STAT 511

Lecture 4: Counting Techniques, Conditional Probability and Independence

Prof. Michael Levine

January 21, 2019

Why are counting techniques needed?

- Sample space is too large
- The outcomes are not equally likely

The product rule

- Ordered pairs: if the first element can be selected in n_{1} ways and the second in n_{2} ways we have $n_{1} n_{2}$ possible ordered pairs.
- Note that this is sampling with replacement.
- An ordered \mathbf{k}-tuple is an ordered collection of k objects.
- Example: $\{1,2,3,4,5,6\}$ is an ordered 6-tuple.
- If each of i elements can be selected in n_{i} ways, the total number of ordered k-tuples possible is $n_{1} n_{2} \times \ldots \times n_{k}$

Examples

- Each of the 2 clinics has 3 specialists in internal medicine, 2 general surgeons. You require the services of both and benefit most by choosing both from the same clinic. How many opportunities do you have to do it?
- Answer: $4 \times 3=12$
- What if you also have 2 pediatricians for each clinic and need to choose a pediatrician as well?
- Answer: $4 \times 3 \times 2=24$.

Example

- Consider a system of five identical components connected in a series. Let F be a failure and S be a success for any single component. What is the probability of an event
$A=\{$ system fails $\}$?
- Answer: $A^{\prime}=\{S, S, S, S, S\}$, thus, $P(A)=1-P\left(A^{\prime}\right)=1-P(S)^{5}$.
- E.g. if $P(S)=0.9, P(A)=1-0.9^{5}=0.41$.

Sampling without replacement

- An ordered sequence of k objects taken from a set of n distinct objects is called a permutation of size k. The notation is $P_{k, n}$.
- The number of possible permutations is

$$
P_{k, n}=n(n-1)(n-2) \times \ldots \times(n-(k-1))
$$

- For any positive integer m,

$$
m!=m(m-1) \times \ldots \times 1 .
$$

- Using factorial notation, we have

$$
P_{k, n}=\frac{n!}{(n-k)!}
$$

Example

- A boy has 4 beads red, white, blue, and yellow. In how many different ways can three of the beads be strung together in a row?
- This is a permutation since the beads will be in a row (order). Thus, the answer is

$$
P_{3,4}=\frac{4!}{(4-3)!}=4!=24
$$

Combinations

- Given a set of n distinct objects, any unordered subset of size k of the objects is called a combination.
- The usual notations is either $C_{k, n}$ or $\binom{n}{k}$
- To compute $\binom{n}{k}$, note that it is

$$
\binom{n}{k}=\frac{P_{k, n}}{k!}=\frac{n!}{k!(n-k)!} .
$$

Example

- Three balls are selected at random without replacement from the jar containing 8 balls- 2 red balls, 3 blacks and 3 greens. Find the probability that one ball is red and two are black
- The answer

$$
\frac{\binom{2}{1}\binom{3}{2}}{\binom{8}{3}}=\frac{3}{28} .
$$

Conditional Probability

- For any two events A and B with $P(B)>0$, the conditional probability of A given that B has occurred is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- A direct consequence is the multiplication rule:

$$
P(A \cap B)=P(A \mid B) \cdot P(B)
$$

Interpretation of conditional probability

- Conditional probability results from restricting the outcomes to only those that are inside B
- Therefore, instead of

$$
P(A)=\frac{N(A)}{N(S)}
$$

we have

$$
\frac{N(A \cap B)}{N(S \cap B)}=\frac{P(A \cap B)}{P(S \cap B)}=\frac{P(A \cap B)}{P(B)}
$$

which is exactly our definition of conditional probability

Example

- Consider the situation where of all individuals buying a digital camera 60% include an optional memory card, 40% - an extra battery and 30% - both. What is the probability that a person who buys an extra battery also buys a memory card?
- Let $A=\{$ memory card purchased $\}$ and $B=\{$ battery purchased $\}$

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.3}{0.4}=0.75 \\
& P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.3}{0.6}=0.50
\end{aligned}
$$

