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Abstract: A multivariate semiparametric partial linear model for both fixed and

random design cases is considered. In either case, the model is analyzed using

a difference sequence approach. The linear component is estimated based on the

differences of observations and the functional component is estimated using a mul-

tivariate Nadaraya-Watson kernel smoother of the residuals of the linear fit. We

show that both components can be asymptotically estimated as well as if the other

component were known. The estimator of the linear component is shown to be

asymptotically normal and efficient in the fixed design case if the length of the dif-

ference sequence used goes to infinity at a certain rate. The functional component

estimator is shown to be rate optimal if the Lipschitz smoothness index exceeds

half the dimensionality of the functional component argument. We also develop a

test for linear combinations of regression coefficients whose asymptotic power does

not depend on the functional component. All of the proposed procedures are easy

to implement. Finally, numerical performance of all the procedures is studied using

simulated data.

Key words and phrases: Multivariate semiparametric model, difference-based method,

asymptotic efficiency, partial linear model, random field.

1. Introduction

Semiparametric models have a long history in statistics and have received

considerable attention in the last 30−40 years. They have also been a subject of

continuing investigation in subject areas such as econometrics. The main reason

they are considered is that sometimes the relationships between the response and

predictors are very heterogeneous in the same model. Some of the relationships

are clearly linear whereas other ones are much harder to categorize. In many

situations, a small subset of variables is presumed to have an unknown rela-

tionship with the response that is modeled nonparametrically while the rest are

assumed to have a linear relationship with it. As an example, Engle, Granger,

Rice and Weiss (1986) studied the nonlinear relationship between temperature
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and electricity usage where other related factors, such as income and price, are

parameterized linearly. Shiller (1984) considered an earlier cost curve study in

the utility industry using a partial linear model.

The model we consider in this paper is a semiparametric partial linear mul-

tivariate model

Yi = a+X
′
iβ + f(Ui) + εi (1.1)

where Xi ∈ Rp and Ui ∈ Rq, β is an unknown p × 1 vector of parameters, a is

an unknown intercept term, f(·) is an unknown function and εi are independent

and identically distributed random variables with mean 0 and constant variance

σ2. We consider two cases with respect to U : a random design case whereby

U is a q-dimensional random variable and a fixed design case with Ui being a

q-dimensional vector where each coordinate is defined on an equispaced grid on

[0, 1]. In the fixed design case the errors are independent of Xi while in the

random design case they are independent of (X
′
i , Ui). To obtain meaningful

results, the function f is assumed to belong in the Lipschitz ball class Λα(M)

where α is the Lipschitz exponent. The version with q = 1 was earlier considered

in Wang, Brown and Cai (2011) and we only consider here the case of q > 1.

The bibliography concerning the case of q = 1 is very extensive and we refer

readers to Wang, Brown and Cai (2011) for details. The case where q > 1 has

received much less attention in the past. Some of the papers that discussed that

model are He and Shi (1996), Samarov, Spokoiny and Vial (2006), Schick (1996)

and Müller, Schick and Wefelmeyer (2012). All of them considered random design

case only.

In this paper, we consider the estimation of both parametric and nonpara-

metric components. The difference sequence approach utilized in Wang, Brown

and Cai (2011) is generalized so that it can be used when q > 1. In the fixed

design case, the model is best enumerated using multivariate indices. Such a

model is, effectively, a semiparametric random field model. Let n be the sam-

ple size; then, using differences of observations, a
√
n-consistent estimator of the

parametric component and a
√
n-consistent estimator of the intercept are con-

structed; to obtain
√
n rate of convergence for the intercept a, the smoothness

of a nonparametric component must exceed q/2. As is the case in Wang, Brown

and Cai (2011), the correlation between differences has to be ignored and the
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ordinary least squares approach must be used instead of the generalized least

squares to obtain an optimal estimator. The reason for that is that the use of

weighted least squares to estimate β in case of the difference model is concep-

tually analogous to use of ordinary least squares for the original model (1.1).

In either case, the estimate β̂ will be seriously biased due to the presence of the

nonparametric component f . A similar remark is also made in Wang, Brown and

Cai (2011) on p. 5. These estimators can be made asymptotically efficient if the

order of the difference sequence is allowed to go to infinity. The estimator of the

nonparametric component is defined by using a kernel regression on the residuals

and is found to be n−α/(2α+q) consistent. The hypotheses testing problem for

the linear coefficients is also considered and an F-statistic is constructed. The

asymptotic power of the F-test is found to be the same as if the nonparametric

component is known.

In the random design case, the model has univariate indices and so the

approach is slightly different. An attempt to generalize the approach of Wang,

Brown and Cai (2011) directly is fraught with difficulties since one can hardly

expect to find an ordering of multivariate observations that preserves distance

relationships intact. Instead, we utilize a nearest neighbor approach whereby

only observations that are within a small distance from the point of interest

U0 are used to form a difference sequence. This inevitably results in difference

sequences that have varying lengths for different points of interest in the range

of the nonparametric component function. In order to ensure that the length of

the difference sequence does not go to infinity too fast, some assumptions on the

marginal density function of Ui must be imposed. As in the fixed design case,

we obtain a
√
n-consistent estimator of the parametric component and a rate

efficient estimator of the nonparametric component.

Our approach is easy to implement in practice for both random and fixed

design cases and for an arbitrary dimensionality q of the functional component.

Moreover, it guarantees
√
n rate of convergence for the parametric component

regardless of the value of q and provides an easy way of testing standard linear

hypotheses about β that have an asymptotic power that does not depend on the

unknown nonparametric component.

The paper is organized as follows. Section 2 discusses the fixed design case



4

while the Section 3 covers the random design case. The testing problem is con-

sidered in Section 4. Section 5 is dedicated to a simulation study that is carried

out to study the numerical performance of suggested procedures. Finally, all of

the proofs are collected together in the Appendix.

2. Deterministic design

We consider the following semiparametric model

Yi = a+X
′
iβ + f(Ui) + εi (2.1)

where Xi ∈ Rp, Ui ∈ S = [0, 1]q ⊂ Rq, εi are iid zero mean random variables

with variance σ2 and finite absolute moments of the order δ + 2 for some small

δ > 0: E |εi|δ+2 <∞. The assumption of random Xi’s is also very common when

a multivariate nonparametric model is considered; generally speaking, the use of

random Xi’s corresponds to the assumption that Xi’s are generated by obser-

vational (and not experimental) data, which is much more common in practice.

In the model (2.1), i = (i1, . . . , iq)
′

is a multidimensional index; throughout this

article, we will use bold font for all multivariate indices and a regular font for

scalar ones. Each ik = 0, 1, . . . ,m for k = 1, . . . , q; thus, the total sample size is

n = (m + 1)q. This assumption ensures that m = o(n) as n → ∞. We will say

that two indices i1 = (i11, . . . , i
1
q) ≤ i2 = (i21, . . . , i

2
q) if i1k ≤ i2k for any k = 1, . . . , q;

the relationship between i1 and i2 is that of partial ordering. Also, for a mul-

tivariate index i |i| = |i1| + . . . + |iq|. Here we assume that Ui follows a fixed

equispaced design: Ui = (ui1 , . . . , uiq)
′ ∈ Rq where each coordinate is uik = ik

m .

