i=1 P(B|Ai )P(Ai )
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Example

I A store stocks light bulbs from three suppliers. Suppliers A, B,
and C supply 10%, 20%, and 70% of the bulbs respectively.

I It has been determined that company A’s bulbs are 1%
defective while company B’s are 3% defective and company
C’s are 4% defective.

I If a bulb is selected at random and found to be defective,
what is the probability that it came from supplier B?

I Let D = defective lightbulb

P(B|D) =
P(B)P(D|B)

P(A)P(D|A) + P(B)P(D|B) + P(C )P(D|C )

=
0.2(0.03)

0.1(0.01) + 0.2(0.03) + 0.7(0.04)
≈ 0.1714
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Independence

I Two event A and B are independent events iff( which means
”if and only if”)

P(A|B) = P(A)

I An obvious alternative definition is that A and B are
independent iff

P(A ∩ B) = P(A) · P(B)

I If A and B are independent, so are B and A
I The independence of A and B implies that

1. A and B
′

are independent
2. A

′
and B are independent

3. A
′

and B
′

are independent
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Example

I Consider the fair six-sided die. Define A = {2, 4, 6},
B = {1, 2, 3} and C = {1, 2, 3, 4}.

I Clearly, P(A) = 1
2 , P(A|B) = 1

3 and P(A|C ) = 1
2 .

I Therefore, A and C are independent but A and B are NOT!
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Some consequences of the definition of independence

I If A and B are mutually exclusive events, they cannot be
independent.

I If either P(A) = 0 or P(B) = 0, A and B are always
independent:

0 ≤ P(A ∩ B) ≤ min(P(A),P(B)) = 0,

therefore P(A ∩ B) = 0
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Practical considerations

I In practice, we do not verify independence of events. Instead,
we ask ourselves whether independence is a property that we
wish to incorporate into a mathematical model of an
experiment, based on the common sense

I Thus, independence is commonly assumed

I Example: let A=(A student is a female) and B=(A student is
concentrating in elementary education ); clearly,
P(B|A) 6= P(B)
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Mutual independence

I A1, . . . ,An are mutually independent if for every k = 2, 3, . . .,
and every possible subset of indices i1, i2, . . . , ik

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik ) = P(Ai1) · P(Ai2) · . . . · P(Aik )

I Mutual independence is a much stronger condition than
pairwise independence!

I Example I: let a single outcome be ω1 and the entire sample
space is Ω = {ω1, ω2, ω3, ω4}

I Then let A = {ω1, ω2}, B = {ω1, ω3} and C = {ω1, ω4}
I If each outcome is equally likely with p = 1

4 , it is easy to
check that pairwise independence is valid

I However,

P(A ∩ B ∩ C ) =
1

4
6=
(

1

2

)3

= P(A)P(B)P(C )
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Example

I The article “Reliability Evaluation of Solar Photovoltaic
Arrays”(Solar Energy, 2002: 129141) presents various
configurations of solar photovoltaic arrays consisting of
crystalline silicon solar cells
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Example

I Consider a particular lifetime value t0; we want to determine
the probability that the system lifetime exceeds t0

I Let Ai denote the event that the lifetime of cell i exceeds t0
(i = 1, 2, ..., 6).

I Ai ’s are independent events and P(Ai ) = 0.9
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Example

I Then, the probability of the event of interest is

P([A1 ∩ A2 ∩ A3] ∪ A4 ∩ A5 ∩ A6])

= P(A1 ∩ A2 ∩ A3) + P(A4 ∩ A5 ∩ A6)

− P([A1 ∩ A2 ∩ A3] ∩ A4 ∩ A5 ∩ A6])

= (0.9)3 + (0.9)3 − (0.9)6 = .927
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I Consider sample space Ω of 36 ordered pairs (i , j) with
i , j = 1, . . . , 6

I We assume that for each pair the probability of occurring
p = 1

36

I Let A = {(i , j) : j = 1, 2 or 5}, B = {(i , j) : j = 4, 5 or 6} and
C = {(i , j) : i + j = 9}

I Then,

P(A ∩ B) =
1

6
6= 1

4
= P(A)P(B)

P(A ∩ C ) =
1

36
6= 1

18
= P(A)P(C )

and

P(B ∩ C ) =
1

12
6= 1

18
= P(B)P(C )

I However,

P(A ∩ B ∩ C ) =
1

36
= P(A)P(B)P(C )
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