Example

- Four individuals have responded to a request by a blood bank for blood donations. Their blood types are unknown. Suppose only type $\mathrm{O}+$ is desired and only one of the four actually has this type
- If the potential donors are selected in random order for typing, what is the probability that at least three individuals must be typed to obtain the desired type?
- Let $B=$ first type not $O+$ and $A=$ second type not $O+$; clearly, $P(B)=\frac{3}{4}$
- Given that the first type is not O_{+}, two of the three individuals left are not $\mathrm{O}+$, so $P(A \mid B)=\frac{2}{3}$
- By multiplication rule, the probability that at least three individuals are typed is

$$
P(A \cap B)=P(A \mid B) P(B)=0.5
$$

Bayes' Theorem and its origins: an example

- HIV testing: four outcomes are $D \cap+, D \cap-, D^{\prime} \cap+$ and $D^{\prime} \cap-$
- The prevalence of the disease $P(D)$ is commonly known; say, $P(D)=0.001$
$-+\mid D^{\prime}$ is a false positive and $-\mid D$ is a false negative.
- Diagnostic procedures undergo extensive evaluation and, therefore, probabilities of false positives and false negatives are commonly known
- We assume that $P\left(+\mid D^{\prime}\right)=0.015$ and $P(-\mid D)=0.003$; for more details, see E.M. Sloan et al. (1991) "HIV testing: state of the art", JAMA, 266:2861-2866

Bayes' Theorem and its origins: an example

- The quantity of most interest is usually the predictive value of the test $P(D \mid+)$
- By definition of conditional probability and multiplication rule, we have

$$
\begin{aligned}
& P(D \mid+)=\frac{P(D \cap+)}{P(+)}=\frac{P(D \cap+)}{P(D \cap+)+P\left(D^{\prime} \cap+\right)} \\
& =\frac{P(D) * P(+\mid D)}{P(D) * P(+\mid D)+P(D) * P(-\mid D)} \\
& =\frac{P(D) *[1-P(-\mid D)]}{P(D) *[1-P(-\mid D)]+P(D) * P(-\mid D)}
\end{aligned}
$$

- The resulting probability will be small because false positives are much more common then false negatives in the general population
- Law of the total probability:

$$
P(B)=\sum_{i=1}^{k} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

for mutually exclusive A_{1}, \ldots, A_{k} such that

$$
\cup_{i=1}^{k} A_{i}=S
$$

- Now we can state Bayes' theorem
- If $P\left(A_{i}\right)>0$ for any $i=1, \ldots, k$, then for any B such that $P(B)>0$

$$
P\left(A_{j} \mid B\right)=\frac{P\left(B \mid A_{j}\right) P\left(A_{j}\right)}{\sum_{i=1}^{k} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

Example

- A store stocks light bulbs from three suppliers. Suppliers A, B, and C supply $10 \%, 20 \%$, and 70% of the bulbs respectively.
- It has been determined that company A's bulbs are 1% defective while company B's are 3% defective and company C's are 4\% defective.
- If a bulb is selected at random and found to be defective, what is the probability that it came from supplier B?
- Let $D=$ defective lightbulb

$$
\begin{aligned}
P(B \mid D) & =\frac{P(B) P(D \mid B)}{P(A) P(D \mid A)+P(B) P(D \mid B)+P(C) P(D \mid C)} \\
& =\frac{0.2(0.03)}{0.1(0.01)+0.2(0.03)+0.7(0.04)} \approx 0.1714
\end{aligned}
$$

Independence

- Two event A and B are independent events iff(which means "if and only if")

$$
P(A \mid B)=P(A)
$$

- An obvious alternative definition is that A and B are independent iff

$$
P(A \cap B)=P(A) \cdot P(B)
$$

- If A and B are independent, so are B and A
- The independence of A and B implies that

1. A and B^{\prime} are independent
2. A^{\prime} and B are independent
3. A^{\prime} and B^{\prime} are independent

Example

- Consider the fair six-sided die. Define $A=\{2,4,6\}$, $B=\{1,2,3\}$ and $C=\{1,2,3,4\}$.
- Clearly, $P(A)=\frac{1}{2}, P(A \mid B)=\frac{1}{3}$ and $P(A \mid C)=\frac{1}{2}$.
- Therefore, A and C are independent but A and B are NOT!