Also, β is an unknown p-dimensional vector of parameters and a is an unknown

intercept term. We assume that Xi’s are independent random vectors and that

Xi is also independent of εi; moreover, we denote the non-singular covariance

matrix of X as ΣX . For convenience, we also denote N = {0, . . . ,m}q. Note that

in this model the intercept a cannot be absorbed in the design matrix X due to

identifiability issues; in order to ensure that the model is identifiable, we have to

require that an identifiability condition
∫

[0,1]q f(u)du = 0 is satisfied. Otherwise,

one can add and subtract
∫

[0,1]q f(u)du to the right hand side of the model with

the new constant becoming a
′

= a +
∫

[0,1]q f(u)du. Finally, the version of (2.1)

with q = 1 has been considered earlier in Wang, Brown and Cai (2011).

We will follow the same approach as Wang, Brown and Cai (2011), estimat-
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ing first the vector coefficient β using the difference approach and then using

residuals from that fit to estimate both the intercept a and the unknown func-

tion f . To obtain uniform convergence rates for the function f , some smoothness

assumptions need to be imposed first. For this purpose, we consider functions

f that belong to the Lipschitz ball class Λα(M) for some positive constant M

that is defined as follows. For a q-dimensional index j = (j1, . . . , jq), we define

j(l) = {j : |j| = j1 + . . .+ jq = l}. Then, for any function f : Rq → R, Dj(l)f

∂u
j1
1 ...∂u

jq
q

is defined for all j such that |j| = l. Then, the Lipschitz ball Λα(M) consists of

all functions f(u) : [0, 1]q → R such that |Dj(l)f(u)| ≤ M for l = 0, 1, . . . , bαc
and |Dj(bαc)f(v)−Dj(bαc)f(w)| ≤ M ||v − w||α

′
with α

′
= α − bαc. Here and in

the future, || · || stands for the regular l2 norm in Rq.

As in Cai, Levine and Wang (2009), our approach will be based on differences

of observations Yi. The differences of an arbitrary order must be carefully defined

when indices are multivariate. Let A be an arbitrary set in Rq. It is clear that

we need to specify a particular choice of observations that form a difference since

there are many possibilities for a difference of any order “centered” around an

observation Yi. As in Cai, Levine and Wang (2009) and Munk, Bissantz, Wagner

and Freitag (2005), we choose a positive integer γ ≥ 2 and select a set of q-

dimensional indices J = {(0, . . . , 0), (1, . . . , 1), . . . , (γ, . . . , γ)}. For any vector

u ∈ Rq, a real number v and a set A, we define the set B = u+ vA = {y ∈ Rq :

y = u + va, a ∈ A ⊂ Rq}; then, we introduce a set R that consists of all indices

i = (i1, . . . , iq) such that R + J ≡ {(i + j)|i ∈ R, j ∈ J} ⊂ N . In order to define

a difference of observations of order γ, we define first a sequence of real numbers

{dj} such that
∑γ

j=0 dj = 0 and
∑γ

j=0 d
2
j = 1. The latter assumption makes the

sequence {dj} normalized. Moreover, denote ck =
∑γ−k

i=0 didi+k. Note that the

so-called polynomial sequence used in Wang, Brown, Cai and Levine (2008) with

dj =
(
γ
j

)
(−1)j/

(
2γ
γ

)1/2
satisfies this asymptotic requirement; moreover, it also

satisfies an important property that
∑γ

j=0 djj
k = 0 for any power k = 1, . . . , γ.

For the asymptotic optimality results that will be described later, the order of

the difference sequence γ must go to infinity as n → ∞. Then the difference of

order γ “centered” around the point Yi, i ∈ R is defined as

Di =
∑
j∈J

djYi+j (2.2)
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where j = (j, . . . , j)
′
, j = 0, . . . , γ is now a q-dimensional vector of identical

coordinates and dj is the same as dj . Note that this particular choice of the

set J makes numbering of difference coefficients dj very convenient; since each

q-dimensional index j consists of only identical scalars, that particular scalar can

be thought of as a scalar index of d; thus,
∑

j∈J dj is the same as
∑γ

j=0 dj . With

this clarification in mind, we will use regular, and not the bold, font notation for

indices of coefficients dj from now on whenever the needed sum only includes the

coefficients and, possibly, indices themselves; this guarantees that no confusion

can occur.

Now, let Zi =
∑

j∈J djXi+j, δi =
∑

j∈J djf(Ui+j), and ωi =
∑

j∈J djεi+j, for

any i ∈ R. Then, by differencing the original model (2.1), one obtains

Di = Z
′
iβ + δi + ωi (2.3)

for all i ∈ R. The ordinary least squares solution for β can be written as

β̂ = argmin
∑
i∈R

(Di − Z
′
iβ)2

Our interest lies in establishing consistency and asymptotic distribution for

the least squares β̂ as n = (m + 1)q → ∞. We are going to prove the following

result.

Theorem 2.1. Let the distribution of εi have an absolute finite moment of order

2+δ for some small δ > 0. Also, let us assume that the marginal density function

of εi h(x) has a bounded variation over the real line. We also assume that the

Lipschitz index α satisfies α > q
2 . Then,

1. if a difference sequence dj of order γ ≥ bαc such that
∑γ

j=0 dj = 0,
∑γ

j=0 d
2
j =

1,
∑γ

j=0 djj
k = 0 for k = 1, . . . , γ is chosen, the resulting least squares so-

lution is asymptotically normal in the sense that

√
n(β̂ − β)

L→ N

(
0, σ2Σ−1

X

(
1 +O

(
1

γ

)))
.

In the above, the term O
(

1
γ

)
can be written explicitly as

2

γ∑
k=1

γ−k∑
i=0

didi+k.
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2. The resulting least squares estimator β̂ is not asymptotically efficient if the

difference sequence order γ is finite. However, if we let γ → ∞ while

γ = o(m) and
∑γ

j=0 |dj |jl <∞ for some l > q/2, the asymptotic efficiency

is achieved.

Our next step is to obtain properties of the estimated intercept â. For

simplicity of notation, let n = (n, . . . , n) be a q-dimensional index consisting of

n’s. The natural estimator â = 1
n

∑
i≤n(Yi − X

′
i β̂) can be used. Its properties

can be described in the following lemma.

