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A Functional EM Algorithm for Mixing
Density Estimation via Nonparametric

Penalized Likelihood Maximization

Lei LIU, Michael LEVINE, and Yu ZHU

When the true mixing density is known to be continuous, the maximum likelihood
estimate of the mixing density does not provide a satisfying answer due to its degener-
acy. Estimation of mixing densities is a well-known ill-posed indirect problem. In this
article, we propose to estimate the mixing density by maximizing a penalized likelihood
and call the resulting estimate the nonparametric maximum penalized likelihood esti-
mate (NPMPLE). Using theory and methods from the calculus of variations and differ-
ential equations, a new functional EM algorithm is derived for computing the NPMPLE
of the mixing density. In the algorithm, maximizers in M-steps are found by solving an
ordinary differential equation with boundary conditions numerically. Simulation stud-
ies show the algorithm outperforms other existing methods such as the popular EMS
algorithm. Some theoretical properties of the NPMPLE and the algorithm are also dis-
cussed. Computer code used in this article is available online.

Key Words: Mixture model; Nonparametric maximum penalized likelihood estimate;
Ordinary differential equation with boundary conditions.

1. INTRODUCTION

Suppose y1, y2, . . . , yn are independent and identically distributed with a mixture den-
sity

h(y|G) =
∫

f (y|x)dG(x), (1.1)

where f (y|x) is a known component density function indexed by x and G(x) is a mixing
distribution. Laird (1978) showed that, under some mild conditions on f , the nonparamet-
ric maximum likelihood estimate (NPMLE) of G, denoted by Ĝ, is a step function with
at most n jumps. Laird (1978) also proposed an EM algorithm to find Ĝ. Lindsay (1983a,
1983b) proved the existence and uniqueness of Ĝ and obtained other important properties
of Ĝ. When the true distribution G is known to have a continuous density g(x), which is
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referred to as a mixing density, and g is the target of statistical inference, the NPMLE of
G becomes improper because of its degeneracy. In this article, we propose a new nonpara-
metric method that uses penalized maximum likelihood to estimate g. When the density g

exists, the model (1.1) can be rewritten as

h(y|g) =
∫

X
f (y|x)g(x) dx, (1.2)

where X is the support of g(x). The support X is assumed to be a known compact interval
throughout this article. In what follows, we first give a brief review of existing methods for
estimating mixing densities, then discuss the ideas behind the new algorithm we develop
in this article. The layout of the article is given at the end of this section.

1.1 EXISTING METHODS FOR ESTIMATING MIXING DENSITIES

The existing methods for estimating mixing densities in the literature can be roughly
divided into three categories: EM-based algorithms, kernel methods, and methods based
on orthogonal series expansion.

As mentioned earlier, an EM algorithm was originally proposed by Laird to compute
Ĝ, the NPMLE of G. Observing that the EM algorithm produces smooth estimates be-
fore it converges to Ĝ, Vardi, Shepp, and Kaufman (1985) recommended to start the EM
algorithm from a uniform distribution and let it run for a limited number of iterations.
The resulting estimate is then used as a continuous estimate of g, whose likelihood can
be fairly close to the maximum when the number of iterations is properly specified. The
smoothing-by-roughening method proposed by Laird and Louis (1991) uses a similar strat-
egy of stopping the EM algorithm early, with the suggested number of iterations propor-
tional to logn where n is the sample size. A common drawback of the above two methods
is that both lack a formal stopping rule to terminate the EM algorithm. Silverman et al.
(1990) proposed the Smoothed EM (EMS) algorithm, which adds a smoothing step to
each expectation-maximization iteration. Empirically, this algorithm was found to con-
verge quickly to an estimate close to the true mixing density. There are two drawbacks
of the EMS algorithm. First, it does not preserve the monotonicity property of the orig-
inal EM algorithm due to the added smoothing steps. Second, the estimate obtained by
the EMS algorithm is hard to interpret because there does not exist an apparent objective
function it optimizes. To overcome the second drawback, Eggermont and LaRiccia (1995,
1997) incorporated a smoothing operator into the likelihood function and proposed the
Nonlinearly Smoothed EM (NEMS) algorithm. They showed that the NEMS algorithm
performs similarly to the EMS algorithm; in addition, the estimate given by the NEMS is
the maximizer of the smoothed likelihood function. Other EM-based algorithms include
an EM algorithm with stepwise knot deletion and model selection (Koo and Park 1996),
the One Step Late (OSL) procedure (Green 1990), and the Doubly Smoothed EM (EMDS)
algorithm (Szkutnik 2003). The last algorithm was specifically designed and optimized to
deal with grouped data.

When the component density function f (y|x) can be written as φ(y − x) where x is a
location parameter, estimating the mixing density function g(x) is referred to as deconvolu-
tion in the literature. Using the Fourier transform, a kernel-type estimate can be derived for
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g; see Stefanski and Carroll (1990), Zhang (1990), and Fan (1991). Fan (1991) showed that
this kernel estimate can achieve the optimal convergence rate in a certain sense. Unfortu-
nately, this approach is limited to the deconvolution problem only. Goutis (1997) proposed
a general kernel-type procedure for estimating g without assuming that x is a location para-
meter of f (y|x). The resulting estimate is conceptually similar to a kernel estimate having
the form of 1

n

∑n
i=1

1
h
K(

x−xi

h
) where K(·) is a kernel function and h > 0 is the bandwidth.

The method of Mixture-of-Gaussians proposed by Magder and Zeger (1996) can essen-
tially be classified as a kernel-type method; similar ideas were discussed in Lindsay (1995)
as well.

The third group of existing methods includes those based on orthogonal series expan-
sion. Let K be an integral operator: g → Kg = ∫

f (y|x)g(x) dx. Johnstone and Silverman
(1990) and Jones and Silverman (1989) proposed to expand and estimate g using the or-
thogonal basis in the singular value decomposition (SVD) of the operator K . Smoothing
is enforced through cutting off the infinite expansion of g(x) or, more generally, through
tapering it using a sequence of weights wν satisfying wν → 0 as ν → ∞; see Silverman
(1986) and Izenman (1991) for more details. Koo and Chung (1998) proposed to approx-
imate and estimate logg(x) using a finite linear combination of the eigenfunctions of K ;
the corresponding estimate is called the Maximum Indirect Likelihood Estimator (MILE).
For the deconvolution problem with f (y|x) = φ(y − x), estimators based on wavelet ex-
pansion and coefficients’ thresholding have been proposed, and their convergence behavior
has been studied; see Pensky and Vidakovic (1999) and Fan and Koo (2002).

