
PROBABILITY REVIEW1. Probability1.1. Sample Spae, Events and Probabilities.De�nition 1.1. The sample spae Ω is the set of all possible outomes of a random experiment. Points
ω ∈ Ω are alled sample outomes or elements. Subsets of Ω are alled events. Ω and φ are alled trueevent and null event, respetively.Example 1.2. If we toss a oin twie then the sample spae Ω = {HH, HT, TH, TT }. The event that �atleast one head appears� is A = {HH, HT, TH}.The sample spae in the above example is disrete, and the number of elements |Ω| is �nite. We an alsohave ountable in�nite sample spae or ontinuous (unountable) sample spae.Example 1.3.(1) If we toss a oin until we see the �rst head, then the sample spae Ω = {H, TH, TTH, TTTH, . . .} isountable in�nite.(2) Let ω be the waiting time for the next bus. Then Ω = (0,∞). The event that �next bus omes in lessthan 5 minutes� is A = (0, 5). Note that it usually does not hurt to make Ω larger than needed.Sometimes the sample spae an be a mixture of disrete and ontinuous elements.Example 1.4. In a random experiment we �rst toss a oin, and if it is head we randomly hoose a numberfrom {1, 2, . . . , 6}, otherwise randomly selet a real number from [0, 1]. Then the sample spae (the set ofall outomes) Ω = {1, 2, . . . , 6} ∪ [0, 1].Sine events are subsets of Ω, we need to review some set operations. Given events A, B and Ai (i = 1, 2, . . .):

• Ac = {ω ∈ Ω : ω /∈ A} is the omplement of A;
• A ∪ B = {ω ∈ Ω : ω ∈ A or ω ∈ B} is the event that either A or B ours;
• A ∩ B = {ω ∈ Ω : ω ∈ A and ω ∈ B} is the event that both A and B our (also denoted as AB);
• A − B = {ω ∈ Ω : ω ∈ A and ω /∈ B} is the event that A ours and B does not our;
• If for any ω ∈ A we have ω ∈ B as well, then we denote A ⊂ B. In other words, A is a subset of B.
• ∪∞

i=1Ai = {ω ∈ Ω : ω ∈ Ai for at least one i};
• ∩∞

i=1Ai = {ω ∈ Ω : ω ∈ Ai for all i};
• A1, A2, . . . are disjoint or mutually exlusive if Ai ∩ Aj = φ for all i 6= j.
• A partition of Ω is a sequene of disjoint sets A1, A2, . . . suh that ∪∞

i=1Ai = Ω.
• A sequene of sets A1, A2, . . . is monotone inreasing if A1 ⊂ A2 ⊂ A3 ⊂ . . . and we de�ne A =

limn→∞ An = ∪∞
i=1Ai; A sequene of sets A1, A2, . . . is monotone dereasing if A1 ⊃ A2 ⊃ . . . andwe de�ne A = limn→∞ An = ∩∞

i=1Ai. The former an be written as An ↑ A and the latter an bewritten as An ↓ A, and either ase an be written as An → A.Example 1.5. Let Ω = R and let Ai = [0, 1/i) for i = 1, 2, . . .. Then A1, A2, . . . are monotone dereasingand ∪∞
i=1Ai = [0, 1) and ∩∞

i=1Ai = {0}. If instead we de�ne Ai = (0, 1/i) then we have ∪∞
i=1Ai = (0, 1) and

∩∞
i=1Ai = φ.De�nition 1.6. Given a set (an event) A, the indiator funtion of A is de�ned as

IA(ω) = I(ω ∈ A) =

{

1 if ω ∈ A
0 if ω /∈ A

.Date: August 1, 2006.PLEASE LET ME KNOW IF YOU FIND ANY ERROR IN THE NOTES.1



englishPROBABILITY REVIEW2 2Note. Later we will see that indiator funtion an help us understand the onnetion between probabilityand expetation. It an also be useful in proving some inequalities.We want to assign a real number P(A) to every event A1 so that it an be used to measure the �volume orsize� of the event.De�nition 1.7. A probability measure or probability distribution is a real-valued funtion on events
A ⊂ Ω that satis�es the following three axioms:(1) P(A) ≥ 0 for every A(2) P(Ω) = 1(3) If A1, A2, . . . is a sequene of mutually exlusive events then

P(∪∞
i=1Ai) =

∞
∑

i=1

P(Ai).Note. The �rst axiom spei�es that P(A) is nonnegative; the seond axiom de�nes the probability of thetrue event Ω to be 1; and the last axiom is about �ountable additivity�. Also note that ountable additivityimplies �nite additivity: if A1, A2, . . . , An are disjoint, then P(∪n
i=1Ai) =

∑n
i=1 P(Ai).Theorem 1.8. (Properties of Probability)(1) P(Ac) = 1 − P(A) (and thus P(φ) = 0)(2) 0 ≤ P(A) ≤ 1(3) If A ∩ B = φ then P(A ∪ B) = P(A) + P(B)(4) For any two events A and B, P(A ∪ B) = P(A) + P(B) − P(AB).Proof. We only prove (4):

P(A ∪ B) = P((Ac ∩ B) ∪ (A ∩ B) ∪ (A ∩ Bc))

= P(Ac ∩ B) + P(A ∩ B) + P(A ∩ Bc) + P(A ∩ B) − P(A ∩ B)

= P((Ac ∩ B) ∪ (A ∩ B)) + P((A ∩ Bc) ∪ (A ∩ B)) − P(A ∩ B)

= P(A) + P(B) − P(A ∩ B).