Lemma 2.2. Under the assumption of the uniform design on S = [0, 1]q and

α > q/2, we have
√
n(â− a)

L→ N(0, σ2)

Next, the estimation of the function f is an important task. One of the

ways to do this is to apply a smoother to the residuals ri = Yi − â − X
′
i β̂; out

of the many possible smoothers, we choose a multivariate kernel smoother de-

fined as a product of the univariate kernels. More specifically, let K(U l) be a

univariate kernel function for a specific coordinate U l, l = 1, . . . , q satisfying∫
K(U l) dU l = 1 and having bαc vanishing moments. We choose the asymptoti-

cally optimal bandwidth h = n−1/(2α+q) (see, for example, J. Fan and I. Gijbels

(1995)). We define its rescaled version as Kh(U l) = h−1K(h−1U l) so that the

q-dimensional rescaled kernel is Kh(U) = h−q
∏q
l=1K(h−1U l). Wang, Brown

and Cai (2011) used Gasser-Müller kernel weights to smooth the residuals ri in

the one-dimensional case. In the multivariate case, it is clearly preferable to use

some other approach to define weights that add up to 1; the classical Nadaraya-

Watson approach is the one we choose. The Nadaraya-Watson kernel weights are

defined as

Wi,h(U − Ui) =
Kh(U − Ui)∑
i≤nKh(U − Ui)

.

Finally, the resulting kernel estimator of the function f(U) can then be defined

as

f̂(U) =
∑
i≤n

Wi,h(U − Ui)ri
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Theorem 2.3. For any Lipschitz indicator α > 0 and any U0 ∈ [0, 1]q, the

estimator f̂ satisfies

sup
f∈Λα(M)

E[(f̂(U0)− f(U0))2] ≤ Cn−2α/(2α+q)

for a constant C > 0. Also, for any α > 0 ,

sup
f∈Λα(M)

E

[∫
[0,1]q

(f̂(U)− f(U))2 dU

]
≤ Cn−2α/(2α+q)

Remark 2.4. He and Shi (1996) considered the model (1.1) for the random

design case and provided an estimation approach for both parametric and non-

parametric parts that uses a bivariate tensor-product B-splines based method; the

resulting method was illustrated in detail for the case of q = 2. They also noted

that the optimal result for the mean squared error of the nonparametric compo-

nent requires that the degree of smoothness of that component r increases with

the dimension q as r > q/2, similarly to our result obtained using the difference

sequence approach.

3. Random Design Case

So far, we have only considered the deterministic setting whereby the func-

tion f(U) is defined on S = [0, 1]q ∈ Rq. In the multivariate setting, this means

using a grid with each observation Ui = (ui1 , . . . , uiq)
′ ∈ Rq and defining each

coordinate as uik = ik
m . It is also interesting to consider the random design case

where the argument U ∈ Rq is random and not necessarily independent of X.

We note that in this case the use of multivariate indices does not result in any

added convenience so we use the standard univariate ones.

Now, our model is again

Yi = a+X
′
iβ + f(Ui) + εi (3.1)

for i = 1, . . . , n; we also assume that (X
′
i , Ui) ∈ Rp × Rq are independent with

an unknown joint density g(x, u). Moreover, we assume that the conditional

covariance matrix Σ∗ = E[(X1 − E(X1|U1))(X1 − E(X1|U1))
′
] is non-singular.

Next, β ∈ Rp is the vector of coefficients, and εi are independent identically

distributed random variables with mean zero and variance σ2 that are indepen-

dent of (X
′
i , Ui). To make the model identifiable, we also need to assume that
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E(f(Ui)) = 0. Finally, an individual coordinate of the vector Xi will be denoted

X l
i , for l = 1, . . . , p.

One’s first inclination is to try to order multivariate observations Ui in some

way in order to form a difference sequence. This would be a direct analogy to

what was done in Wang, Brown and Cai (2011). While there is a number of ways

to do so (e.g. by using the lexicographical ordering that results in the complete,

and not just partial, order), the resulting sequence is of little use in estimation

of the function f at any particular point U . Speaking heuristically, the reason

for that is that it is impossible to keep such an ordering and ensure that, at the

same time, the points remain in a neighborhood of the point U . Due to this,

such a direct generalization is impossible.

The above discussion suggests a different way out.

For a given point Ui, we choose all the points U such that the squared

Euclidean norm ||Ui − U ||2 ≤ ν for some small ν > 0. The number of such

points will, of course, depend on ν and, moreover, it will be different for different

points Ui as long as the marginal distribution of Ui is non-trivial. Let all of

the points that are within the squared distance ν of Ui be denoted Ui,t where

t = 0, . . . , γi(ν). Then, a difference “centered” on the point Ui will be δi =∑γi(ν)
t=0 dtf(Ui,t). Applying this difference to both sides of (3.1), one obtains

Di = Z
′
iβ + δi + ωi (3.2)

where Di =
∑γi(ν)

t=0 dtYi+t, Zi =
∑γi(ν)

t=0 dtXi+t, and ωi =
∑γi(ν)

t=0 dtεi+t, i =

1, . . . , n. Note that, as opposed to the fixed design case, the difference sequence

considered here is of a variable order that depends on the value of the marginal

density function g(Ui) at which the function f is to be estimated as well as the

“tuning” parameter ν. For simplicity, we will suppress the dependence of the

difference order on ν and write simply γi, unless indicated otherwise.

As before, the sequence is defined in such a way that
∑γi

j=0 dj = 0,
∑γi

j=0 d
2
j =

1,
∑γi

j=0 djj
k = 0 for k = 1, . . . , γi. We will also denote

cij =

min(γi,γj)−(i−j)∑
t=0

dtdt+(i−j).

and cn =
∑n

i,j=1 c
2
ij .
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In the matrix form the model (3.2) can be written as

D = Zβ + δ + ω (3.3)

where Z is the matrix whose ith row is Z
′
i , D = (D1, . . . , Dn)

′
, ω = (ω1, . . . , ωn)

′
,

and δ = (δ1, . . . , δn)
′
. The least squares solution is, then,

β̂ = (Z
′
Z)−1Z

′
D (3.4)

Now, the following result can be established.

Theorem 3.5. Let the marginal density function of Ui g(u) be bounded every-

where away from zero uniformly on Rq. Also, let the function f(U) ∈ Λα(Mf )

and h(U) ≡ E(X|U) ∈ Λρ(Mh). Define the difference based estimator of β as

above in (3.4) with νn → 0 as n→∞. Then, as long as sup1≤i≤n γi(ν)ν2(ρ+α) →
0 while n → ∞ and limn→∞ cn = 0, the estimator β̂ is asymptotically normal

and efficient. More precisely,

√
n(β̂ − β)

L→ N(0, σ2Σ−1
∗ )

where Σ∗ = E[(X − E(X|U))(X − E(X|U))
′
].

Remark 3.6. Requiring that the marginal density function g(u) be bounded uni-

formly away from zero is not the weakest possible assumption - moderate rates of

growth to infinity can be permitted as well at the expense of making ν go to zero

faster as n→∞. We do not pursue this question further here

The asymptotic normality of the intercept, stated in the Lemma 2.2 in the

fixed design case, is also valid in the random design case. More specifically, we

can say that under the assumptions of Theorem 3.5, we have again
√
n(â− a)

L→
N(0, σ2). One can also show that the analogue of Theorem 2.3 is also true in

the random design case. For this to be valid, we need to require that the design

density g(u) be uniformly bounded everywhere away from zero over Rq. Since

the proofs of these results are very similar to proofs of Lemma 2.2 and Theorem

2.3, respectively, we do not give them here in full.