1.2 MAXIMUM PENALIZED LIKELIHOOD METHOD

Another well-known way to generate continuous density estimates is to penalize the
roughness of a density function. One of the most popular is the maximum penalized like-
lihood method. Consider direct density estimation first whereby the density is estimated
based on observations directly sampled from it. The penalized log-likelihood functional
for an arbitrary density f , denoted by lp(f ), has the form

lp(f ) = l(f ) − λJ (f ), (1.3)

where l(f ) is the usual log-likelihood function, J (f ) is a roughness penalty term, and λ

is a smoothing parameter. The maximum penalized likelihood estimate (MPLE) is defined
as the maximizer of lp(f ) over a collection of density functions.

The penalized likelihood method for direct density estimation was pioneered by Good
and Gaskins (1971). De Montricher, Tapia, and Thompson (1975) and Klonias (1982)
proved the existence and consistency of the MPLE defined by Good and Gaskins (1971).
For a comprehensive introduction to this method, see Tapia and Thompson (1978); for a
more recent account, see Eggermont and LaRiccia (2001). To better accommodate positiv-
ity and unity constraints of a density function, Leonard (1978) and Silverman (1982) pro-
posed to estimate the log-density function η = logf using the penalized likelihood method.
Gu and Qiu (1993) and Gu (1993) further studied this problem using smoothing splines,
and developed an algorithm that can be used to estimate multivariate density functions.

The application of MPLE to estimate mixing densities is a natural idea. Silverman et al.
(1990) and Green (1990) discussed the possibility of using this approach for indirect den-
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sity estimation or, equivalently, mixing density estimation. Both considered this approach
reasonable, but the computational difficulties in M-steps kept them from implementing the
MPLE for mixing density estimation directly. Instead, Silverman et al. (1990) proposed
the EMS algorithm by adding a smoothing step after each EM iteration, and Green (1990)
proposed the One Step Late (OSL) procedure, a pseudo-EM algorithm, to circumvent the
computational difficulties. Both methods were discussed in the previous section.

In this article, we aim at fully implementing the maximum penalized likelihood method
for mixing densities estimation. A functional EM algorithm is proposed to compute the
maximum penalized likelihood estimate of a mixing density over a function space. During
each M-step of this EM algorithm, maximization is conducted over the same function
space and the maximizer is characterized by a nonlinear ordinary differential equation
with boundary conditions, which is solved by a numeric procedure called the collocation
method.

1.3 ORGANIZATION OF THE ARTICLE

The rest of the article is organized as follows. Section 2 defines the nonparametric max-
imum penalized likelihood estimate (NPMPLE). We derive the new functional EM algo-
rithm in Section 3. Some theoretical results supporting the definition of the new estimator
and the new algorithm are included in these two sections as well. Section 4 discusses the
numeric solution to the nonlinear ordinary differential equations generated in M-steps of
the algorithm. Section 5 focuses on the selection of smoothing parameter λ. Section 6
compares the new algorithm with the EMS algorithm through a simulation study. Some
concluding remarks are given in the last section. Due to space limitation, the proofs of the
propositions, theorems, and corollaries are included in a separate supplementary document
that is available on the JCGS website. An R code of the proposed algorithm can also be
found on the same website.

2. NONPARAMETRIC MAXIMUM PENALIZED LIKELIHOOD
ESTIMATE

Let g0 be the true mixing density in model (1.2). Assume that the support of g0 is a fi-
nite interval X = [a, b], and g0 is bounded above and below away from 0. In other words,
there exist positive constants M0 and M1 such that M0 ≤ g0(x) ≤ M1 for all x ∈ [a, b].
These assumptions are collectively labeled as Assumption (A0), which is assumed to hold
throughout this article. The assumption that g0 has a compact support is not uncommon in
density estimation. The results developed in this article can be extended to estimating mix-
ing densities with unbounded support. Because the extension requires different techniques,
it is not pursued in this article. Nevertheless, in practice, when facing mixing densities with
unbounded support, the methods developed in this article can still be applied to generate
reasonably good estimates by using intervals wider than the data range. The second part
of Assumption (A0) is for convenience, due to the fact that the log mixing density instead
of the mixing density itself is directly estimated. For more discussions of the assumptions,
see Silverman (1982).
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A density g satisfying Assumption (A0) can be represented as

g(x) = eη(x)∫ b

a
eη(t) dt

, where η(x) = logg(x) + const, (2.1)

and the mixture density of h(y|G) becomes

h(y|η) =
∫ b

a
f (y|x)eη(x) dx∫ b

a
eη(x) dx

. (2.2)

Given a random sample y1, y2, . . . , yn from the above density (2.2), the log-likelihood
functional of η is

l(η) = 1

n

n∑
i=1

log
∫ b

a

f (yi |x)eη(x) dx − log
∫ b

a

eη(x) dx. (2.3)

As discussed in the Introduction, we want to penalize the roughness of η using a penalty
term. In this article, we choose the penalty

J (η) =
∫ b

a

[η′′(x)]2 dx, (2.4)

which was originally proposed by Leonard (1978) for (direct) density estimation. Combin-
ing l(η) and J (η) gives a penalized likelihood functional

lp(η) = l(η) − λJ (η)

= 1

n

n∑
i=1

log
∫ b

a

f (yi |x)eη(x) dx − log
∫ b

a

eη(x) dx − λ

∫ b

a

[η′′(x)]2 dx, (2.5)

where λ > 0 is a smoothing parameter.
To obtain a proper estimate of η by maximizing lp(η), we need to specify a proper func-

tion space, denoted by H , as the “parameter” space. Given the penalty that we use, a nat-
ural choice is to assume that η(x) ∈ H = W 2,2[a, b] where W 2,2[a, b] is the second-order
Sobolev space based on L2-norm; see, for example, Adams (1975) for formal definitions.
It is known that for any η ∈ H , both the function itself and its first derivative are absolutely
continuous (Wahba 1990). Hence, the functions in H are smooth enough for our purpose.
The nonparametric maximum penalized likelihood estimates (NPMPLEs) of η0 and g0 are
defined, respectively, as

η̂ = arg max
η∈H

lp(η) and ĝ = eη̂(x)∫ b

a
eη̂(t) dt

. (2.6)

Note that if η̂ is a maximizer of lp(η), then clearly η̂ + C is also a maximizer, where
C is an arbitrary constant. Both η̂ and η̂ + C, however, give the same ĝ. Therefore the
difference between η̂ and η̂ + C will not cause confusion for our purpose and we consider
η̂ well-defined up to a constant shift.