�Example 1.9. If we toss a die twie, then the sample spae Ω = {(i, j) : i, j ∈ {1, 2, . . . , 6}}. If we furtherassume that the die is fair and eah outome is equally likely, then P(A) = |A|/36 where |A| denotes thenumber of elements in A. For example, if A is the event that the sum of the die is greater than 10, then
P(A) = 3/36 = 1/12.Note. Ω in the above example is alled a uniform probability distribution, due to the fat that eahoutome is equally likely.1.2. Independene and Conditional Probability.De�nition 1.10. Two events A and B are independent if P(AB) = P(A)P(B). A set of events {Ai : i ∈ I}is independent if P(∩j∈JAj) =

∏

j∈J P(Aj) for every �nite subset J ⊂ I.Note. There is also �pairwise independent� whih is weaker. A set of events {Ai : i ∈ I} is said to be pairwiseindependent if every pair of events Ai, Aj(i 6= j) is independent.Intuitively, if A and B are independent, then whether A happens or not does not a�et the likelihood of Bourring. Suppose two events A and B with positive probability (P(A) > 0 and P(B) > 0) that are disjoint,then they annot be independent (prove it). Independene an be used to simplify omputation, as shownin the following example.1Tehnially speaking, not every event an be assigned a probability. We only assign probabilities to sets in a σ-�eld.



englishPROBABILITY REVIEW4 3Example 1.11. Flip a fair oin 10 times. Let A be the event that at least one head ours, and let Bi bethe event that the j-th toss results in a tail. Then
P(A) = 1 − P(Ac)

= 1 − P(B1B2 . . . B10)by independene
= 1 − P(B1)P(B2) . . . P(B10)

= 1 − 2−10.De�nition 1.12. If P(B) > 0 then the onditional probability of A given B is
P(A|B) =

P(AB)

P(B)
.Think of P(A|B) as the fration of times A ours among those in whih B ours. Note that (1) for anytwo events A and B we have P(AB) = P(A|B)P(B) = P(B|A)P(A); (2) if events A and B are independent,then we have P(A|B) = P(A).Theorem 1.13. (The Law of Total Probability) Let A1, A2, . . . , An be a partition of Ω. Then for any event

B we have
P(B) =

n
∑

i=1

P(B|Ai)P(Ai).Proof. Sine BA1, BA2, . . . , BAn is a partition of B, we have
P(B) =

n
∑

i=1

P(BAi) =

n
∑

i=1

P(B|Ai)P(Ai).

�Theorem 1.14. (Bayes Theorem) Let A1, . . . , An be a partition of Ω suh that P(Ai) > 0 for eah i. If
P(B) > 0 then, for eah i = 1, . . . , n,

P(Ai|B) =
P(B|Ai)P(Ai)

∑n
j=1 P(B|Aj)P(Aj)

.Proof. By the de�nition of onditional probability we have
P(Ai|B) =

P(AiB)

P(B)
=

P(B|Ai)P(Ai)
∑n

j=1 P(B|Aj)P(Aj)
.

�2. Random Variables2.1. Distribution and Probability Funtions.De�nition 2.1. A random variable is a mapping3 X : Ω → R that assigns a real number X(ω) to eahoutome ω.After random variables are introdued, we often work diretly with them and not mention the sample spaeany more. However, it is important to keep in mind that any random variable is assoiated with someunderlying sample spae.Example 2.2. Toss a die twie, and let X(ω) be the sum of the die. For example, if ω = (1, 5) then
X(ω) = 6. For ontinuous sample spae, let Ω = {(x, y) : x2 + y2 ≤ 1} be the unit disk. Any outome ωan be written in the form of ω = (x, y). Some examples of random variables are X(ω) = x, Y (ω) = y,
Z(ω) = x2y, et.3Tehnially speaking, a random variable must be a measurable funtion.



englishPROBABILITY REVIEW6 4Given a random variable X and a subset A of the real line, de�ne X−1(A) = {ω ∈ Ω : X(ω) ∈ A}. Also weuse the notations
P(X ∈ A) = P(X−1(A)) = P({ω ∈ Ω : X(ω) ∈ A})
P(X = x) = P(X−1(x)) = P({ω ∈ Ω : X(ω) = x}).Notie that we use X to denote the random variable and x to denote its realization (a partiular value of

X).Example 2.3. Let X be the number of heads in two fair oin tosses. Then we have
P(X = 0) = P({ω ∈ Ω : X(ω) = 0}) = P({TT }) = 1/4

