HW2 Solution

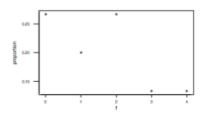
5.5.1

(a)
$$\hat{f}_X(0) = .2667, \hat{f}_X(1) = .2, \hat{f}_X(2) = .2667, \hat{f}_X(3) = \hat{f}_X(4) = .1333.$$

(a)
$$\hat{f}_X(0) = .2667, \hat{f}_X(1) = .2, \hat{f}_X(2) = .2667, \hat{f}_X(3) = \hat{f}_X(4) = .1333.$$

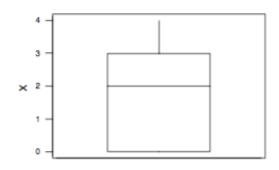
(b) $\hat{F}_X(0) = .2667, \hat{F}_X(1) = .4667, \hat{F}_X(2) = .7333, \hat{F}_X(3) = .8667, \hat{F}_X(4) = .1000$

(c) A plot of \hat{f}_X is given below.



(d) The mean is 5/3 (1.67) and the variance $s^2 = 1.952$.

(e) The median is 2 and the IQR = 3. The boxplot is plotted below. According to the 1.5 IQR rule, there are no outliers.



5.5.7 We have that $\psi(\mu) = x_{0.25} = \mu + \sigma_0 z_{0.25}$, where $z_{0.25}$ satisfies $\Phi(z_{0.25}) =$.25.

6.1.3 The likelihood function is given by $L(\theta \mid x_1,, x_{20}) = \theta^{20} \exp(-(20\bar{x})\theta)$. By the factorization theorem (Theorem 6.1.1) \bar{x} is a sufficient statistic, so we only need to observe its value to obtain a representative likelihood. The likelihood function when $\bar{x} = 5.2$ is given by $L(\theta \mid x_1,, x_{20}) = \theta^{20} \exp(-20(5.2)\theta)$.

6.1.6 The likelihood function is given by

$$L(\theta \,|\, x_1,...,x_n) = \prod_{i=1}^n heta^{x_i} (1- heta)^{1-x_i} = heta^{\sum x_i} (1- heta)^{n-\sum x_i} = heta^{nar{x}} (1- heta)^{n(1-ar{x})}.$$

By the factorization theorem \bar{x} is a sufficient statistic. If we differentiate $\ln L(\theta \mid x_1, ..., x_n) = n\bar{x} \ln \theta + n(1-\bar{x}) \ln(1-\theta)$, we get

$$(\ln L(\theta \mid x_1, ..., x_n))' = \frac{n\bar{x}}{\theta} - \frac{n(1-\bar{x})}{1-\theta}$$

and setting this equal to 0 gives the solution $\theta = \bar{x}$. Therefore, we can obtain \bar{x} from the likelihood and we conclude that it is a minimal sufficient statistic.