4. Linear component related tests

In this section we consider testing of linear hypotheses of the type H0 :

Cβ = 0 vs. Ha : Cβ 6= 0 for some full-rank r × p matrix C with rank(C) = r;
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here r is the number of hypotheses tested. In this section, we only consider a

fixed design case. It is assumed that the errors are independent and normally

distributed, that is εi ∼ N(0, σ2) for some σ2 > 0. A random design case is

substantially more difficult and will be part of our future research. To estimate

the error variance σ2, for any i ∈ R we define the estimated ith residual as

ei = Di−Z
′
i β̂ = Di−Z

′
i(
∑

s∈R ZsZ
′
s)
−1
∑

s∈R ZsDs and, therefore, the estimated

error variance as

σ̂2 =

∑
i∈R e

2
i

n− γ − p
(4.1)

Theorem 4.7. Suppose α > q/2 and 1 − d0 = O(γ−1). In order to be able to

test H0 : Cβ = 0 vs. H1 : Cβ 6= 0 where C is an r× p matrix with rank(C) = r,

the test statistic

F =
β̂

′
C

′
(C(
∑

s∈R ZsZ
′
s)
−1C

′
)−1Cβ̂/r

σ̂2

is asymptotically distributed as F (r, n−γ−p) distribution under the null hypoth-

esis.

5. Simulation

We begin with the fixed design discussion. We select the sample size n =

2500, define Ti ∼ Uniform(0, 1) for i = 1, . . . , n and consider two possible designs

of the parametric component. In the first case, dimensionality of the linear

component is p = 1 and the true coefficient is β = 2; the one-dimensional random

variable Xi ∼ N(µi, 1) for i = 1, . . . , n with µi = Ti. For the second case, we

denote a 3 × 3 identity matrix I3. Then, we select p = 3, β = (2, 2, 4)
′

and

Xi = (X1
i , X

2
i , X

3
i )

′ ∼ N((µi, 2µi, 4µ
2
i )

′
, I3) where, again, µi = Ti. In both

cases, errors are generated from the standard normal distribution. We select the

dimensionality of the functional argument to be q = 2 and use the sample size

n = 2500. Four possible choices of functions are considered: f1(U) = U2
1 + U4

2 ,

f2 = 5 sin(π(U1 + U2)), f3 = min(U1, 1 − U1) + min(U2, 1 − U2) and f4(U) =

f1
4 (U1) ∗ f2

4 (U2) where f1
4 (U1) = |4 ∗ U1 − 2| and f2

4 (U2) = |4U2−2|+1
2 . The first

two choices are taken from Yang and Tschernig (1999) where they were used

to study bandwidth selection for the multivariate polynomial regression. The

third function brings discontinuities in our experimental setting. The fourth is

the so-called g-Sobol function, commonly used for sensitivity analysis (see, e.g.
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Table 5.1: Fixed design case: the MSE’s of estimate β̂ over 200 replications with sample

size n = 2500. The numbers inside parentheses are the standard deviations.
f ≡ 0 f1 f2 f3 f4

Case(1) 0.0004 (0.0006) 0.0005 (0.0007) 0.0006 (0.0008) 0.0006 (0.0008) 0.0005 (0.0006)

Case (2) 0.0028 (0.0022) 0.0028 (0.0024) 0.0038 (0.0034) 0.0030 (0.0025) 0.0026 (0.0024)

Saltelli (2000) and Touzani and Busby (2011)). It is strongly nonlinear and

non-monotonic. Finally, we use a difference sequence with the parameter γ = 4.

First, we want to assess the influence of the unknown function f on the

estimation of the linear component. We use 200 Monte-Carlo runs and the mean

squared error is defined as ||β̂ − β||22 with || · ||2 being the Euclidean norm. The

results are presented in the Table (5.1). The first row corresponds to the first

choice of one-dimensional parametric component and the second row corresponds

to the choice of the three-dimensional parametric component. We look at the

mean squared error of β̂ when there is no functional component (f ≡ 0) as well

as for all four choices of f described above.

The estimation procedure seems to function reasonably well even if the non-

parametric component is highly nonlinear and nonmonotonic. The presence or

absence of such a component makes almost no difference in the size of the mean

squared error of the parametric component estimator β̂.

As a next step, we estimate the nonparametric component for both choices

of the parametric component design. For comparison purposes, we also illustrate

it when the parametric component is equal to zero. We are using the multivariate

Nadaraya-Watson estimator and select the optimal bandwidth using the cross-

validation approach. Since the test functions used are not symmetric, different

bandwidths are assumed for different coordinates. Note that the Priestley-Chao

kernel used in Wang, Brown and Cai (2011) is not as convenient for multivariate

settings and therefore we prefer not to use it in this case. The results are summa-

rized in the Table (5.2). It is clear that the choice of the parametric design does

not have any perceptible influence on estimation of nonparametric component.

All of the function choices can be fairly precisely estimated, even those that are

strongly nonlinear.

As a next step, we want to verify how well our estimation procedures perform
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Table 5.2: Fixed design case: the MSE’s of estimate f̂ over 200 replications with sample

size n = 2500. The numbers inside parentheses are the standard deviations
f ≡ 0 f1 f2 f3 f4

β = 0 known in advance 0.0009 (0.0018) 0.0081 (0.0024) 0.0347 (0.0047) 0.0073 (0.0020) 0.0162 (0.0032)

Case(1) 0.0013 (0.0021) 0.0096 (0.0036) 0.0372 (0.0060) 0.0093 (0.0039) 0.0185 (0.0047)

Case (2) 0.0013 (0.0019) 0.0094 (0.0031) 0.0371(0.0054) 0.0088 (0.0033) 0.0178(0.0044)

in the random design case. We will use the same selection of functions only now

we assume that V j ∼ Unif [0, 1], j = 1, 2 and each argument of the function

f is a two-dimensional point Vi = (V 1
i , V

2
i ), i = 1, . . . , n. Thus, the functions

considered are, again, f1(V ) = (V 1)2 + (V 2)4, f2 = 5 sin(π(V 1 + V 2)), f3 =

min(V 1, 1−V 1)+min(V 2, 1−V 2) and f4(V ) = f1
4 (V 1)∗f2

4 (V 2) where f1
4 (V 1) =

|4∗V 1−2| and f2
4 (V 2) = |4V 2−2|+1

2 . In order to choose the order of the difference

sequence, we use the nearest neighbor principle. Whenever f(V ) needs to be

estimated, we specify first a small ν > 0 and then select the difference based on

the points Vi such that ||Vi − V ||2 ≤ ν. In this particular case, we use ν = 0.05.

If there are no points in such a neighborhood of V , we take the smallest possible

number of points which is 2 and select two of the nearest neighbors of the point

V .

We begin, again, with estimation of the parametric component. There are

200 Monte-Carlo runs, the sample size is n = 2500, and the mean squared error

is defined as ||β̂ − β||22 with || · ||2 being the Euclidean norm. To illustrate the

fact that accounting for the presence of a nonparametric component in the model

is crucial, we also conduct estimation of the Euclidean component using simple

linear least squares that disregards the presence of the function f . The results

are summarized in the Table (5.3) whose last two rows illustrate what happens if

the presence of the nonparametric component is ignored and the standard least

squares estimation procedure is applied.