P(X = 1) = P({ω ∈ Ω : X(ω) = 1}) = P({TH, HT }) = 1/2

P(X = 2) = P({ω ∈ Ω : X(ω) = 2}) = P({HH}) = 1/4.De�nition 2.4. Given a random variable X , the umulative distribution funtion (df) is the funtion
FX : R 7→ [0, 1] de�ned by

FX(x) = P(X ≤ x).Theorem 2.5. Let X have a df F and let Y have df G. If F (x) = G(x) for all x then P(X ∈ A) = P(Y ∈ A)for all A5.The above theorem says that df ompletely determines the distribution of a random variable.Theorem 2.6. (Properties of CDF) A funtion F : R 7→ [0, 1] is a df for some probability P if and only if
F satis�es the following three onditions:(i) F is non-dereasing: x1 < x2 implies F (x1) ≤ F (x2).(ii) F is normalized:

lim
x→−∞

F (x) = 0

lim
x→∞

F (x) = 1.(iii) F is right-ontinuous: F (x) = F (x+) for all x, where F (x+) = limy↓x F (y).Proof. Omitted. �De�nition 2.7. A random variable X is disrete if it takes ountably many values. The probability massfuntion (pmf) is then de�ned as fX(x) = P(X = x). We often use f(x) to denote fX(x) for simpliity.Example 2.8. Flip a fair oin twie and X be the sum of the heads. Then its pmf is
fX(x) =















1/4 x = 0
1/2 x = 1
1/4 x = 2
0 otherwise.De�nition 2.9. A random variable X is ontinuous if there exists a funtion fX suh that fX(x) ≥ 0 forall x, ∫∞

−∞ fX(x)dx = 1 and for every a ≤ b,
P(a < X < b) =

∫ b

a

fX(x)dx.The funtion fX is alled the probability density funtion (pdf). Furthermore, we have
FX(x) =

∫ x

−∞
fX(t)dtand fX(x) = F ′

X(x) at all points x at whih FX is di�erentiable.Note. For ontinuous random variable X we have P(X = x) = 0 for every x! Also in the ase of ontinuousvariables, fX(x) does not mean P(X = x). Atually fX(x) an take any positive value or even unbounded.5Tehnially it only holds for every measurable set A.



englishPROBABILITY REVIEW7 5Example 2.10. Suppose X has pdf
fX(x) =

{

1 0 ≤ x ≤ 1
0 otherwise.Clearly we have fX(x) ≥ 0 and ∫ fX(x)dx = 1. This random variable is said to have a Uniform(0, 1)distribution.De�nition 2.11. Let X be a random variable with df F . The inverse df or quantile funtion isde�ned by

F−1(q) = inf{x : F (x) > q}for q ∈ [0, 1]. If F is stritly inreasing and ontinuous then F−1(q) is the unique real number x suh that
F (x) = q. In partiular, we all F−1(1/4) the �rst quantile, F−1(1/2) themedian (or seond quantile),and F−1(3/4) the third quantile.We use X ∼ F to denote that a random variable X has distribution F . In the following we review someimportant random variables that will be used in this ourse.2.2. Some Important Disrete Random Variables.2.2.1. The Point Mass Distribution X ∼ δc. X has a point mass distribution at a if P(X = c) = 1. Its pmfis

f(x) =

{

1 x = c
0 otherwise.2.2.2. The Disrete Uniform Distribution X ∼ Uniform({c1, . . . , ck}). X has a uniform distribution on

{c1, . . . , ck} if its pmf is given by
f(x) =

{

1/k for x = c1, . . . , ck

0 otherwise.2.2.3. The Bernoulli Distribution X ∼ Bernoulli(p). X is a Bernoulli random variable with parameter p ∈
[0, 1] if its pmf is given by

f(x) =







p x = 1
1 − p x = 0

0 otherwise.Sometimes we use the simpli�ed notation f(x) = px(1 − p)1−x for x = 0, 1. Bernoulli random variables areoften used to model binary outputs, suh as the result of tossing a oin.2.2.4. The Binomial Distribution X ∼ Binomial(n, p). X is a Binomial random variable with parameters
n ∈ N and p ∈ [0, 1] if its pmf is given by

f(x) =







(

n
x

)

px(1 − p)n−x for x = 0, 1, . . . , n

0 otherwisewhere ( n
x

)

= n!
x!(n−x)! . The Binomial random variable ounts the number of suesses in n independentBernoulli random variables with parameter p. Verify that ∑n

x=0 f(x) = 1.2.2.5. The Geometri Distribution X ∼ Geometric(p). X has a Geometri distribution with parameter p ∈
(0, 1) if its pmf is given by

f(x) =

{

p(1 − p)x−1 for x = 1, 2, . . .
0 otherwise.Think of X as the number of �ips needed to see a head when �ipping a oin. Verify that ∑∞

x=1 f(x) = 1.



englishPROBABILITY REVIEW8 62.2.6. The Poisson Distribution X ∼ Poisson(λ). X has a Poisson distribution with parameter λ > 0 if itspmf is given by
f(x) =

eλλx

x!
x ≥ 0.Note that ∑∞

x=1 f(x) = eλ
∑∞

x=1
λx

x! = 1 by the de�nition of the exponential funtion. The Poisson is oftenused to model the ounts of rare event.2.3. Some Important Continuous Random Variables.2.3.1. The Uniform Distribution X ∼ Uniform(a, b). X has a Uniform(a, b) distribution (a < b) if its pdf isgiven by
f(x) =