Let NJ = {η ∈ H :J (η) = 0} = {cx + d : c, d ∈ R}, which is the null space of the
penalty functional J (η) = ∫ b

a
[η′′(x)]2 dx. Let Y = ⋃

x∈X{y :f (y|x) > 0}. In addition to
Assumption (A0) about g0 stated at the beginning of this section, one more assumption
needs to be imposed to ensure the existence of the NPMPLE η̂(x), which is: (A1) For any
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given y ∈ Y, f (y|x) is a continuous function of x in [a, b]. Based on Assumption (A1), it
can be shown that there exists a positive number M > 0 such that 0 <

∫ b

a
f (y|x)dx < M

for any given y ∈ Y. Assumption (A1) is a regularity condition imposed on f (y|x) as a
function of x for any given y. Under Assumptions (A0) and (A1), the true mixture density
h(y|g0) has an upper bound. Popularly used component densities usually satisfy Assump-
tion (A1). Together with Assumption (A0), Assumption (A1) is assumed to hold through-
out this article; and they are not restated in the theorems and propositions below. The
following two results establish the existence of η̂.

Theorem 1. If there exists an η∗(x) = c∗x + d∗ ∈ NJ such that

l(η∗) > max

{
1

n

n∑
i=1

logf (yi |a),
1

n

n∑
i=1

logf (yi |b)

}
, (2.7)

then there exists η̂ ∈ H such that lp(η̂) ≥ lp(η) for all η ∈ H .

Corollary 1. If the uniform distribution U(a,b) has a higher likelihood than the point
mass distribution on a or on b, that is,

1

n

n∑
i=1

log

(
1

b − a

∫ b

a

f (yi |x)dx

)

> max

{
1

n

n∑
i=1

logf (yi |a),
1

n

n∑
i=1

logf (yi |b)

}
, (2.8)

then there exists η̂ ∈ H such that lp(η̂) ≥ lp(η) for all η ∈ H .

Theorem 1 indicates that, if there exists a density g∗(x) = exp{c∗x + d∗} that gives a
better explanation to the sample {yi} in terms of likelihood than the one-point mass distri-
butions at a and b, then the maximizer of lp(η) over H exists. Intuitively, this condition
should be satisfied except in some extremely rare situations where the sample is concen-
trated around a or b as if it was drawn from the density f (y|a) or f (y|b). Corollary 1
gives a convenient sufficient condition for the existence of η̂, which is easy to verify and
should always be checked first.

Finding the maximizer of a functional over a function space is a typical problem in the
calculus of variations. Usual techniques used to deal with finite-dimensional parameters,
such as those used to solve a system of likelihood score equations, are not directly applica-
ble to finding the maximizer η̂ of lp(η). In this article, we resort to concepts and techniques
from the calculus of variations and differential equations instead. In the next section, we
first present some properties of η̂, then propose and develop a functional EM algorithm for
computing the NPMPLE η̂.

3. FUNCTIONAL EM ALGORITHM FOR COMPUTING η̂

Because the likelihood part of lp(η) involves logarithms of mixture densities h(yi |η)

that are conditional on η inside an integral, its direct maximization is usually difficult even
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in the situation where η depends on a finite-dimensional parameter and no penalty exists.
One popular way to circumvent this difficulty is to use the EM algorithm. We adopt this
approach to develop a Functional EM algorithm (FEM) to compute the NPMPLE η̂. This
algorithm is effectively nonparametric because it attempts to find optimal η ∈ H .

3.1 DERIVATION OF FEM AND THE E-STEP

It is well known that the random sample {yi}1≤i≤n from the mixture density h(y|η0)

can be generated using the following two-step procedure: first a random sample denoted
{xi}1≤i≤n is drawn from the mixing density g0(x), then yi is randomly drawn from the
component density f (y|xi). Because xi ’s are not observable, they are referred to as missing
or latent values. {(yi, xi)}1≤i≤n forms a random sample from the joint density f (y|x)g0(x)

and is referred to as the complete data. Given this complete data, a complete penalized log-
likelihood functional of η can be defined as

lcp(η) = 1

n

n∑
i=1

{logf (yi |xi) + η(xi)} − log
∫ b

a

eη(x) dx − λ

∫ b

a

[η′′(x)]2 dx. (3.1)

If η were a function depending on a finite-dimensional parameter, with or without the
penalty term, the classical EM algorithm (Dempster, Laird, and Rubin 1977) would have
started with an expectation step (E-step) involving the complete likelihood lcp(η), then
proceeded on to the maximization step (M-step) to calculate η̂, and then repeated the two
steps iteratively, beginning with some initial value of η. Here we attempt to develop a
similar iterative process in the functional space H . The details are described below.

In the E-step, we compute the expectation of lcp(η) given the current estimate of η and
the data. Let 	y = (y1, y2, . . . , yn) be the (observable) data, ηcur denote the current estimate
of η, and Q(η|ηcur) = E[lcp(η)|	y,ηcur]. Because yi ’s are independent, the expectation of
the complete likelihood can be simplified to

Q(η|ηcur) = E[lcp(η)|	y,ηcur]

= 1

n

n∑
i=1

∫ b

a

{logf (yi |xi) + η(xi)}ϕ(xi |yi, ηcur) dxi

− log
∫ b

a

eη(x) dx − λ

∫ b

a

[η′′(x)]2 dx, (3.2)

where

ϕ(x|yi, ηcur) = f (yi |x)eηcur(x)∫ b

a
f (yi |t)eηcur(t) dt

(3.3)

is the conditional density of xi given data yi and the current estimate ηcur of η. Effectively,
ϕ(x|yi, ηcur) can be seen as a posterior density and its computation process can be viewed
as a Bayesian updating scheme.

In the M-step, we compute the maximizer of Q(η|ηcur), which is denoted by ηnew and
used as the current estimate for the next iteration. The E-step and M-step are thus iterated
until the estimate η̂ converges. Although the algorithm defined above is not a classical
EM algorithm (lcp(η) is a penalized likelihood functional over the function space H ), it
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still retains the monotonicity property of a classical EM algorithm as stated in the next
proposition.

Proposition 1. After each iteration of the E-step and M-step above, lp(ηnew) ≥
lp(ηcur).