Note that the mere presence of a nonparametric component clearly does not

have much influence on the estimation of the parametric part if our difference

sequence method is applied. However, simply ignoring the presence of the non-

parametric component and applying the standard least squares method produces

bad results; indeed, the results in the last two rows of (5.3) are much worse than

those in the first two rows with an exception of the first column. The rest of
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Table 5.3: Random design case: the MSE’s of estimate β̂ over 200 replications with

sample size n = 2500. The numbers inside parentheses are the standard deviations.The

first two rows assume that the functional component has been taken into account
f ≡ 0 f1 f2 f3 f4

Case(1) 0.0010 (0.0014) 0.0009 (0.0014) 0.0011 (0.0016) 0.0011 (0.0017) 0.0009 (0.0011)

Case (2) 0.0040 (0.0032) 0.0051 (0.0049) 0.0044 (0.0036) 0.0051 (0.0045) 0.0046 (0.0042)

Case(1)- functional component ignored 0.0001 (0.0001) 0.0306 (0.0030) 0.0021 (0.0018) 0.0251 (0.0025) 0.1084 (0.0066)

Case (2)- functional component ignored 0.0008 (0.0007) 0.0332 (0.0038) 0.0128 (0.0105) 0.0275 (0.0036) 0.1151 (0.0098)

Table 5.4: Random design case: the MSE’s of estimate f̂ over 200 replications with

sample size n = 2500. The numbers inside parentheses are the standard deviations
f ≡ 0 f1 f2 f3 f4

β = 0 known in advance 0.0004 (0.0006) 0.0077 (0.0020) 0.0384 (0.0051) 0.0076 (0.0021) 0.0169 (0.0032)

Case(1) 0.0009 (0.0013) 0.0102 (0.0045) 0.0409 (0.0070) 0.0102 (0.0044) 0.0194 (0.0055)

Case (2) 0.0009 (0.0014) 0.0118 (0.0063) 0.04213(0.0091) 0.0121 (0.0078) 0.0208(0.0065)

mean squared errors in those two rows are several orders of magnitude larger

than those in the first two rows of the Table (5.3). The difference is especially

pronounced for g-Sobol function choice due to its obvious ”roughness”.

Our next check is the estimation of the nonparametric component in the

random design case. Again, we are using the multivariate Nadaraya-Watson es-

timator and select the optimal bandwidth using the cross-validation approach.

Since the test functions used are not symmetric, different bandwidths are as-

sumed for different coordinates. For comparison, the nonparametric component

has also been estimated in the case where β = 0. The sample size used is n = 2500

and there are 200 Monte-Carlo runs. We also use ν = 0.05 to define the nearest

neighborhood of any point U where the function f has to be estimated. The

Table (5.4) summarizes mean squared errors (MSE’s) of the estimated function

f . As is true for the fixed design case, note that MSE’s in each column are yet

again quite close to each other and the performance of the estimator f̂ does not

seem to depend a lot on the structure of X and β.

It is also a matter of substantial interest to check how the performance of the

proposed method in the fixed design case depends on the length of the difference

sequence used. More specifically, we focus on the Case (2) and the function

f = f2 and compute mean squared errors of the estimated function and the

parametric component coefficients for several choices of the difference sequence
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length. There are n = 2500 observations used and 200 Monte-Carlo replications

have been used. The chosen lengths of the difference sequences are 2, 4, 8 and

16. The results are summarized in the Table (5.5). Note that the performance of

our method seems to deteriorate as the length of the difference sequence grows.

We believe that there are two reasons for that phenomenon. First, for sufficiently

small difference sequence lengths, such as γ = 2 or γ = 4, the fact that we use a

diagonal difference sequence to estimate the model parameters implies the use of

only a small proportion of the total number of points in the q dimensional space.

This effectively precludes us from observing the effect of bias reduction that is

typically associated with the use of difference sequence method (see, for example,

Wang, Brown, Cai and Levine (2008)). We conjecture that if a non-diagonal

difference method were used, the effect would be clearer; however, the method

would be much more computationally intensive, the notation much harder, and

the eventual asymptotic efficiency of obtained estimators uncertain. Second, we

need to keep in mind that, for the estimator of the parametric component β to

be efficient, the parameter γ must go to infinity as n→∞. In addition, the rate

of growth of γ as a function of n must be o(n) as n → ∞. Due to the above,

it appears likely that for our sample size n = 2500, larger choices of γ, such as

γ = 8 or γ = 16, may simply be too large in comparison with the sample size.

This suggests that, for a fixed sample size, improved performance for increasing

orders of a difference sequence appears highly unlikely.

To provide some empirical evidence for our conjectures, we also performed

some extra simulations with a larger sample size n = 10, 000 and m = 500, over

200 Monte-Carlo runs. The results show yet again that there is no improvement

in the average mean squared error of estimated parametric component as the

parameter γ is taking values 2, 4, 8, 16. Due to similarity of these results to the

Table (5.5) in the manuscript, we did not include them in the final version.

Finally, we would also like to illustrate the performance of our testing pro-

cedure in the fixed design case. The hypothesis tested is H0 : β0 = β1 = 0. Each

cell of the Table (5.6) contains the number of times this null hypothesis has been

rejected out of 200 Monte-Carlo runs and the average value of F statistic over

these runs.
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Table 5.5: The mean and standard deviation of the estimated coefficients and the average

MSE of estimate f̂2 over 200 replications with sample size n = 2500 for different difference

sequence lengths. The numbers inside parentheses are the standard deviations

γ = 2 γ = 4 γ = 8 γ = 16

Mean(sd) of β̂1 0.0012 (0.0019) 0.0014 (0.0023) 0.0025 (0.0032) 0.0059 (0.0071)

Mean(sd) of β̂2 0.0008 (0.0016) 0.0013 (0.0019) 0.0024 (0.0035) 0.0056 (0.0078)

Mean(sd) of β̂3 0.0005 (0.0006) 0.0009 (0.0010) 0.0011 (0.0014) 0.0030 (0.0041)

MSE of f̂2 0.0360 (0.0054) 0.0366 (0.0059) 0.0376 (0.0062) 0.0419 (0.0104)

Table 5.6: The total number of rejects of F test over 200 replications at level 0.05. The

numbers insides the parentheses are the mean value of F statistic.
f ≡ 0 f1 f2 f3 f4

β = (0, 0, 4)
′

14 (1.1442) 13 (0.9640) 6 (0.8737) 12 (1.1611) 13 (1.1899)

β = (2, 2, 4)
′

200 (9916.93) 200 (9654.72) 200 (2765.968) 200 (9858.734) 200 (9537.464)
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6. Appendix

Proof of Theorem 2.1

Proof. As a first step, note that the solution has the usual form

β̂ =

(∑
i∈R

ZiZ
′
i

)−1(∑
i∈R

ZiDi

)

and that

β̂ − β =

(∑
i∈R

ZiZ
′
i

)−1(∑
i∈R

Zi[ωi + δi]

)
(5.1)