{

1
b−a x ∈ [a, b]

0 otherwise.Its df is
F (x) =







0 x < a
x−a
b−a x ∈ [a, b]

1 x > b.2.3.2. The Exponential Distribution X ∼ Exp(β). X has an exponential distribution with parameter β > 0if its pdf is given by
f(x) =

1

β
e−x/β, x > 0.It is often used to model the waiting time and has the so-alled memoryless property: given X ∼ Exp(β) wehave P(X > t + s|X > t) = P(X > s).2.3.3. The Normal/Gaussian Distribution X ∼ N(µ, σ2). X has a normal (or Gaussian) distribution withparameters µ ∈ R and σ > 0 if it has the following pdf

f(x) =
1√

2πσ2
exp

(

− (x − µ)2

2σ2

)

, x ∈ R.Parameter µ is the mean of the distribution and σ is the standard deviation of the distribution (refer to laterpart of the notes if you do not remember the de�nitions of mean and standard deviation). X is said to havea standard normal distribution if X ∼ N(0, 1). The pdf and df of standard normal are denoted by φ(z)and Φ(z), respetively.The normal distribution is the most important distribution in statistis, as many statistis have approxi-mately normal distributions. Below we list some properties of the normal distribution.Theorem 2.12. (Properties of the Normal Distribution)(1) If X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1).(2) If Z ∼ N(0, 1), then X = µ + σZ ∼ N(µ, σ2).(3) If Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n are independent, then ∑n

i=1 Xi ∼ N(
∑n

i=1 µi,
∑n

i=1 σ2
i ).3. Bivariate and Multivariate Random Variables3.1. Bivariate/Multivariate Distributions.De�nition 3.1. For any random variables X and Y , the joint distribution funtion F (x, y) is given by

F (x, y) = P(X ≤ x, Y ≤ y), x, y ∈ R.Similar to the ase of univariate random variable, a bivariate (or multivariate) random variable an bedisrete, ontinuous, or neither.De�nition 3.2. Given a pair of disrete random variables X and Y . The joint probability mass funtionfor X and Y is given by
fX,Y (x, y) = P(X = x, Y = y).We often use f(x, y) to denote fX,Y (x, y) for simpliity.



englishPROBABILITY REVIEW9 7Example 3.3. Flip a unfair oin twie, whih has probability 1/3 to be head and 2/3 to be tail. Let X and
Y be the results of the �rst and seond �ip. Let use 0 to denote �tail� and 1 to denote �head�. The joint pmfof (X, Y ) is listed in the following table:

Y = 0 Y = 1

X = 0 4/9 2/9 2/3
X = 1 2/9 1/9 1/32/3 1/3 1De�nition 3.4. Let X and Y be ontinuous random variables with joint distribution funtion F (x, y). Weall a funtion f(x, y) a joint pdf for the random variables (X, Y ) if

F (x, y) =

∫ x

−∞

∫ y

−∞
f(t1, t2)dt2dt1, x, y ∈ R.Example 3.5. Let (X, Y ) be uniform on the unit square, that is,

fX,Y (x, y) =

{

1 x, y ∈ [0, 1]
0 otherwise.Clearly we have ∫ ∫ fX,Y (x, y)dxdy = 1.All above de�nitions an be easily generalized to multivariate random variables. For example, the probabilitydistribution funtion for random variables ~X = (X1, X2, . . . , Xn) is given by

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn), x1, . . . , xn ∈ R.3.2. Marginal Distributions.De�nition 3.6. If disrete random variables (X, Y ) has joint distribution with pmf fX,Y (x, y), then themarginal mass funtions for X and Y are de�ned by
fX(x) = P(X = x) =

∑

y

P(X = x, Y = y) =
∑

y

f(x, y)

fY (y) = P(Y = y) =
∑

x

P(X = x, Y = y) =
∑

x

f(x, y).Example 3.7. Suppose fX,Y is given in the table below. Then the marginal mass funtion for X is the sumof the olumns
fX(x) =







2/3 x = 0
1/3 x = 1
0 otherwise.and the marginal mass funtion for Y is the sum of the rows

fY (y) =







2/3 y = 0
1/3 y = 1
0 otherwise.