Proposition 1 implies that the FEM algorithm converges to a maximum of lp(η). How-
ever, this maximum may not be global, because lp(η) is not necessarily concave in η and
may have many local maxima. Although the FEM algorithm may be trapped in a local
maximum, our simulation study shows that the problem is not severe. The E-steps of FEM
are straightforward; the M-steps involve maximizing a new functional of η [i.e., Q(η|ηcur)]
and thus are not trivial. Though Q(η|ηcur) is simpler than lp(η), it is not straightforward
to compute its maximizer directly. This is also where Silverman et al. (1990) and Green
(1990) stopped implementing the EM algorithm fully.

3.2 M-STEP: MAXIMIZATION OF Q(η|ηcur)

For convenience, (3.2) can be rewritten as

Q(η|ηcur) = 1

n

n∑
i=1

E[logf (yi |xi)|	y,ηcur]

+
∫ b

a

η(x)ψ(x|	y,ηcur) dx − log
∫ b

a

eη(x) dx − λ

∫ b

a

[η′′(x)]2 dx, (3.4)

where

ψ(x|	y,ηcur) = 1

n

∑
i

ϕ(x|yi, ηcur). (3.5)

Removing the term that does not depend on η and using a similar method by Silverman
(1982), we define a new functional

Q̃(η|ηcur) =
∫ b

a

η(x)ψ(x|	y,ηcur) dx −
∫ b

a

eη(x) dx − λ

∫ b

a

[η′′(x)]2 dx. (3.6)

Q̃ can be used as a surrogate of Q because both functionals share the same maximizer.
This property is summarized in the following proposition.

Proposition 2. Maximizing Q̃(η|ηcur) is equivalent to maximizing Q(η|ηcur). If the
maximizer of Q̃ exists, which is denoted as η̂, it must satisfy

∫ b

a
exp(η̂(x)) dx = 1.

The following theorems state that the maximizer of Q̃(η|ηcur) exists, is unique, and
satisfies an ordinary differential equation with some boundary conditions.

Theorem 2. The maximizer of Q̃(η|ηcur) in H exists and is unique.

Theorem 3. If the maximizer of Q̃(η|ηcur) exists and is in C4[a, b], it must satisfy the
ordinary differential equation (ODE)

ψ(x|	y,ηcur) − eη(x) − 2λη(4)(x) = 0 (3.7)
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with boundary conditions

η′′(a) = η′′′(a) = 0, η′′(b) = η′′′(b) = 0. (3.8)

The next theorem (Theorem 4) concludes that if a solution of the ODE (3.7) with bound-
ary conditions (3.8) exists, such a solution must be the maximizer of Q̃.

Theorem 4. If η∗(x) ∈ H is the solution of the ODE (3.7) with boundary conditions
(3.8), then Q̃(η∗|ηcur) ≥ Q̃(η|ηcur) for any η ∈ H . Furthermore, the solution of the ODE
(3.7) with boundary conditions (3.8) is unique, provided it exists.

Theorem 2 asserts the existence of the maximizer ηnew of Q̃(η|ηcur) in H , which only
guarantees that ηnew and η′

new are absolutely continuous on [a, b] and η′′
new ∈ L2(a, b).

But this is not enough to derive (3.7) and (3.8), which include a fourth-order differential
equation with boundary conditions. To use the above equations, ηnew needs to be smoother,
for example, ηnew ∈ C4[a, b]. The smoothness property of ηnew is referred to as the reg-
ularity of the maximizer in the calculus of variations. In fact, the regularity of ηnew (i.e.,
the existence of up to fourth derivatives) can be established by applying the results de-
veloped in Clarke and Vinter (1990). The smoothness of ηnew depends on the smoothness
of ψ(·|	y,ηcur). If ηcur is smooth enough, then ψ is smooth enough to guarantee that the
maximizer of Q̃(η|ηcur) has the required smoothness of (3.7) and (3.8). In theory, if we
start the algorithm with a smooth function η such as the uniform distribution, then (3.7)
and (3.8) can be used to compute ηnew in all the subsequent M-steps of the FEM algorithm.
Readers are referred to Liu (2005) for more technical details. The numerical solution to the
nonlinear ordinary differential equation (3.7) with the boundary conditions (3.8) will be
discussed in detail in Section 4.

3.3 THE FEM ALGORITHM

Based on the results above, the steps of the FEM algorithm are summarized as follows.

Algorithm 1:

(a) Specify λ.

(b) Set k = 0, and select an initial guess of η. Usually we use η0(x) ≡ log 1
b−a

for
x ∈ [a, b].

(c) Compute ψ(x|	y,ηk). Numerically solve the ODE (3.7) with boundary conditions
(3.8), and denote the solution as ηk+1. Normalize the solution before proceeding to
the next step as ηk+1(x) ← ηk+1(x) − log

∫ b

a
exp{ηk+1(x)}dx.

(d) k ← k + 1. Run Step (c) until ηk converges.

Because of Assumption (A1), the penalized likelihood of the uniform distribution is
finite. The uniform density usually serves as a good initial guess of the true mixing density.
When there is a concern that the FEM algorithm may get trapped by local maxima, other
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initializations should also be tried. In each M-step, we need to use numerical methods to
solve the ordinary differential equation (3.7) with boundary conditions (3.8), which will be
the subject of the next section. Notice that we have added a normalization step in Step (c)
above. This step is necessary because in theory the solution ηk of the ODE (3.7) already
satisfies

∫
eηk = 1 (see Proposition 2), but the numerical solution we actually obtain is only

an approximation. The normalization in Step (c) not only makes eηk a density so that the
computed marginal density in the next iteration will be legitimate, but also ensures that
lp(modified ηk) ≥ lp(ηk); see the proof of Proposition 2 in the supplementary document.

In Step (d) of the FEM algorithm (i.e., Algorithm 1), the convergence of ηk is assessed
by the change in the penalized likelihood lp(ηk). In general, the algorithm is terminated
when lp(ηk+1) − lp(ηk) is less than a prespecified threshold. In our simulation study, we
specify the threshold to be 10−15. The convergence of EM algorithms is generally known
to be slow, even when implemented to calculate maximum likelihood estimates in finite-
dimensional parametric models. One may question if the convergence of the FEM algo-
rithm is also slow. It turns out that it is not a big concern, because the FEM algorithm
usually does not need many iterations to converge. The same kind of quick convergence
can also be observed in the EMS algorithm. One possible explanation is that it is the effect
caused by the penalty term in the penalized likelihood function lp in the FEM algorithm
and the smoothing step added in the EMS algorithm. In the FEM algorithm, maximiz-
ing the penalized likelihood function is equivalent to maximizing the original likelihood
function subject to the constraint that the penalty term J (η) is less than a prespecified con-
stant, which leads to a restricted thus smaller “parameter” space. Therefore, intuitively, the
FEM algorithm does not need to explore the whole parameter space as most traditional
EM algorithms usually have to do. The computational burden of M-steps is not severe ei-
ther because of the high efficiency of the collocation method; we will give a more detailed
discussion in the next section.