=

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Ziωi +

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Ziδi.
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Note that the following notation is needed in order to characterize the covariance

array of ωi. For any two q-dimensional indices i, j we say that |i − j| = l if for

all k = 1, . . . , q |ik − jk| = l. With that in mind, a set of pseudoresiduals ωi,

i ∈ R has a covariance array Ψ = {Ψi,j} i, j ∈ R with only the elements having

the “index distance” l ≤ γ and l 6= 1 being non-zero. We denote those non-zero

elements cl for any 1 < l ≤ γ. Because ωi’s for all i ∈ R are linear combinations

of εi, all of cl’s will depend on the difference sequence {dj}. More precisely, the

covariance array Ψ has a typical element

Ψi,j =


σ2, if i = j

σ2cl, if |i− j| = l ≤ γ
0, otherwise

We will examine the two terms in the above separately. First, it is clear that the

expectation of the first term E
(∑

i∈R ZiZ
′
i

)−1∑
i∈R Ziωi = 0 and its conditional

variance

V ar

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Ziωi|Zi, i ∈ R


=

(∑
i∈R

ZiZ
′
i

)−1

V ar

(∑
i∈R

Ziωi

)(∑
i∈R

ZiZ
′
i

)−1

.

It is necessary to guarantee that the weak law of large numbers (WLLN) is

valid for a sequence of random matrices ZiZ
′
i where i ∈ R. We can state such a

law of large numbers in the following manner. Let K be an identical copy of the

index set J ; then,

1

n

∑
i∈R

ZiZ
′
i =

1

n

∑
i∈R

∑
j∈J

djXi+j

(∑
k∈K

dkX
′
i+k

) p→ ΣX .

To establish such a law, we can rely on a straightforward generalization of the

law of large numbers for random fields that has been proved in Guyon (1995) as

Theorem 3.2.1. For example, since the cardinality of R is |R| = (m+ 1− γ)q, we

can quickly verify that conditions (3.1) and (3.2) on p. 108 of Guyon (1995) are

satisfied. The validity of these two conditions guarantees that the geometry of

the domain over which the law of large numbers is considered is not problematic.
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All that remains now is a straightforward generalization of this result to a matrix

valued random field.

To conclude that the term
(∑

i∈R Ziωi

) (∑
i∈R ZiZ

′
i

)−1
is (conditionally on

the set of Zi) asymptotically normal we need to use a central limit theorem for

stationary random fields; for example, a version cited in Guyon (1995) that is

originally due to Bolthausen (1982) seems suitable for our circumstances. In

order to verify mixing conditions, it is useful to consider some characteristics of

the random field ωi, i ∈ R first. Note that a field ωi =
∑

j∈J djεi+j is a linear

transformation of εi; alternatively, it can also be viewed as an infinite moving

average. This allows us to use some well-known results on mixing properties for

linear fields that have been described in detail in Guyon (1995) and Doukhan

(1994). Note that these results are much stronger than what is technically re-

quired here since our central limit theorem only describes the mean over a fairly

simple set R.

First, a brief introduction into strong mixing coefficients for a random field

is needed. For the two sets A,B ∈ R we define the distance between them as

d(A,B) = infx∈A,y∈B d(x, y) with d being a Euclidean metric in R. Also, let |A|
and |B| be the cardinality of sets A and B, respectively. For a random field

X, a subset XC = {Xt : t ∈ C} for some subset C of q-dimensional indices is

called a C-marginal of X. Let κA and κB be σ-algebras generated by XA and

XB, respectively. For the two σ- algebras κA and κB, a strong mixing coeffi-

cient is defined as α(κA, κB) := sup{|P (U)P (V )− P (U ∩ V )|;U ∈ κA, B ∈ κB}.
Then, for two sets A and B a strong mixing coefficient αX(A,B) := α(κA, κB).

Let u and v be two nonnegative integers; a special version of the general mix-

ing coefficient αX(A,B) for sufficiently “distant” sets A and B can be defined

as αX(k;u, v) = sup{αX(A,B) : d(A,B) ≥ k, |A| ≤ u, |B| ≤ v}. Note that

αX(k;u, v) is an increasing function with respect to both u and v. Finally, we

also denote αX(k;u,∞) = supv αX(k;u, v).

To ensure that the central limit theorem is valid, we need to show that the

strong mixing coefficient αX(k; 2,∞) of the field X decays sufficiently fast to

satisfy the condition
∑

k≥1 k
q−1αX(k; 2,∞)ζ/2+ζ for some ζ > 0. To do that, we

will use Corollary 1 of the Theorem 1 of Doukhan (1994, pp 78-79) for the multi-

variate case (i.e., when q > 1). To ensure that all of the conditions mentioned in
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the Theorem 1 are true, it is necessary to make certain assumptions on both the

difference sequence {dj} and on the distribution function h of the independent

random variables εi first. More specifically, we need to require that

• εi has a uniformly bounded absolute moment of order 2+δ: supiE |εi|2+δ <

∞ for some δ > 0

• The density function h of εi possesses the following regularity property:∫
R
|h(z + x)− h(z)| dz ≤ C|x|

for some positive C that does not depend on x. This requirement is satisfied

if the density function h(x) has a bounded variation on a real line.

• The difference sequence dj must satisfy the so-called invertibility condition

(Guyon, 1995) that requires the existence of a sequence aj such that the

product of the two associated diagonal matrices D = diag{dj} and A =

diag{aj} DA = I with I being the unity matrix. To guarantee that this is

true, it is necessary to require that for some k > q/2∑
i

|i|k|di| <∞. (5.2)

The reason we need to require this is because if we define d(z) =
∑γ

j=0 djz
j ,

then (5.2) guarantees the existence of an absolutely convergent Fourier series

for a complex-valued function a(z) = d−1(z).

It is easy to see that, since dj = 0 if j > γ = o(n), the above mentioned Corol-

lary 1 of Doukhan (1994) implies that the strong mixing coefficient αX(2k) ≡
supu,v αX(2k;u, v) decays even faster than exponential rate; therefore, according

to the Remark 1 to the Central Limit Theorem (3.3.1) of Guyon (1995), this guar-

antees (conditional) asymptotic normality of the term
(∑

i∈R ZiZ
′
i

)−1∑
i∈R Ziωi.

To establish the asymptotic variance of the first term, we find that the vari-

ance

1

n
V ar

(∑
i∈R

Ziωi

)
=

1

n
E

∑
i,j∈R

ZiZjωiωj

 = ΣX

(
1 + 2

γ∑
k=1

c2
k

)
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Finally, the conditions imposed on the difference coefficients above lead to
∑γ

k=1 c
2
k =

O
(

1
γ

)
and we have for the conditional variance of the first term in (5.1) Σ−1

X (1+

2
∑γ

k=1 c
2
k) = Σ−1

X

(
1 +O

(
1
γ

))
.

Now we will treat the 2nd term
(∑

i∈R ZiZ
′
i

)−1∑
i∈R Ziδi. As a first step,

we note that the expected value of this term is E
(∑

i∈R ZiZ
′
i

)−1∑
i∈R Ziδi = 0

due to the definition of the difference sequence dj . Now we need to examine the

variance term which is defined by E
[(∑

i∈R Ziδi
) (∑

l∈R Z
′
lδl

)]
.