Y = 0 Y = 1

X = 0 4/9 2/9 2/3
X = 1 2/9 1/9 1/32/3 1/3 1De�nition 3.8. If ontinuous random variables (X, Y ) has joint distribution with pdf fX,Y (x, y), then themarginal density funtions for X and Y are de�ned by

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy, fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx.Example 3.9. Let fX,Y (x, y) = e−(x+y) for x, y ≥ 0. Then we have fX(x) =

∫∞
0

fX,Y (x, y)dy =
∫∞
0

e−xe−ydy = e−x.



englishPROBABILITY REVIEW10 83.3. Conditional Distributions.For disrete random variables X and Y , we already introdued onditional probability P(X = x|Y = y).Similarly we an de�ne onditional distribution.De�nition 3.10. The onditional probability mass funtion is given by
fX|Y (x|y) = P(X = x|Y = y) =

P(X = x, Y = y)

P(Y = y)
=

fX,Y (x, y)

fY (y)if fY (y) > 0.Example 3.11. Toss a oin twie. Let X be the �rst result (again we use 1 for head, 0 for tail) and Y bethe sum of the two results. Then P(X = 0|Y = 0) = 1, P(X = 1|Y = 0) = 0, P(X = 0|Y = 1) = 1/2 and
P(X = 1|Y = 1) = 1/2.The onditional distribution in the ontinuous ase need to be de�ned in terms of pdf to avoid some tehni-alities.De�nition 3.12. For ontinuous random variables X and Y , the onditional probability density fun-tion is given by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)assuming that fY (y) > 0. Then P(X ∈ A|Y = y) =
∫

A
fX|Y (x|y)dx.Example 3.13. Let X ∼ Uniform(0, 1), and given X = x, we generate Y |X = x ∼ Uniform(x, 1). Computethe marginal distribution of Y .Sine fX(x) = 1 for x ∈ [0, 1] and fY |X(y|x) = 1/(1 − x) for y ∈ [x, 1], we have

fX,Y (x, y) = fY |X(y|x)fX(x) =

{

1/(1 − x) 0 < x < y < 1
0 otherwise.So the marginal distribution of Y is fY (y) =

∫ y

0 1/(1 − x)dx = −
∫ 1−y

1
dt
t = − log(1 − y).3.4. Independent Random Variables.De�nition 3.14. The random variables X1, . . . , Xn are independent if for all A1, . . . , An we have

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) . . . P(Xn ∈ An).It is di�ult to apply the above de�nition to hek independene. Instead, we often use the followingtheorem.Theorem 3.15. Random variables X1, . . . , Xn are independent if and only if the df an be fatorized as
FX1,...,Xn

(x1, . . . , xn) = FX1
(x1) . . . FXn

(xn).They are also independent if and only if the pdf an be fatorized as
fX1,...,Xn

(x1, . . . , xn) = fX1
(x1) . . . fXn

(xn).3.5. Two Important Multivariate Distributions.3.5.1. The Multinomial Distribution. The multinomial distribution is a natural generalization of the binomialdistribution.De�nition 3.16. The random vetor ~X = (X1, . . . , Xk) is said to have a multinomial distribution withparameters n ∈ N and p1, . . . , pk (where pi ≥ 0 for all i and ∑k
i=1 pi = 1) if its pmf is given by

f(~x) =

{

n!
x1!...xk!p

x1

1 . . . pxk

k if x1, . . . , xk ∈ N and ∑ xj = n

0 otherwise.



englishPROBABILITY REVIEW12 9Consider drawing a ball from an urn whih has balls with k di�erent olors. Let ~p = (p1, . . . , pk) where
pj ≥ 0 and ∑k

j=1 pj = 1 and suppose pj is the probability of drawing a ball of olor j. If we draw n times(with replaement) and let ~X = (X1, . . . , Xk) where Xj is the number of times that we see a olor j ball.Then we say ~X ∼ Multinomial(n, ~p).The multinomial distribution is the multivariate generalization of the binomial distribution (e.g., it speializesto binomial if k = 2, p1 = p and p2 = 1 − p).Theorem 3.17. Suppose ~X ∼ Multinomial(n, ~p), where ~X = (X1, . . . , Xk) and ~p = (p1, . . . , pk). Then themarginal distribution of Xj is Binomial(n, pj).3.5.2. The Multivariate Normal Distribution ~X ∼ N(~µ, Σ). The random vetor ~X = (X1, . . . , Xn) has amultivariate normal distribution with parameters ~µ ∈ R
n and Σ (whih is a n × n symmetri, positivede�nite matrix11) has the pdf

f ~X(~x) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(~x − ~µ)T Σ−1(~x − ~µ)

)where |.| is the matrix determinant and Σ−1 is the inverse matrix of Σ.Similar to the ase of a univariate normal random variable, we have
E( ~X) = ~µ

V( ~X) = Σ.In partiular, Σi,i = V(Xi) and Σi,j = Cov(Xi, Xj).We already know that if two random variables X1, . . . , Xn are independent, then Cov(Xi, Xj) = 0 for i 6= j.The reverse is not true in general! But if we also know that ~X = (X1, . . . , Xn) follows a multivariate normaldistribution N(~µ, Σ), then the reverse holds.Theorem 3.18. If ~X = (X1, . . . , Xn) ∼ N(~µ, Σ) where Σi,j = 0 for all i 6= j (e.g., Σ is a diagonal matrix),then X1, . . . , Xn are independent.It then follows that when Σ is a diagonal matrix with Σi,i = σ2
i , we have

f ~X(~x) =

n
∏

i=1

fXi
(xi) =

n
∏

i=1

1
√

2πσ2
i

exp

(

− (xi − µi)
2

2σ2
i

)