Some consequences of the definition of independence

- If A and B are mutually exclusive events, they cannot be independent.
- If either $P(A)=0$ or $P(B)=0, A$ and B are always independent:

$$
0 \leq P(A \cap B) \leq \min (P(A), P(B))=0
$$

therefore $P(A \cap B)=0$

Practical considerations

- In practice, we do not verify independence of events. Instead, we ask ourselves whether independence is a property that we wish to incorporate into a mathematical model of an experiment, based on the common sense
- Thus, independence is commonly assumed
- Example: let $A=(\mathrm{A}$ student is a female) and $B=$ (A student is concentrating in elementary education); clearly, $P(B \mid A) \neq P(B)$

Mutual independence

- A_{1}, \ldots, A_{n} are mutually independent if for every $k=2,3, \ldots$, and every possible subset of indices $i_{1}, i_{2}, \ldots, i_{k}$

$$
P\left(A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdot P\left(A_{i_{2}}\right) \cdot \ldots \cdot P\left(A_{i_{k}}\right)
$$

- Mutual independence is a much stronger condition than pairwise independence!
- Example I: let a single outcome be ω_{1} and the entire sample space is $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$
- Then let $A=\left\{\omega_{1}, \omega_{2}\right\}, B=\left\{\omega_{1}, \omega_{3}\right\}$ and $C=\left\{\omega_{1}, \omega_{4}\right\}$
- If each outcome is equally likely with $p=\frac{1}{4}$, it is easy to check that pairwise independence is valid
- However,

$$
P(A \cap B \cap C)=\frac{1}{4} \neq\left(\frac{1}{2}\right)^{3}=P(A) P(B) P(C)
$$

Example

- The article "Reliability Evaluation of Solar Photovoltaic Arrays" (Solar Energy, 2002: 129141) presents various configurations of solar photovoltaic arrays consisting of crystalline silicon solar cells

Example

- Consider a particular lifetime value t_{0}; we want to determine the probability that the system lifetime exceeds t_{0}
- Let A_{i} denote the event that the lifetime of cell i exceeds t_{0} ($i=1,2, \ldots, 6$).
- A_{i} 's are independent events and $P\left(A_{i}\right)=0.9$

Example

- Then, the probability of the event of interest is

$$
\begin{aligned}
& \left.P\left(\left[A_{1} \cap A_{2} \cap A_{3}\right] \cup A_{4} \cap A_{5} \cap A_{6}\right]\right) \\
& =P\left(A_{1} \cap A_{2} \cap A_{3}\right)+P\left(A_{4} \cap A_{5} \cap A_{6}\right) \\
& \left.-P\left(\left[A_{1} \cap A_{2} \cap A_{3}\right] \cap A_{4} \cap A_{5} \cap A_{6}\right]\right) \\
& =(0.9)^{3}+(0.9)^{3}-(0.9)^{6}=.927
\end{aligned}
$$

- Consider sample space Ω of 36 ordered pairs (i, j) with $i, j=1, \ldots, 6$
- We assume that for each pair the probability of occurring $p=\frac{1}{36}$
- Let $A=\{(i, j): j=1,2$ or 5$\}, B=\{(i, j): j=4,5$ or 6$\}$ and $C=\{(i, j): i+j=9\}$
- Then,

$$
\begin{gathered}
P(A \cap B)=\frac{1}{6} \neq \frac{1}{4}=P(A) P(B) \\
P(A \cap C)=\frac{1}{36} \neq \frac{1}{18}=P(A) P(C)
\end{gathered}
$$

and

$$
P(B \cap C)=\frac{1}{12} \neq \frac{1}{18}=P(B) P(C)
$$

- However,

$$
P(A \cap B \cap C)=\frac{1}{36}=P(A) P(B) P(C)
$$