Clearly,

E

[(∑
i∈R

Ziδi

)(∑
l∈R

Z
′
lδl

)]
=

∑
i∈R

δ2
i − ck

∑
i∈R

δi
∑
j∈J

δi+j

ΣX

Analyzing δi, i ∈ R, it is convenient first to introduce the differential operator

Dy,z for any two arbitrary vectors y, z ∈ Rq as Dy,z =
∑q

k=1(yk − zk) ∂
∂xk

with

xk being the generic kth argument of a q-dimensional function. Then, by using

Taylor’s formula to expand f(Ui+j) around Ui, we find that, for any i ∈ R,

δi =
∑
j∈J

dj

[∑bαc
l=1D

l
Ui+j,Ui

f(Ui)

l!
(5.3)

+

∫ 1

0

(1− u)bαc−1

(bαc − 1)!

[
D
bαc
Ui+j,Ui

f(Ui + u(Ui+j − Ui))−D
bαc
Ui+j,Ui

f(Ui)
]
du
]

Following the same line of argument as in Cai, Levine and Wang (2009), we

can conclude that, if the order of difference sequence γ ≥ bαc, the first addi-

tive term above is equal to zero due to properties of the polynomial difference

sequence. Using the Lipschitz property of the function f , it can be shown that

δi ≤M
(
m
n

)α/q
. Due to this, it is clear that∑

i∈R
δ2
i − ck

∑
i∈R

δi
∑
j∈J

δi+j = O(n1−2α/qm2α/q)

and, therefore, as n→∞ we have nV ar ((
∑

i∈R ZiZ
−1
i )Z

′
δ) = O

((
m
n

)2α/q)
Σ−1
X .

The combination of the results for the two terms of (5.1) produces asymptotic

normality of the least squares estimator.

Proof of Lemma 2.2
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Proof. First, notice that, a = 1
n

∑
i≤n(Yi −X

′
iβ)− 1

n

∑
i≤n f(Ui) + op(1); due to

this, we have â − a = 1
n

∑
i≤nX

′
i (β̂ − β) + 1

n

∑
i≤n f(Ui) + op(1). Recall that

the function f(·) ∈ Λα(M) and, therefore, 1
nf(Ui) = O(n−α/q). This suggests

that, if the ratio α/q > 1/2, the asymptotic property of â is driven by the
1
n

∑
i≤nX

′
i (β̂ − β) only. This is also reasonable from the practical viewpoint - if

the function f(·) is sufficiently smooth, its influence on the asymptotic behavior

of â is negligible; moreover, the degree of smoothness required depends on the

dimensionality q.

Proof of Theorem 2.3

Proof. We will only prove the first statement since the derivation of the sec-

ond statement is very similar. The proof follows closely that of Theorem 3

in Wang, Brown and Cai (2011) and so we only give its outlines. First, note

that the residual ri = f(Ui) + εi + a − â + X
′
i (β − β̂) and , therefore, the es-

timate f̂(U) = f̂1(U) + f̂2(U) where f̂1(U) =
∑

i≤nWi,h(U − Ui)[f(Ui) + εi]

while f̂2(U) =
∑

i≤nWi,h(U − Ui)[X
′
i (β − β̂)] + a − â. From the standard mul-

tivariate nonparametric regression results we know that for any U0 ∈ [0, 1]q

sup
f∈Λα(M)

E[(f̂1(U0) − f1(U0)2] ≤ Cn−2α/(2α+q) for some constant C > 0. On the

other hand, clearly
∑

i≤nW
2
i,h(U − Ui) = O

(
1
nhq

)
= O(n−2α/(2α+q)). Therefore,

E(f̂2(U0))2 = E

∑
i≤n

Wi,h(U − Ui)X
′
i (β − β̂)

2 (5.4)

≤
∑
i≤n

Wi,h(U − Ui)
2E(X

′
i (β − β̂))2 = O

(
n−2α/(2α+q)

)
.

Since â converges to a at the usual parametric rate of n1/2, the statement of the

theorem is true.

Proof of Theorem 3.5

Proof. To analyze asymptotic behavior of this distribution it is useful, as before,

to split the bias into two terms:

β̂ − β = (Z
′
Z)−1Z

′
δ + (Z

′
Z)−1Z

′
ω
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and analyze these two terms separately. Starting with the second term, it is clear

immediately that the conditional expectation E((Z
′
Z)−1Z

′
ω|Z) = 0. Now, we

need to look at the conditional variance of this term. Clearly, V ar((Z
′
Z)−1Z

′
ω|Z) =

(Z
′
Z)−1Z

′
ΨZ(Z

′
Z)−1 where Ψ = V ar(ω) is a matrix with a typical element

Ψij = σ2
min(γi,γj)∑

t=0
dtdt+(i−j). Note that the special case is Ψii = σ2 due to prop-

erties of the difference sequence we just specified. Therefore, the conditional

distribution is

(Z
′
Z)−1Z

′
ω ∼ N(0, (Z

′
Z)−1Z

′
ΨZ(Z

′
Z)−1)

Now, we need to analyze conditional variance. The first step is to investigate

the behavior of expectations EZ ′
Z and EZ ′

ΨZ. First, we have E(ZiZ
′
i) =∑γi

t=0 d
2
tV ar(Xi+t|U) + [

∑γi
t=0 dth(Ui,t)]

′
[
∑γi

t=0 dth(Ui,t)]. For non-equal indices,

the analogous statement is

E(ZiZ
′
i+j) =

min(γi,γj)∑
l=0

dj+ldlE(V arXi+j+l|U) (5.5)

+

[
γi∑
t=0

dth(Ui,t)

]′ [ γj∑
t=0

dth(Ui+j,t)

]
Since the matrix Z

′
Z =

∑n
i=1 ZiZ

′
i , we have

lim
n→∞

1

n
E(Z

′
Z) = lim

n→∞

1

n

n∑
i=1

EZiZ
′
i = lim

n→∞

1

n

n∑
i=1

E[V ar(Xi|U)] = Σ∗

because the second contributing term is bounded as∣∣∣∣∣∣
[
γi∑
t=0

dth(Ui,t)

]′ [
γi∑
t=0

dth(Ui,t)

]∣∣∣∣∣∣ ≤ γiν2ρ; (5.6)

due to the boundedness of the marginal density g(u), the length of the difference

sequence is always o(n). Therefore, as n → ∞, the above upper bound will go

to zero as n → ∞ and ν → 0, respectively, no matter the point U it is centered

around. Consequently, the second term disappears. In a similar way, for the

expectation of the term EZ ′
ΨZ we have

lim
n→∞

1

n
E(Z

′
ΨZ) = σ2

1−
n∑

i,j=1

c2
ij

Σ∗
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Let U = (U1, . . . , Un)
′
; to analyze the last term (Z