.4. Funtions of Random VariablesGiven a random variable X , let Y = g(X) be a funtion of X , suh as Y = X2. The resulting funtion Y isalso a random variable. The question is, how do we alulate the distribution (pdf/pmf and df) of Y ?For the disrete ase it an be easily seen that
fY (y) = P(Y = y) = P(g(X) = y) = P({x : g(x) = y}) =

∑

x:g(x)=y

fX(x).Example 4.1. Let X be the number of heads in two oin tosses. Then we have fX(0) = 1/4, fX(1) = 1/2and fX(2) = 1/4. If Y = (X − 1)2 then we have fY (0) = 1/2 and fY (1) = 1/2.For ontinuous ase we following three steps to obtain fY :1. For eah y, �nd the set Ay = {x : g(x) ≤ y}.2. Find the df by de�nition
FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P({x : g(x) ≤ y}) =

∫

Ay

fX(x)dx.11This is the only plae we use �positive de�nite� in this ourse, and there are a few plaes we use �matrix determinant�.Please refer to any linear algebra book for the detailed de�nitions.



englishPROBABILITY REVIEW13 103. Di�erentiate to get pdf: fY (y) = F ′
Y (y).Example 4.2. Let X ∼ Uniform(−1, 3) and �nd the pdf of Y = X2. The df FY (y) = P(X2 ≤ y) is easyto ompute in separate steps. Clearly y ∈ (0, 9), and we onsider two ases. When 0 < y < 1 we have

FY (y) = P(−√
y ≤ X ≤ √

y) =
√

y/2. When 1 < y < 9 we have FY (y) = P(−1 ≤ X ≤ √
y) = (1 +

√
y)/4.Take derivative with respet to y we get

fY (y) =











1
4
√

y 0 < y < 1
1

8
√

y 1 < y < 9

0 otherwise.The above proedure is appliable to every ase. When the funtion g(.) satis�es ertain onditions thealulation an be simpli�ed by the result of the following theorem.Theorem 4.3. Let X have pdf fX(x) and Y = g(X), where g is a stritly monotone inreasing or dereasingfuntion. Suppose the inverse g−1 is di�erentiable on the range of X, then the pdf of Y is given by
fY (y) = fX(g−1(y))

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

.Proof. Suppose g is a stritly monotone inreasing funtion, we have
FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y))and thus

fY (y) = F ′
y(y) =

d

dy
FX(g−1(y))

hain rule
= fX(g−1(y))

d

dy
g−1(y).Similarly we an show that if g is a stritly monotone dereasing funtion we have fY (y) = −fX(g−1(y)) d

dyg−1(y).By using the property that the derivative of an inreasing (dereasing) funtion g−1 is positive (negative)and putting them together we have
fY (y) = fX(g−1(y))

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

.

�Example 4.4. Let fX(x) = e−x for x > 0 and let Y = g(X) = log X . Beause g is stritly monotoneinreasing, we have fY (y) = fX(ey)ey = eye−ey for y ∈ R.We an also apply the above results to funtions of random vetor (several random variables). For example,if X and Y are random variables, we might want to know X +Y , XY , max{X, Y } or min{X, Y }. The threesteps proedure still applies with slight modi�ation:1. For eah z, �nd the set Az = {(x1, . . . , xn) : g(x1, . . . , xn) ≤ z}.2. Find the df by de�nition
FZ(z) = P(Z ≤ z) = P(g(X1, . . . , Xn) ≤ z)

= P({(x1, . . . , xn) : g(x1, . . . , xn) ≤ z}) =

∫

. . .

∫

Az

fX1,...,Xn
(x1, . . . , xn)dx1 . . . dxn.3. Di�erentiate to get pdf: fZ(z) = F ′

Z(z).There is also a multivariate version of theorem 4.3:



englishPROBABILITY REVIEW14 11Theorem 4.5. Let ~X = (X1, . . . , Xn) be a random vetor with pdf f ~X(x1, . . . , xn). Let ~g(~x) = (g1(~x), . . . , gn(~x))where ~g : R
n 7→ R

n is an invertible and di�erentiable mapping in the range of ~X (one-to-one mapping) thenthere exists an inverse ~g−1 = (h1(~y), . . . , hn(~y)) : R
n 7→ R

n. Let ~Y = (Y1, . . . , Yn) = ~g( ~X), then
f~Y (~y) = f ~X(~g−1(~y))|J |where J is the Jaobian of the inverse mapping de�ned as

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂h1(~y)
∂y1

∂h1(~y)
∂y2

. . . ∂h1(~y)
∂yn

∂h2(~y)
∂y1

∂h2(~y)
∂y2

. . . ∂h2(~y)
∂yn... ... . . . ...

