HW3 solution

6.2.1 The MLEs are $\hat{\theta}(1)=a, \hat{\theta}(2)=b, \hat{\theta}(3)=b, \hat{\theta}(4)=a$.
6.2.2 The likelihood function is given by $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{n \bar{x}}(1-\theta)^{n(1-\bar{x})}$. The \log-likelihood function is given by $l\left(\theta \mid x_{1}, \ldots, x_{n}\right)=n \bar{x} \ln \theta+n(1-\bar{x}) \ln (1-\theta)$. The score function is given by

$$
S\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{n \bar{x}}{\theta}-\frac{n(1-\bar{x})}{1-\theta}
$$

Solving the score equation gives $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=\bar{x}$. Note that since $0 \leq \bar{x} \leq 1$ we have that

$$
\left.\frac{\partial S\left(\theta \mid x_{1}, \ldots, x_{n}\right)}{\partial \theta}\right|_{\theta=\bar{x}}=-\frac{n \bar{x}}{\theta^{2}}-\left.\frac{n(1-\bar{x})}{(1-\theta)^{2}}\right|_{\theta=\bar{x}}=-\frac{n}{\bar{x}}-\frac{n}{1-\bar{x}}<0
$$

So \bar{x} is indeed the MLE.
6.2.4 The likelihood function is given by $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=e^{-n \theta} \theta^{n \bar{x}}$, the loglikelihood function is given by $l\left(\theta \mid x_{1}, \ldots, x_{n}\right)=-n \theta+n \bar{x} \ln \theta$, and the score function is given by

$$
S\left(\theta \mid x_{1}, \ldots, x_{n}\right)=-n+\frac{n \bar{x}}{\theta}
$$

Solving the score equation gives $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=\bar{x}$. Note that since $\bar{x} \geq 0$, we have

$$
\left.\frac{\partial S\left(\theta \mid x_{1}, \ldots, x_{n}\right)}{\partial \theta}\right|_{\theta=\bar{x}}=-\left.\frac{n \bar{x}}{\theta^{2}}\right|_{\theta=\bar{x}}=-\frac{n}{\bar{x}}<0
$$

so \bar{x} is the MLE.
6.2.11 The parameter of the interest is changed to the volume $\eta=\mu^{3}$ from the length of a side μ. Then the likelihood function is also changed to

$$
L_{v}(\eta \mid s)=L_{v}\left(\mu^{3} \mid s\right)=L_{l}(\mu \mid s)
$$

where L_{v} is the likelihood function when the volume parameter $\eta=\mu^{3}$ is of the interest and L_{l} is the likelihood function of the length of a side parameter μ. The maximizer η of $L_{v}(\eta \mid s)$ is also a maximizer of $L_{l}\left(\eta^{1 / 3} \mid s\right)$. In other words, the MLE is invariant under 1-1 smooth parameter transformations. Hence, the MLE of η is equal to $\hat{\mu}^{3}=(3.2 \mathrm{~cm})^{3}=32.768 \mathrm{~cm}^{3}$.