4. NUMERICAL SOLUTION FOR M-STEPS

Recall that in each M-step of the FEM algorithm, the maximizer is a function satisfying
the ordinary differential equation (3.7) with boundary conditions (3.8). When implement-
ing FEM, we need to choose a numerical method to solve (3.7)–(3.8). The collocation
method is an efficient and stable method for numerical solution of ordinary differential
equations with boundary conditions. In the following, we describe how to apply the collo-
cation method to solving (3.7)–(3.8); more information about this method can be found in
Ascher, Mattheij, and Russell (1988).

For convenience, we restate the equations (3.7)–(3.8) as L[η](x) = 0 and B[η] = 0
where

L[η](x) = ψ(x) − eη(x) − 2λη(4)(x) (4.1)

and

B[η] = (
η′′(a), η′′′(a), η′′(b), η′′′(b)

)
. (4.2)

Here L and B can be viewed as linear operators on H and ψ(x) is an abbreviation of
ψ(x|	y,ηcur).



A FUNCTIONAL EM ALGORITHM FOR MIXING DENSITY ESTIMATION 491

4.1 COLLOCATION METHOD

The collocation method approximates the exact solution of (3.7)–(3.8) with a linear
combination of basis functions {φd(x)}Dd=1:

u(x) =
D∑

d=1

αdφd(x), (4.3)

where {φd(x)} satisfy (3.7)–(3.8) at a number of interior points of [a, b]. In this article,
B-spline functions are used as the basis functions.

Recall that (3.7) is an ODE of order m = 4. Let N and k be two positive integers and

π0 :a = x0 < x1 < · · · < xN−1 < xN = b

be an equally spaced partition of [a, b]. We use {a1, a2, . . . , ak+m} ∪ {cij : 1 ≤ i ≤ N −
1,1 ≤ j ≤ k} ∪ {b1, b2, . . . , bk+m} as the knot vector to construct B-spline functions. Here
a1 < a2 < · · · < ak+m ≤ a, b ≤ b1 < b2 < · · · < bk+m, and cij = xi,1 ≤ i ≤ N − 1,1 ≤
j ≤ k. These functions form a basis {φd(x)}Dd=1 with D = (N −1)k+2(k+m)−(k+m) =
Nk + m, which is the length of the knot vector minus the order of basis functions. These
functions are the nonuniform B-spline basis functions of order k + m. By the standard
property of nonuniform B-splines, u(x) ∈ C(m−1)[a, b], and in each subinterval (xi−1, xi)

u(x) is a polynomial function of degree k + m − 1.
Next, we need to determine the interior points of [a, b] where u(x) satisfies L[u](x) =

0. The number of interior points required by the collocation method is D − m = Nk. The
set of points we choose is

π = {xij = xi−1 + ρj (xi − xi−1) : 1 ≤ i ≤ N,1 ≤ j ≤ k},
where 0 < ρ1 < ρ2 < · · · < ρk < 1 are the abscissas or canonical points for Gaussian
quadrature of order k over [0,1].

The collocation method requires that u(x) should satisfy the following system of D

equations with D unknown coefficients:

L[u](xij ) = 0, i = 1,2, . . . ,N, j = 1,2, . . . , k;
(4.4)

B[u] = 0.

In the system above, the coefficients are αd , 1 ≤ d ≤ D. Because the ODE (3.7) is nonlin-
ear, the system (4.4) is also nonlinear. In the next subsection, we describe a quasilineariza-
tion method for solving the system (4.4).

4.2 QUASILINEARIZATION

Suppose u = ∑
d αu

dφd(x) is an initial guess of the solution of (4.4). Using the Gâteaux
derivative, we derive the following approximations:{

L[u + z](x) ≈ L[u](x) − eu(x)z(x) − 2λz(4)(x), for x ∈ π

B[u + z] ≈ B[u] + (
z′′(a), z′′′(a), z′′(b), z′′′(b)

)
.

(4.5)

Based on the approximation (4.5), we use the following iterative procedure to solve the
system (4.4):
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(a) Solve the linear system with respect to z with u given,{
L[u](x) − eu(x)z(x) − 2λz(4)(x) = 0, for x ∈ π

B[u] + (
z′′(a), z′′′(a), z′′(b), z′′′(b)

) = 0,

where it is assumed that z = ∑
d αz

dφd(x); in terms of αz
d (that are unknown), the

system is{∑D
d=0

(
eu(x)φd(x) + 2λφ

(4)
d (x)

)
αz

d = L[u](x), for x ∈ π(∑D
d=0 φ′′

d (a)αz
d,

∑D
d=0 φ′′′

d (a)αz
d,

∑D
d=0 φ′′

d (b)αz
d,

∑D
d=0 φ′′′

d (b)αz
d

) = −B[u].
(b) Update u(x) by

u(x) ← u(x) + z(x) =
D∑

d=1

(αu
d + αz

d)φd(x).

(c) Repeat Steps (a) and (b) until sup |z| is below some prespecified threshold.

The prespecified threshold in Step (c) above is chosen to be 10−4 in the simulation study
that will be discussed in Section 6. Because the algorithm is essentially a combination
of solving a system of linear equations and some Newton–Raphson type of iterations, it
usually converges fairly quickly and does not give much computational burden to the FEM
algorithm. This will be demonstrated in Section 6.

5. DATA-DRIVEN SELECTION OF λ

It is well known that the choice of smoothing parameter is one of the most important
steps of the penalized likelihood method in direct density estimation. We expect it to be the
same for indirect density estimation. In this section, we begin with briefly reviewing the
cross-validation (CV) method as used for selecting λ in direct density estimation. Then,
we extend it to select the smoothing parameter λ when estimating the mixing density.