′
Z)−1Z

′
δ we note first that

its conditional variance is V ar((Z
′
Z)−1Z

′
δ|Z) = (Z

′
Z)−1Z

′
δδ

′
Z(Z

′
Z)−1. The

behavior of the expectation EZ ′
Z has been already analyzed before; thus, it only

remains to analyze the behavior of the expectation EZ ′
δδ

′
Z. We obtain

1

n
E
∑
i,j,k,l

Z
′
iδjδ

′
kZl

=
1

n
E

E

∑
i,j,k,l

Z
′
iδjδ

′
kZl|U


 =

1

n
E

∑
i,j,k,l

E(Z
′
i |U)δjδ

′
kE(Zl|U)


=

1

n
E

∑
i,j,k,l

E

(
γi∑
t=0

dtX
′
i+t|U

)
δjδ

′
kE

(
γl∑
t=0

dtXl+t|U

)
=

1

n
E

∑
i,j,k,l

(
γi∑
t=0

dth(Ui,t)

)
δjδ

′
k

(
γl∑
t=0

dth(Ul,t)

)
By definition of differences that we use here, and since both γi = o(n) and

γl = o(n), we obtain

1

n
EZ

′
δδ

′
Z ≤ 1

n
ν2ρ+2α ∗ o(n2) ≤ o(n)ν2(ρ+α) (5.7)

The (5.7) implies that, in order for the parametric part of the model (2.1) to

be estimable, the expression above must go to zero as n → ∞; for example, if

ν = O(n−1), we obtain ρ+ α > 1
2 which is the condition stated in Wang, Brown

and Cai (2011).

Finally, we need to verify that all of the variances limn→∞ V ar
(

1
n Z

′
Z
)

=

limn→∞ V ar
(

1
n Z

′
ΨZ
)

= limn→∞ V ar
(

1
n Z

′
δδ

′
Z
)

= 0; all of the variances here

are understood elementwise.

As an example, the first case gives the variance of the klth element as

V ar
{

1
n

∑p
i,j=1

{∑γi
t=0 dtX

i
k+t

∑γl
t=0 dtX

j
l+t

}}
; therefore, limn→∞ V ar

(
1
nZ

′
Z
)

=

0 due to the existence of non-singular Σ∗ as long as γi = o(n) for any point Ui

around which the respective difference is defined (due to the assumptions of the

theorem). The same is also true for the second limit - one only needs to use the

assumption on the elements of the covariance matrix Ψ as well. Finally, the third

limit also goes to zero due to the Lipshitz property of the function f(U).
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Proof of Theorem 4.7

Proof. From our previous results, we know that the estimator β̂ is asymptotically

normal and efficient; in other words, it satisfies
√
n(β̂− β)

L→ N(0, σ2Σ−1
X ). This

immediately implies that
√
n(Cβ̂ − Cβ)

L→ N(0, σ2CΣ−1
X C

′
). This, of course,

suggests that, as in Wang, Brown and Cai (2011), we can define the test statis-

tic based on n
σ2 β̂

′
C

′
(CΣ−1

X C
′
)Cβ̂; however, neither σ2 nor ΣX are known in

real applications and, therefore, need to be estimated. To estimate ΣX , we re-

call from the proof of Theorem (2.1) that 1
n

∑
s∈R ZsZ

′
s

p→ ΣX and, therefore,
1
n

∑
s∈R ZsZ

′
s can be used as an estimate of ΣX . The resulting test statistic would

be 1
σ2 β̂

′
C

′
(
C(
∑

s∈R ZsZ
′
s)
−1C

′
)−1

Cβ̂ that looks like a classical χ2 type statis-

tics asymptotically. However, σ2 is also not known and needs to be estimated as

well.

Let us start with the numerator. As in Wang, Brown and Cai (2011), intro-

duce an array (essentially, a linear operator) L : Rn → R|R| such that Li,j = dj−i

for any 0 ≤ |i−j| ≤ γ where |i−j| is defined as on p. 7, i ∈ R and j ∈ {0, . . . ,m}q;
when |i− j| is less than zero or greater than γ, we assume that Li,j = 0. Another

useful array that we use is a unity array (operator) J : Rn → R|R| with Ji,i = 1

for any i ∈ R and 0 otherwise. Define an array ω = {ωi} for all i ∈ R. Using

these definitions, we have ω = Lε = Jε + (L − J)ε = ω1 + ω2 where ω1 = Jε

and ω2 = (L − J)ε. Clearly, ω1 is a collection of uncorrelated normal random

variables: ω1 ∼ N(0, σ2IR) where IR is a unity array with both indices varying

over R. At the same time, ω2 ∼ N(0, σ2(L− J)(L− J)
′
). Under the additional

assumption of 1− d0 = O(γ−1), it is not hard to verify that each element of the

covariance array of ω2 is of the order O(γ−1) and that, therefore, ω2 tends to

zero in probability as n→∞.

Note that

β̂ = β +

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Z
′
iδi +

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Z
′
iωi

= β +

(∑
i∈R

ZiZ
′
i

)−1∑
i∈R

Z
′
iδi +

(∑
i∈R

ZiZ
′
i

)−1

Z
′
ω1 +

(∑
i∈R

ZiZ
′
i

)−1

Z
′
ω2.

Therefore, under the null hypothesis we have Cβ̂ = Cβ+C(
∑

i∈R ZiZ
′
i)
−1
∑

i∈R Z
′
iδi+
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C(
∑

i∈R ZiZ
′
i)
−1Z

′
ω1 + C(

∑
i∈R ZiZ

′
i)
−1Z

′
ω2. Following the proof of Theorem

1, we conclude that the term (
∑

i∈R ZiZ
′
i)
−1
∑

i∈R Z
′
iδi converges to zero in

probability as n → ∞; since under our assumptions each element of the co-

variance array of ω2 is of the order O(γ−1) we can consider just the term

C(
∑

i∈R ZiZ
′
i)
−1Z

′
ω1 ∼ N(0, σ2C(

∑
i∈R ZiZi)

−1C
′
).

To analyze the denominator, we substitute first Di = Z
′
iβ + δi + ωi in the

definition of a typical residual ei and then, looking at (4.1), we realize that

the δ related term
∑

i∈R |δi − Z
′
i(
∑

s∈R ZsZ
′
s)
−1
∑

s∈R Zsδs|2 converges to zero

in probability if α > q
2 . The “crossproduct” term that contains both δi and ωi

will also tend to zero in probability as n → ∞ under the same circumstances.

Therefore, we only need to analyze the behavior of the term

Hω ≡
∑
i∈R

∣∣∣∣∣∣ωi − Z
′
i

(∑
s∈R

ZsZ
′
s

)−1∑
s∈R

Zsωs

∣∣∣∣∣∣
2

(5.8)

.

To analyze the expression (5.8), one first needs to notice that the operator

H is the projector of the rank n − γ − p due to the regularity properties of the

contrast process
∑

i∈R

[
Di − Z

′
iβ
]2

; see, for example, Guyon (2009) pp. 271-

274 for the details. Due to this, we conclude that the estimate σ̂2 has χ2(n −
γ − p) distribution and that it is independent from the numerator of the test

statistic.
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