∂hn(~y)
∂y1

∂hn(~y)
∂y2

. . . ∂hn(~y)
∂yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣e.g., J is the determinant of a n × n matrix.Proof. Similarly to the univariate ase by applying the hain rule. �Note. There is one inonveniene of the theorem. For example, in order to ompute the pdf of Z = X+Y youneed to de�ne another random variable suh as W = X − Y , to use the Jaobian (whih is the determinantof a n × n square matrix). 5. Expetation5.1. Expetation and Variane.De�nition 5.1. The expetation (mean or �rst moment) of a random variable X is de�ned to be
E(X) =

{
∑

x xf(x) if X is disrete
∫

xf(x)dx if X is ontinuous.Note. We assume that the sum or integral exists (well-de�ned). The expetation is a one-number summaryof the distribution that tells the mean or average of a random variable.Example 5.2. For X ∼ Bernoulli(p) we have E(X) =
∑

x=0,1 xf(x) = 0 × (1 − p) + 1 × p = p. For
X ∼ Uniform(a, b) we have E(X) =

∫

xf(x)dx =
∫ b

a
x

b−adx = a+b
2 .Theorem 5.3. (The Law of the Unonsious Statistiian) Let Y = g(X). Then the expeted value of Y is

E(Y ) = E(g(X)) =

{
∑

x g(x)f(x) if X is disrete
∫

g(x)f(x)dx if X is ontinuous.Example 5.4. Let X ∼ Uniform(0, 1) and let Y = g(X) = eX . Then we have
E(Y ) = E(eX) =

∫ 1

0

exdx = e − 1.Alternatively we an �rst alulate fY (y) = 1/y and then E(Y ) =
∫ e

1
y 1

y dy = e − 1.Theorem 5.5. If X1, . . . , Xn are random variables and c1, . . . , cn are onstants, then
E

(

n
∑

i=1

ciXi

)

=
n
∑

i=1

ciE(Xi).Example 5.6. Let X ∼ Binomial(n, p). Sine X = X1 + . . . + Xn where Xi ∼ Bernoulli(p) (why?), applyingthe above rule we have E(X) =
∑n

i=1 E(Xi) = np. Use the pmf of the binomial distribution to verify theresult.Theorem 5.7. If X1, . . . , Xn are independent random variables, then
E

(

n
∏

i=1

Xi

)

=

n
∏

i=1

E(Xi).



englishPROBABILITY REVIEW15 12De�nition 5.8. The variane of a random variable X is de�ned by
V(X) = E((X − E(X))2).The standard deviation is sd(X) =

√

V(X).The variane of a random variable summarizes the sale of the distribution, or how values are spread aroundthe expetation.Theorem 5.9. Assuming the variane is well-de�ned. Then(1) V(X) = E(X2) − E(X)2.(2) If X1, . . . , Xn are independent random variables and c1, . . . , cn are onstants, then V(
∑n

i=1 ciXi) =
∑n

i=1 c2
i V(Xi).Note. Unlike the expetation, the summation rule requires the independene. Also notie that V(aX + b) =

a2
V(X) by treating onstant b as a random variable with mean E(b) = b and V(b) = 0.Example 5.10. Let X ∼ Binomial(n, p). We have X =

∑n
i=1 Xi where Xi's are independent Bernoullirandom variables: Xi ∼ Bernoulli(p). So we have V(X) = V(
∑

i Xi) =
∑

i V(Xi) =
∑

i(E(X2
i ) − E(Xi)

2) =
np(1 − p). Use diret alulation to verify the result.De�nition 5.11. The ovariane of two random variables X and Y is de�ned as

Cov(X, Y ) = E((X − E(X))(Y − E(Y ))and the orrelation oe�ient is de�ned as
ρX,Y = ρ(X, Y ) =

Cov(X, Y )
√

V(X)
√

V(Y )
.Clearly ovariane is a generalization of variane, e.g. Cov(X, X) = V(X).Theorem 5.12. (Properties of Covariane)(1) Cov(X, Y ) = E(XY ) − E(X)E(Y ).(2) If X and Y are independent, then Cov(X, Y ) = 0.(3) The orrelation oe�ient satis�es: −1 ≤ ρX,Y ≤ 1, and |ρX,Y | = 1 if there is a linear relationshipbetween X and Y , e.g. Y = aX + b.Note that although independent random variables have ovariane 0, but the reverse is not true!Theorem 5.13. For random variables X1, . . . , Xn,

V

(

n
∑

i=1

ciXi

)

=

n
∑

i=1

c2
i V(Xi) + 2

n
∑

i=1

∑

j 6=i

cicjCov(Xi, Xj).The onepts of expetation and variane an be easily generalized to random vetors:De�nition 5.14. The expetation of a random vetor ~X = (X1, . . . , Xn) is just the vetor of theexpetations of eah element: E( ~X) = (E(X1), . . . , E(Xn)). The variane-ovariane matrix Σ is de�nedas
Σ = V( ~X) =











V(X1) Cov(X1, X2) . . . Cov(X1, Xn)
Cov(X2, X1) V(X2) . . . Cov(X2, Xn)... ... . . . ...
Cov(Xn, X1) Cov(Xn, X2) . . . V(Xn)











.Notie that Σ is symmetri as Cov(Xi, Xj) = Cov(Xj , Xi).



