
1 Simulation

This chapter is dedicated to a simulation study that illustrates the finite-sample behavior

of the LIVE estimators v̂α(yα) and v̂αβ(yα, yβ). For simplicity, we consider examples with

zero conditional mean function only.

Example 1 We define the process

yt =
√

4 + v1(yt−1) + v2(yt−2) + v3(yt−3) + v12(yt−1, yt−2) + v13(yt−1, yt−3) + v23(yt−2, yt−3)εt

where v1(u) = v2(u) = −v3(u) = 0.5sin(u),

v12(u, v) = v13(u, v) = v23(u, v) = 0.5arctan(u)arctan(v), εt independent of Ft−1 and

εt ∼ Uniform(−
√
3,
√
3).

The components of the volatility function are selected to satisfy conditions of Lu and

Jiang (2001) to ensure the geometric ergodicity (and, therefore, the strict stationarity) of

the process yt. Condition (B1) of Lu and Jiang (2001) reduces in the one-dimensional case

to the requirement that the growth rate in each coordinate must not exceed the linear one;

apparently, the product of arctan functions satisfies this condition. Based on this model,

we simulate 500 samples with sample size n = 500. For each realization of the ARCH

process, we apply the instrumental variable estimation procedure from Section 3.2 to

obtain estimates of vα(·) and vαβ(·), 1 ≤ α, β ≤ 3. Gaussian kernels (univariate or product

multivariate as needed) are used for all of the nonparametric estimates. Bandwidth g is

selected according to the Gaussian rule of thumb as g = cn−1/(l+4) where c = ( 4
l+2)

1/(l+4)

and l is the number of dimensions of the function to be estimated. For example, l = 1

for any one-dimensional marginal density, l = 2 for p̂αβ(yα, yβ), l = d for p̂(y), etc. (see,

for example, Wand and Jones (1995) for details). The constant c is selected to ensure

that the bandwidth g is asymptotically optimal in the mean squared error sense under the

assumption that the true density is Gaussian. The same rule is used to select the second

bandwidth h where l = 1 or l = 2 for additive and interactive components, respectively.

To evaluate the performance of the estimators, the mean squared error (MSE) and the

mean absolute deviation error (MAE) are computed for each simulated sample. They are
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Table 1: AVERAGED MSE AND MAE FOR SIX VOLATILITY ESTIMATORS IN THE

UNIFORM DISTRIBUTION CASE

v1 v2 v3 v12 v13 v23

MSE 0.33 0.31 0.30 0.54 0.56 0.53

MAE 0.25 0.24 0.24 0.36 0.37 0.36

defined as

MSE(vα) =

 1

101

101∑
j=1

[vα(xj)− v̂α(xj)]
2


1/2

,

MSE(vαβ) =

 1

2601

2601∑
j=1

[vαβ(xj,1, xj,2)− v̂αβ(xj,1, xj,2)]
2


1/2

,

MAE(vα) =
1

101

101∑
j=1

|vα(xj)− v̂α(xj)|,

MAE(vαβ) =
1

2601

2601∑
j=1

|vαβ(xj,1, xj,2)− v̂αβ(xj,1, xj,2)|,

1 ≤ α < β ≤ 3. In the above, {xj}101j=1 is an equispaced grid on [−4, 4], and {xj,1}51j=1 ×
{xj,2}51j=1 is an equispaced grid on [−4, 4] × [−4, 4]. The grid range covers more than

99% of all observations in both one- and two- dimensions so very little information is lost.

Table (1) shows averages of MSE’s and MAE’s for all six components from 500 repetitions.

Figure (1) shows the averaged estimates of three additive components as well as the true

functions; the solid lines in red are the true curves and the dotted ones in black are the

estimates averaged over 500 repetitions. Figures (2) through (5) show the true surface

of the interactive components next to the estimates averaged over 500 simulations. In

general, the results show a very good fit for both additive and interactive components;

among interactive components, v12(·) and v23(·) seem to have been fit particularly well.

It can be clearly seen that the use of local polynomial regression eliminated boundary

effects to a great extent in both additive and interactive component estimation.

Example 2 Again, consider the model

yt =
√

4 + v1(yt−1) + v2(yt−2) + v3(yt−3) + v12(yt−1, yt−2) + v13(yt−1, yt−3) + v23(yt−2, yt−3)εt

where

v1(u) = v2(u) = −v3(u) = 0.5sin(u)
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Figure 1: Estimates of three additive components in example 1
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Figure 2: True surface of the interactive components in example 1
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Figure 3: Estimated surface of v12(·) in example 1

−4

−2

0

2

4

−4

−2

0

2

4

−1.0

−0.5

0.0

0.5

1.0

1.5

x
y

z

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 4: Estimated surface of v13(·) in example 1
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Figure 5: Estimated surface of v23(·) in example 1

v12(u, v) = v13(u, v) = v23(u, v) = 0.5arctan(u)arctan(v)

εt independent of Ft−1 and εt ∼ N(0, 1)

The previous example has the finitely supported error(innovation) distribution and this

may not be realistic enough in practice. Therefore, we are interested in testing the

performance of the method in case where the innovation distribution does not have

a compact support. Obviously, the most intuitive choice is the standard normal dis-

tribution. The grid ranges we chose are [−3.2, 3.2] in one-dimensional regressions and

[−3.2, 3.2] × [−3.2, 3.2] in two-dimensional ones. These ranges cover approximately 90%

and 80% of all observations, respectively. The averages of MSE’s and MAE’s for all the

six components from 500 repetitions are shown in table (2). Note that the performance

of the method does not seem to be any worse compared to the previous example. While

additive components seem to be estimated with slightly less precision, the opposite is

true when it comes to interactive components for either choice of the loss function. The

averaged estimates of six volatility components as well as the true ones are presented in

figures (6) through (10).
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Table 2: AVERAGED MSE AND MAE FOR SIX VOLATILITY ESTIMATORS IN THE

NORMAL DISTRIBUTION CASE

v1 v2 v3 v12 v13 v23

MSE 0.40 0.40 0.39 0.41 0.40 0.42

MAE 0.32 0.32 0.32 0.31 0.30 0.31
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Figure 6: Estimates of three additive components in example 2
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Figure 7: True surface of the interactive components in example 2
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Figure 8: Estimated surface of v12(·) in example 2
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Figure 9: Estimated surface of v13(·) in example 2
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Figure 10: Estimated surface of v23(·) in example 2
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