HW6 solution

7.2.1 Recall that for the model discussed in Example 7.1.1, the posterior distribution of θ was $\operatorname{Beta}(n \bar{x}+\alpha, n(1-\bar{x})+\beta)$. The posterior density is then given by

$$
\pi_{\theta \mid x_{1}, ., x_{n}}=\frac{\Gamma(\alpha+\beta+n)}{\Gamma(n \bar{x}+\alpha) \Gamma(n(1-\bar{x})+\beta)} \theta^{n \bar{x}+\alpha-1}(1-\theta)^{n(1-\bar{x})+\beta-1}
$$

The posterior mean is given by

$$
\begin{aligned}
& E\left(\theta^{m} \mid x_{1}, \ldots, x_{n}\right) \\
& =\int_{0}^{1} \frac{\Gamma(\alpha+\beta+n)}{\Gamma(n \bar{x}+\alpha) \Gamma(n(1-\bar{x})+\beta)} \theta^{n \bar{x}+\alpha+m-1}(1-\theta)^{n(1-\bar{x})+\beta-1} d \theta \\
& =\frac{\Gamma(\alpha+\beta+n) \Gamma(n \bar{x}+\alpha+m)}{\Gamma(n \bar{x}+\alpha) \Gamma(\alpha+\beta+n+m)} .
\end{aligned}
$$

7.2.2 Recall that for the model discussed in Example 7.1.2 the posterior distribution of μ is

$$
N\left(\left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)^{-1}\left(\frac{\mu_{0}}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}} \bar{x}\right),\left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)^{-1}\right)
$$

By exercise 2.6.3, the posterior distribution of the third quartile $\Psi=\mu+\sigma_{0} z_{0.75}$ is

$$
N\left(\left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)^{-1}\left(\frac{\mu_{0}}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}} \bar{x}\right)+\sigma_{0} z_{0.75},\left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)^{-1}\right)
$$

Since the normal distribution is symmetric about its mode and the mean exists, the posterior mode and mean agree and given by

$$
\hat{\psi}=\left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)^{-1}\left(\frac{\mu_{0}}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}} \bar{x}\right)+\sigma_{0} z_{0.75}
$$

7.2.6 Recall that the posterior distribution of θ in Example 7.2.2 is $\operatorname{Beta}(n \bar{x}+\alpha, n(1-\bar{x})+\beta)$. To find the posterior variance we need only to find the second moment as follows.

$$
\begin{aligned}
& E\left(\theta^{2} \mid x_{1}, \ldots, x_{n}\right) \\
& =\int_{0}^{1} \theta^{2} \frac{\Gamma(n+\alpha+\beta)}{\Gamma(n \bar{x}+\alpha) \Gamma(n(1-\bar{x})+\beta)} \theta^{n \bar{x}+\alpha-1}(1-\theta)^{n(1-\bar{x})+\beta-1} d \theta \\
& =\frac{\Gamma(n+\alpha+\beta)}{\Gamma(n \bar{x}+\alpha) \Gamma(n(1-\bar{x})+\beta)} \int_{0}^{1} \theta^{n \bar{x}+\alpha+1}(1-\theta)^{n(1-\bar{x})+\beta-1} d \theta \\
& =\frac{\Gamma(n+\alpha+\beta)}{\Gamma(n \bar{x}+\alpha) \Gamma(n(1-\bar{x})+\beta)} \frac{\Gamma(n \bar{x}+\alpha+2) \Gamma(n(1-\bar{x})+\beta)}{\Gamma(n+\alpha+\beta+2)} \\
& =\frac{(n \bar{x}+\alpha+1)(n \bar{x}+\alpha)}{(n+\alpha+\beta+1)(n+\alpha+\beta)}
\end{aligned}
$$

The posterior variance is then given by

$$
\begin{aligned}
& \operatorname{Var}\left(\theta \mid x_{1}, \ldots, x_{n}\right)=E\left(\theta^{2} \mid x_{1}, \ldots, x_{n}\right)-\left(E\left(\theta \mid x_{1}, \ldots, x_{n}\right)\right)^{2} \\
& =\frac{(n \bar{x}+\alpha+1)(n \bar{x}+\alpha)}{(n+\alpha+\beta+1)(n+\alpha+\beta)}-\left(\frac{n \bar{x}+\alpha}{n+\alpha+\beta}\right)^{2} \\
& =\frac{(n \bar{x}+\alpha)(n(1-\bar{x})+\beta)}{(n+\alpha+\beta+1)(n+\alpha+\beta)^{2}} .
\end{aligned}
$$

Now $0 \leq \bar{x} \leq 1$, so

$$
\begin{aligned}
& \operatorname{Var}\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{(n \bar{x}+\alpha)(n(1-\bar{x})+\beta)}{(n+\alpha+\beta+1)(n+\alpha+\beta)^{2}} \\
& \leq \frac{(1+\alpha / n)(1+\beta / n)}{n(1+\alpha / n+\beta / n+1 / n)(1+\alpha / n+\beta / n)^{2}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
7.2.10 The likelihood function is given by $L\left(\lambda \mid x_{1}, \ldots x_{n}\right)=\lambda^{n} e^{-n \bar{x} \lambda}$. The prior distribution has density given by $\beta_{0}^{\alpha_{0}} \lambda^{\alpha_{0}-1} e^{-\beta_{0} \lambda} / \Gamma\left(\alpha_{0}\right)$. The posterior density of λ is then given by $\pi\left(\lambda \mid x_{1}, \ldots x_{n}\right) \propto \lambda^{n+\alpha_{0}-1} e^{-\lambda\left(n \bar{x}+\beta_{0}\right)}$, and we recognize this as being the density of a $\operatorname{Gamma}\left(n+\alpha_{0}, n \bar{x}+\beta_{0}\right)$ distribution. The posterior mean and variance of λ are then given by $E\left(\lambda \mid x_{1}, \ldots x_{n}\right)=$ $\left(n+\alpha_{0}\right) /\left(n \bar{x}+\beta_{0}\right), \operatorname{Var}\left(\lambda \mid x_{1}, \ldots x_{n}\right)=\left(n+\alpha_{0}\right) /\left(n \bar{x}+\beta_{0}\right)^{2}$.

To find the posterior mode we need to maximize $\ln \left(\lambda^{n+\alpha_{0}-1} e^{-\lambda\left(n \bar{x}+\beta_{0}\right)}\right)=$ $\left(\alpha_{0}+n-1\right) \ln \lambda-\lambda\left(n \bar{x}+\beta_{0}\right)$. This has first derivative given by $\left(\alpha_{0}+n-1\right) / \lambda$ $-\left(n \bar{x}+\beta_{0}\right)$ and second derivative $-\left(\alpha_{0}+n-1\right) / \lambda^{2}$. Setting the first derivative equal to 0 and solving gives the solution $\hat{\lambda}=\left(\alpha_{0}+n-1\right) /\left(n \bar{x}+\beta_{0}\right)$. The second derivative at this value is $-\left(n \bar{x}+\beta_{0}\right)^{2} /\left(\alpha_{0}+n-1\right)$, which is clearly negative, so $\hat{\lambda}$ is the unique posterior mode.