englishPROBABILITY REVIEW16 135.2. Conditional Expetation and Variane.De�nition 5.15. The onditional expetation of X given Y = y is de�ned by
E(X |Y = y) =

{
∑

x xfX|Y (x|y) disrete ase
∫

xfX|Y (x|y)dx ontinuous ase.Furthermore, if g(x) is a funtion of x then
E(g(X)|Y = y) =

{
∑

x g(x)fX|Y (x|y) disrete ase
∫

g(x)fX|Y (x|y)dx ontinuous ase.Note. E(X |Y = y) is a funtion of y and E(X |Y ) is a funtion of the random variable Y . As a result, wehave E(X |Y ) itself a random variable. So we an study its mean and variane, et.Theorem 5.16. (The Rule of Iterated Expetation or Double Expetation) For random variables X and Y ,assuming the expetations exist, we have
E(E(X |Y )) = E(X).Example 5.17. Let X ∼ Uniform(0, 1) and Y |X = x ∼ Uniform(0, x). We have E(Y ) = E(E(Y |X)) =

E(X/2) = 1/4. Verify the result by �rst deriving fY (y).De�nition 5.18. The onditional variane is de�ned as
V(X |Y = y) =

{
∑

x(x − µ(y))2fX|Y (x|y) disrete ase
∫

(x − µ(y))2fX|Y (x|y)dx ontinuous ase.where µ(y) = E(X |Y = y).Theorem 5.19. (Conditional Variane) For random variables X and Y ,
V(X) = E(V(X |Y )) + V(E(X |Y )).Example 5.20. Let X ∼ Uniform(0, 1) and Y |X = x ∼ Uniform(0, x). Compute V(Y ).We have

V(Y ) = E(V(Y |X)) + V(E(Y |X))

= E(X2/12) + V(X/2)

=
1

12
× 1

3
+

1

4
× 1

12
= 7/144.Verify the result by diret alulation using fY (y).5.3. Moment Generating Funtions.De�nition 5.21. The k-th moment of a random variable X is de�ned to be E(Xk); the k-th entralmoment is de�ned to be E((X − E(X))k).It is easy to see that expetation is the 1st moment and variane is the 2nd entral moment.De�nition 5.22. The moment generating funtion (mgf) or Laplae transform of random variable

X is de�ned by
m(t) = E(etX), t ∈ R.We say that a moment-generating funtion for Y exists if there exists an open interval (−ǫ, ǫ) suh that

m(t) is �nite for t ∈ (−ǫ, ǫ). In what follows we assume that the mgf exists. The name �moment generatingfuntion� omes from the fat that
m′(0) =

d

dt
E(etX) |t=0= E

(

d

dt
etX

)

|t=0= E(X).Continue in this way we will get m(k)(0) = E(Xk), k = 0, 1, . . ..Theorem 5.23. (Properties of MGF)(1) If Y = aX + b, then mY (t) = ebtmX(at).(2) If X1, . . . , Xn are independent and Y =
∑n

i=1 Xi, then mY (t) =
∏n

i=1 mXi
(t).



englishPROBABILITY REVIEW17 14Example 5.24. Let X ∼ Binomial(n, p). Sine X =
∑n

i=1 Xi where Xi ∼ Bernoulli(p) (i = 1, . . . , n) areindependent Bernoulli random variables, we have
mX(t) =

n
∏

i=1

mXi
(t) = (p × et + (1 − p))n.The result of next example is often useful.Example 5.25. Let X ∼ N(µ, σ2), then we have

mX(t) =

∫ ∞

−∞
exp(tx)

1√
2πσ2

exp

(

− (x − µ)2

2σ2

)

dx

=

∫ ∞

−∞

1√
2πσ2

exp

(

− (x − (µ + tσ2))2

2σ2

)

exp

(

t2σ2 + 2µt

2

)

dx

= exp
(

µt + σ2t2/2
)

.Theorem 5.26. Let X and Y be random variables. If mX(t) = mY (t) for all t in an open interval around
0, then X and Y have the same distribution funtion (and pdf/pmf).The above theorem provides another way to alulate the probability distribution funtions of randomvariables based on the mgf.Theorem 5.27. Let Xi ∼ N(µi, σ

2
i ) be independent random variables for i = 1, . . . , n and c1, . . . , cn ∈ R.Then we have

Y =

n
∑

i=1

ciXi ∼ N

(

n
∑

i=1

ciµi,

n
∑

i=1

c2
i σ

2
i

)

.Proof. Let Yi = ciXi ∼ Normal(ciµi, c
2
i σ

2
i ). So we have mYi

(t) = exp(ciµit + c2
i σ

2
i t2/2). By the properties ofmgf we have

mY (t) =
n
∏

i=1

mYi
(t) = exp

(

n
∑

i=1

ciµit +
n
∑

i=1

c2
i σ

2
i t2/2

)whih is the same as the mgf of Normal(
∑

i ciµi,
∑

i c2
i σ

2
i ) (We used the fat that Yi's are independent.Why?). By the theorem we onlude that Y =

∑

i ciXi ∼ Normal(
∑

i ciµi,
∑

i c2
i σ

2
i ). �


