STAT 511

Lecture 3: Introduction to Probability. Sample spaces, events, probability axioms

Prof. Michael Levine

August 29, 2018

Sample Space

- The sample space of an experiment \mathcal{S} is the set of all its possible outcomes.
- Example: tossing the coin once we have the space $\mathcal{S}=\{H, T\}$
- Example: tossing the coin twice and recording the outcomes produces $\mathcal{S}=\{H H, H T, T H, T T\}$
- Example: roll a die with 6 faces and record the outcome. Then, $\mathcal{S}=\{1,2,3,4,5,6\}$.

Simple and Compound Events

- An event is a collection (subset) of outcomes contained in the sample subspace. It is simple if it consists of exactly one outcome and compound otherwise.
- Example: consider recording the freeway exit (L or R) for each of the 3 vehicles at the end of the exit ramp. The eight possible outcomes form the sample space $\mathcal{S}=\{L L L, R L L, L R L, L L R, L R R, R L R, R R L, R R R\}$.
- Examples of simple events would be:
- $E_{1}=L L L$
- $E_{2}=L R L$

Examples of Compound Events

- Examples of compound events would be:
- Exactly one vehicle turns left $A=\{L R R, R L R, R R L\}$
- All three vehicles turn in the same direction $B=\{L L L, R R R\}$

Some Relations from Set Theory

- The union of two events A and B is the event consisting of all outcomes that are either in A or in B or in both events. Notation: $A \cup B$. Reading: A or B
- The intersection of two events A and B is the event consisting of all outcomes that are in both A and B. Notation $A \cap B$. It is read " A and B ".
- The complement of an event A, denoted by A^{\prime}, is the set of all outcomes in \mathcal{S} that are not in A.

Example

- Consider rolling a die with the sample space $\mathcal{S}=\{1,2,3,4,5,6\}$.
- Let $A=\{1,2,3\}$ and $B=\{1,3,5\}$. Then
- $A \cup B=\{1,2,3,5\}$.
- $A \cap B=\{1,3\}$.
- $A^{\prime}=\{4,5,6\}$.

Disjoint Events

- When A and B have no outcomes in common, they are said to be mutually exclusive or disjoint events.
- We can also say that then intersection of A and B is the null event: $A \cap B=\varnothing$. Here, \varnothing stands for the event with no outcomes in it.
- Example. When rolling a die, the event $A=\{2,4,6\}$ (evens) and $B=\{1,3,5\}$ (odds) are mutually exclusive

Disjoint events

- When pulling a single card from a standard deck of cards, events $A=$ heart, diamond(red) and $B=$ spade, club(black) are mutually exclusive.

Some Additional Set Theory Relations

- For a sample space S, an element $x \in \cup_{k} A_{k}$ if and only if there exists k_{0} such that $x \in A_{k_{0}}$.
- $x \in \cap_{k} A_{k}$ if and only $x \in A_{k}$ for all k
- As an example, if $A_{k}=\{0,1,2, \ldots, k\}$ then $\cup_{k} A_{k}=\{0,1,2,3, \ldots\}$ and $\cap_{k} A_{k}=\{0\}$
- Distributive laws:

$$
B \cap\left(\cup_{k} A_{k}\right)=\cup_{k}\left(B \cap A_{k}\right)
$$

and

$$
B \cup\left(\cap_{k} A_{k}\right)=\cap_{k}\left(B \cup A_{k}\right)
$$

- De Morgan's laws: for any two sets A_{1} and A_{2}

$$
\left[A_{1} \cap A_{2}\right]^{\prime}=A_{1}^{\prime} \cup A_{2}^{\prime}
$$

and

$$
\left[A_{1} \cup A_{2}\right]^{\prime}=A_{1}^{\prime} \cap A_{2}^{\prime}
$$

Axioms of Probability

1. Axiom 1:

$$
P(A) \geq 0
$$

for any event A.
2. Axiom 2 :

$$
P(\mathcal{S})=1
$$

3. Axiom 3: for disjoint A_{1}, \ldots, A_{n}

$$
P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\sum_{k=1}^{n} P\left(A_{k}\right)
$$

and

$$
P\left(A_{1} \cup A_{2} \cup \ldots\right)=\sum_{k=1}^{\infty} P\left(A_{k}\right)
$$

Properties of Probability

- $P\left(A^{\prime}\right)=1-P(A)$
- If A and B are mutually exclusive, then $P(A \cap B)=0$
- For any A and $B P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Example

- In a residential suburb, 60\% of all households get Internet service from a local cable company, 80% get television service from that company, and 50% get both services from that company
- The probability that a randomly selected household subscribes to at least one of these two services from the local company is

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.9
$$

Example

- The probability that a household subscribes only to TV service is

$$
P\left(A^{\prime} \cap B\right)=P(A \cup B)-P(A)=0.9-0.6=0.3,
$$

that it subscribes only to Internet is

$$
P\left(A \cap B^{\prime}\right)=P(A \cup B)-P(B)=0.1
$$

and the probability that a household subscribes to exactly one of these services from the local company is
$P\left(A^{\prime} \cap B\right)+P\left(A \cap B^{\prime}\right)=0.1+0.3=0.4$

Systematic Determination of Probabilities and Equally Likely Outcomes

- If a sample space is either finite or countable, it is sensible to assign probabilities to each simple (single outcome) event E_{i} first
- For any compound event A we have

$$
P(A)=\sum_{\text {all } E_{i}^{\prime} s \text { in } A} P\left(E_{i}\right)
$$

Systematic Determination of Probabilities and Equally Likely Outcomes

- Now let an experiment have N possible outcomes. If all of the outcomes are equally likely with probability p, $1=\sum_{i=1}^{N} P\left(E_{i}\right)=p * N$ and so

$$
p=\frac{1}{N}
$$

- For a particular compound event A that consists of $N(A)$ outcomes,

$$
P(A)=\frac{N(A)}{N}
$$

Example

- During off-peak hours a commuter train has five cars. Suppose a commuter is twice as likely to select the middle car $\# 3$ as to select either adjacent car (\#2 or \#4), and is twice as likely to select either adjacent car as to select either end car (\#1 or \#5).
- If the probability of selecting car i is p_{i}, we have

$$
p_{3}=2 p_{2}=2 p_{4}, \text { and } p_{2}=2 p_{1}=2 p_{5}=p_{4}
$$

- Therefore, $1=\sum p_{i}=10 p_{1}$ and $p_{1}=p_{5}=0.1$, $p_{2}=p_{4}=0.2$ and $p_{3}=0.4$.
- The probability that one of the three middle cars is selected is, then, $p_{2}+p_{3}+p_{4}=0.8$.

Example

- Consider a card that is drawn from a well-shuffled deck of 52 playing cards. What is the probability that it is a queen or a heart?

1. $P(Q)=\frac{4}{52}$ and $P(H)=\frac{13}{52}$
2. $P(Q \cap H)=\frac{1}{52}$
3. $P(Q \cup H)=P(Q)+P(H)-P(Q \cap H)=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{4}{13}$