5.1 CV FOR DIRECT DENSITY ESTIMATION

Suppose a sample x1, x2, . . . , xn is randomly drawn from a density g0(x). The nonpara-
metric maximum penalized likelihood estimate of g0 is defined as the maximizer of

lp(g) = 1

|V |
∑
i∈V

log(g(xi)) − λJ (g),

where g is a density, V = {1,2, . . . , n} is the index set of the sample, and |V | is the car-
dinality of V . The K-fold CV is a popular method for selecting λ. The data {xi}1≤i≤n are
divided into K disjoint subsets of approximately the same size. Let Vk be the index set of
the kth subset, k = 1, . . . ,K , ĝλ(x) be the density estimate based on the entire data set,
and ĝλ,−k(x) be the density estimate based on all data points except those in the kth sub-
set. Two popular CV-type scores, the least squares CV score LS(λ) and the likelihood CV
score KL(λ), are routinely used in practice (see Izenman 1991). They are defined as

LS(λ) =
∫

ĝλ(x)2 dx − 2

K

K∑
k=1

1

|Vk|
∑
i∈Vk

ĝλ,−k(Xi),
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KL(λ) = − 1

K

K∑
k=1

1

|Vk|
∑
i∈Vk

log(ĝλ,−k(Xi)),

respectively. The smoothing parameter is then chosen as the minimizer of either LS(λ) or
KL(λ).

5.2 CV FOR INDIRECT DENSITY ESTIMATION

In indirect density estimation, the observed data {yi} are drawn from the mixture den-
sity h(y|g0) instead of the mixing density g0. Hence, the CV scores LS(λ) and KL(λ)

cannot be computed directly. Recall that {yi} can be considered to have been generated
from the two-step procedure discussed at the beginning of Section 3.1 whereof a direct
sample {xi} from the targeted mixing density is postulated. Although the sample {xi} is
latent and thus not available, we can consider the conditional density of xi given yi and
g0, ϕ(x|yi, g0) = f (yi |x)g0(x)/

∫ b

a
f (yi |t)g0(t) dt . Based on ϕ(x|yi, g0), we propose the

following two pseudo-CV scores:

pLS(λ|g0) =
∫

ĝλ(x)2 dx − 2

K

K∑
k=1

1

|Vk|
∑
i∈Vk

∫
ĝλ,−k(x)ϕ(x|yi, g0) dx, (5.1)

pKL(λ|g0) = − 1

K

K∑
k=1

1

|Vk|
∑
i∈Vk

∫
log(ĝλ,−k(x))ϕ(x|yi, g0) dx, (5.2)

which correspond to LS(λ) and KL(λ) above, respectively. The following proposition jus-
tifies using pLS(λ|g0) and pKL(λ|g0) as the cross-validation scores for selecting λ in in-
direct density estimation.

Proposition 3. If g0 is the true mixing density, then

E[pLS(λ|g0)] = E[LS(λ)] and E[pKL(λ|g0)] = E[KL(λ)].

Proposition 3 indicates that the expectation of pLS(λ|g0) [or pKL(λ|g0)] is exactly
the same as that of LS(λ) [or KL(λ)] based on a sample drawn directly from the true
density g0. Thus, these pseudo-CV scores are analogous to the true CV scores based on
observations from the mixing density g0. However, another difficulty arises when trying
to use these scores directly. Note that the true density g0 is in fact not known and the
scores are not computable. Next, we propose an implementable procedure to determine the
smoothing parameter λ, treating pLS(λ|g) and pKL(λ|g) as two score functions for any
given density g.

Let � be a collection of λ values to be considered. For each λ ∈ �, a NPMPLE estimate
can be computed by the FEM algorithm and is denoted by ĝλ. Our goal is to select the
best smoothing parameter from �, or equivalently, the best density estimate from {ĝλ, λ ∈
�}. Instead of minimizing pLS(λ|g0) [or pKL(λ|g0)], which is infeasible as pointed out
previously, we take a different approach following the self-voting principle proposed by
Gu (1992). For any pair of values λ1 and λ2 from �, define

pCV(λ2|λ1) = pLS(λ2|ĝλ1) or pCV(λ2|λ1) = pKL(λ2|ĝλ1),
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depending on which pseudo-CV score is used. pCV(λ2|λ1) can be viewed as the voting
score from λ2 to λ1. Gu’s self-voting principle in our setting states that the optimal smooth-
ing parameter must satisfy

pCV(λ∗|λ∗) ≤ pCV(λ|λ∗) for any λ ∈ �. (5.3)

In other words, the optimal λ∗ or the corresponding density estimate ĝλ∗ must vote for it-
self. In general, the smoothing parameter satisfying the self-voting principle is not unique.
In particular, the principle tends to be satisfied by small λ values. Hence, the self-voting
principle is not enough for determining the optimal smoothing parameter uniquely. We
suggest using a version of this principle supplemented by the maximum smoothing prin-
ciple to choose the optimal λ. Because the larger λ is, the smoother the density estimate
ĝλ is, our maximum smoothing principle states that the largest λ satisfying (5.3) should be
selected. Jones, Marron, and Sheather (1996) commented that the largest local minimizer
of CV(h) in the kernel density estimation setting usually gives better estimates than the
global minimizer of CV(h). This is analogous to our maximum smoothing principle. Hall
and Marron (1991) observed that spurious local minima of the cross-validation function
CV(h) are more likely to occur when the bandwidth values used are very small rather than
very large. We combine the self-voting principle and the maximum smoothing principle in
the following algorithm to obtain the optimal density estimate.

Algorithm 2:

(a) Specify � and divide data randomly into K subsets of approximately the same size.

(b) For each λ ∈ �, use Algorithm 1 to compute ĝλ, and ĝλ,−k for 1 ≤ k ≤ K .

(c) Find w(λ) = arg minλ1∈� pCV(λ1|λ) for each λ ∈ �.

(d) Find λ∗ = arg max{λ : λ = w(λ)}; then output ĝλ∗ .

6. SIMULATIONS

We have conducted various simulation studies to compare the performance of the FEM
algorithm and the EMS algorithm proposed by Silverman et al. (1990). The EMS algorithm
has been shown to be an effective algorithm for estimating mixing densities, and it usually
outperforms the kernel method proposed by Stefanski and Carroll (1990) and Fan (1991) in
the case of deconvolution; see Eggermont and LaRiccia (1997). In this section, we report
simulation results for two deconvolution problems and one general mixture problem; and
the computing costs of the two algorithms are also compared and discussed. The effective-
ness of our smoothing parameter selection procedure is also demonstrated by a simulation
example.

6.1 FEM VERSUS EMS IN DECONVOLUTION

In this simulation study, we compare FEM and EMS in deconvolution only, in which
random samples generated from

h(y) =
∫ 1

0
φ(y − x)g(x) dx (6.1)
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are used to estimate the mixing density g(x). Let us denote ϕ the density of the standard

normal distribution N(0,1) and β(x;2,4) the density of the beta distribution Beta(2,4).
Six different mixing densities denoted by {gi}6

i=1 and two different component densities
denoted by {φj }2

j=1 are considered; they are

g1(x) ∝ 1 + β(x;2,4), x ∈ [0,1];

g2(x) ∝ 1

3
ϕ

(
x − 0.3

0.1

)
+ 2

3
ϕ

(
x − 0.7

0.1

)
, x ∈ [0,1];

g3(x) ∝ 3

10
ϕ

(
x − 0.1

0.1

)
+ 4

10
ϕ

(
x − 0.5

0.1

)
+ 3

10
ϕ

(
x − 0.85

0.1

)
, x ∈ [0,1];

g4(x) ∝ exp(−5x), x ∈ [0,1];
g5(x) ∝ exp(x2 − 1.2x), x ∈ [0,1];
g6(x) ∝ exp(x4 − 1.2x) − 0.5, x ∈ [0,1];
φ1(x) = ϕ(x/0.05) and φ2(x) = 10

√
2 exp(−20

√
2|x|).

In the above, φ1(x) and φ2(x) are the densities of the normal distribution and the double
exponential distribution with mean 0 and standard deviation 0.05, respectively. All of the
mixing densities considered (i.e., g1 to g6) have [0,1] as their support. Following (6.1),

each combination of gi (1 ≤ i ≤ 6) and φj (j = 1,2) generates a mixture density, denoted
by hij . In total, twelve mixture densities are used in the simulation study.

Three different distance measures are used to calculate the distance between the den-
sity estimate ĝ and the true density g. They are the integrated squared error distance
ISE(g, ĝ) = ∫ b

a
[g(x) − ĝ(x)]2 dx, the integrated absolute error distance IAE(g, ĝ) =∫ b

a
|g(x)− ĝ(x)|dx, and the Kullback–Leibler distance KLD(g, ĝ) = ∫ b

a
log(g(x)/ĝ(x))×

g(x)dx. To compare FEM and EMS directly and eliminate the impact of smoothing pa-

rameter selection on their performances, we adopt the strategy of comparing the estimates
based on oracle choices of smoothing parameters. For both FEM and EMS, the oracle
choice of smoothing parameter is the one that minimizes the average distance between
the true density and the corresponding density estimate. For FEM, the best smoothing pa-
rameter λ is chosen from Sλ = {10−8 × 2k/2}40

k=0, whereas for EMS, the best smoothing
parameter J is chosen from SJ = {4 × l + 1}36

l=1. In the simulation study, the EMS algo-
rithm is based on a grid of size 150.

The basic simulation scheme is given below, where L denotes the distance measure that
can be either ISE, IAE, or KLD as defined above.

(a) For fixed i and j , generate N independent samples, each of size n, from the mixture
density hij . Denote the kth sample {ykl}nl=1 (1 ≤ k ≤ N ).

(b) For each sample {ykl}nl=1, each smoothing parameter λ ∈ Sλ, and each smoothing
parameter J ∈ SJ , use the FEM algorithm (Algorithm 1) and the EMS algorithm,
separately, to compute the density estimates, which are denoted by ĝFEM

λ,k and ĝEMS
J,k ,

respectively.
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(c) For a given distance measure L(g, ĝ), find

λ̃ = arg min
λ∈Sλ

1

N

N∑
k=1

L(g, ĝFEM
λ,k ) and J̃ = arg min

J∈SJ

1

N

N∑
k=1

L(g, ĝEMS
J,k ).

(d) Compare {L(g, ĝFEM
λ̃,k

)}Nk=1 and {L(g, ĝEMS
J̃ ,k

)}Nk=1, using summary statistics such as
mean, standard deviation, and side-by-side boxplots.

In Step (c) of the above scheme, 1
N

∑N
k=1 L(g, ĝFEM

λ,k ) ≈ E[L(g, ĝFEM
λ,j )] is the average

distance between a density estimate using the smoothing parameter λ and the true density;
thus λ̃ is the optimal smoothing parameter in that it minimizes this average distance. The
same interpretation applies to J̃ . The scheme has been applied to every hij (1 ≤ i ≤ 6;
1 ≤ j ≤ 2) with sample sizes n = 150 and n = 400. In every case, 100 replications are
used and the results are recorded for all three distance measures (L = ISE, IAE, or KLD).
Therefore, there are in total 72 different scenarios. The simulation results under the scenar-
ios with the normal component density (φ = φ1) including means, standard errors, side-
by-side boxplots are reported in Table 1 and Figure 1, respectively. To conserve space, only
the means and standard errors under the scenarios with the double exponential component
density (φ = φ2) are reported (Table 2). Note that the results in both Tables 1 and 2 show
that the FEM algorithm outperformed the EMS algorithm under most scenarios in average
performance as well as performance stability. The small absolute values of the error crite-
ria may make it somewhat hard to appreciate this fact at first. Because of that, the relative

Table 1. Deconvolution with the normal component density φ = φ1.

n = 150 n = 400

FEM EMS FEM EMS

g Dist. Mean St. error Mean St. error RC Mean St. error Mean St. error RC

g1 ISE 0.0206 0.00117 0.0431 0.00192 52.2% 0.0113 0.00065 0.0177 0.00091 36.2%
IAE 0.1096 0.00348 0.1637 0.00374 33.0% 0.0783 0.00249 0.1022 0.00264 3.4%
KLD 0.0115 0.00069 0.0233 0.00109 50.6% 0.0061 0.00032 0.0093 0.00043 34.4%

g2 ISE 0.0474 0.00274 0.0526 0.00321 9.9% 0.0240 0.00125 0.0273 0.00157 12.1%
IAE 0.1635 0.00457 0.1712 0.00529 4.5% 0.1151 0.00299 0.1235 0.00336 6.8%
KLD 0.0246 0.00124 0.0286 0.00144 14.0% 0.0127 0.00059 0.0150 0.00071 15.3%

g3 ISE 0.0617 0.00322 0.0567 0.00278 −8.8% 0.0264 0.00113 0.0268 0.00108 1.5%
IAE 0.1921 0.00508 0.1881 0.00486 −2.1% 0.1277 0.00293 0.1298 0.00293 1.6%
KLD 0.0315 0.00162 0.0297 0.00147 −6.1% 0.0135 0.00056 0.0140 0.00055 3.6%

g4 ISE 0.0116 0.00205 0.0482 0.00416 75.9% 0.0044 0.00060 0.0262 0.00163 83.2%
IAE 0.0543 0.00427 0.1347 0.00447 68.8% 0.0327 0.00264 0.0947 0.00264 65.5%
KLD 0.0041 0.00070 0.0284 0.00232 85.6% 0.0015 0.00021 0.0108 0.00057 86.1%

g5 ISE 0.0121 0.00118 0.0485 0.00223 75.1% 0.0049 0.00049 0.0165 0.00089 70.3%
IAE 0.0812 0.00430 0.1748 0.00438 53.5% 0.0510 0.00267 0.1013 0.00269 49.7%
KLD 0.0061 0.00060 0.0249 0.00127 75.5% 0.0024 0.00025 0.0083 0.00045 71.1%

g6 ISE 0.0391 0.00508 0.0496 0.00381 21.2% 0.0147 0.00114 0.0215 0.00107 31.6%
IAE 0.1267 0.00530 0.1613 0.00514 21.5% 0.0833 0.00272 0.1056 0.00267 21.1%
KLD 0.0145 0.00132 0.0250 0.00142 42.0% 0.0062 0.00039 0.0104 0.00046 40.4%
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Figure 1. Side-by-side boxplots of the ISE values of the estimates generated by the FEM algorithm and those
generated by the EMS algorithm in the case of the normal component density φ = φ1. The sample size is 150 and
the number of replications is 100.

changes in the respective risk criterion for both sample sizes are given in both Tables 1

and 2 under the heading RC (“Relative Change”) to help understand the difference. The

side-by-side boxplots (Figure 1) for the cases with the normal component density and the

sample size n = 150 further demonstrate the superiority of FEM over EMS. The only case

in which the EMS algorithm outperformed the FEM algorithm is under the scenario of the

mixing density g3 and n = 150; and the improvement is quite small. Under the scenarios of

the mixing densities g1, g4, and g5, the relative improvement of FEM over EMS is indeed

significant, especially when n = 150.

To check the visual effect of the estimates, we have also plotted the density estimates

generated by the FEM algorithm and the EMS algorithm. The true density is shown for

comparison. The smoothing parameters are oracle ones for all the density estimates plotted.

Due to space limitation, only two sets of such plots are included in Figures 2 and 3. The

overall impression is that the estimates generated by the FEM algorithm recover the true

density better than the estimates generated by the EMS algorithm. The EMS estimates tend

to be less smooth than the FEM estimates as demonstrated in Figure 2; they also seem to

be worse in capturing the strongly pronounced peaks and the deep valleys (see Figure 3).
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Table 2. Deconvolution with the double exponential component density φ = φ2.

n = 150 n = 400

FEM EMS FEM EMS

g Dist. Mean St. error Mean St. error RC Mean St. error Mean St. error RC

g1 ISE 0.0206 0.00116 0.0446 0.00195 53.8% 0.0113 0.00064 0.0180 0.00089 37.2%
IAE 0.1095 0.00343 0.1662 0.00365 34.1% 0.0777 0.00247 0.1034 0.00257 24.9%
KLD 0.0114 0.00069 0.0240 0.00107 52.5% 0.0060 0.00032 0.0095 0.00043 36.8%

g2 ISE 0.0472 0.00283 0.0533 0.00330 11.4% 0.0233 0.00119 0.0276 0.00150 15.6%
IAE 0.1626 0.00466 0.1719 0.00531 5.4% 0.1137 0.00294 0.1247 0.00328 8.8%
KLD 0.0245 0.00125 0.0292 0.00147 16.1% 0.0125 0.00058 0.0154 0.00069 18.8%

g3 ISE 0.0608 0.00304 0.0571 0.00274 −0.6% 0.0249 0.00106 0.0263 0.00103 5.3%
IAE 0.1911 0.00495 0.1889 0.00477 −0.1% 0.1246 0.00282 0.1290 0.00275 3.4%
KLD 0.0309 0.00150 0.0298 0.00144 −0.4% 0.0129 0.00053 0.0137 0.00052 5.8%

g4 ISE 0.0117 0.00205 0.0477 0.00410 75.5% 0.0043 0.00061 0.0259 0.00165 83.3%
IAE 0.0535 0.00425 0.1354 0.00431 60.5% 0.0328 0.00263 0.0944 0.00268 65.3%
KLD 0.0041 0.00070 0.0291 0.00237 85.9% 0.0015 0.00021 0.0109 0.00056 86.2%

g5 ISE 0.0120 0.00118 0.0499 0.00236 80.0% 0.0049 0.00049 0.0169 0.00089 71%
IAE 0.0809 0.00432 0.1780 0.00436 54.6% 0.0511 0.00266 0.1025 0.00261 50.1%
KLD 0.0060 0.00060 0.0256 0.00128 76.6% 0.0024 0.00025 0.0085 0.00044 71.8%

g6 ISE 0.0389 0.00521 0.0506 0.00393 23.1% 0.0147 0.00115 0.0215 0.00107 31.6%
IAE 0.1265 0.00510 0.1632 0.00504 22.5% 0.0831 0.00273 0.1056 0.00264 21.3%
KLD 0.0145 0.00134 0.0252 0.00143 42.5% 0.0062 0.00039 0.0103 0.00046 39.8%

Figure 2. Solid line: the true mixing density (g1); long-dashed line: the estimate by the FEM algorithm; dashed
line: the estimate by the EMS algorithm. All smoothing parameters are oracle ones. The sample size is 150 and
the component density is normal.
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Figure 3. Solid line: the true mixing density (g2); long-dashed line: the estimate by the FEM algorithm; dashed
line: the estimate by the EMS algorithm. All smoothing parameters are oracle ones. The sample size is 150 and
the component density is normal.

To compare the computational costs of the two algorithms, we recorded the amount of
CPU time required to calculate the estimates under each choice of smoothing parameter
considered in the simulation scheme. Note that the required CPU time differs for differ-
ent smoothing parameters in both the FEM algorithm and the EMS algorithm. Both the
algorithms were coded in R (Windows version 2.6.2) and run on a computer with Intel
Pentium (R) 4 CPU at 3.0 GHz with 1GB of RAM. The operating system of the machine
is Windows XP Professional Service Pack 2. Our general impression is that these two al-
gorithms are comparable in terms of computational cost. To facilitate fair comparison, we
report only the time required to calculate the estimates under the optimal smoothing pa-
rameter selected by oracle. Table 3 includes the average CPU time used to calculate the
estimates by the FEM algorithm and the EMS algorithm, respectively, based on 100 repli-
cated samples. The component density function is φ = φ1 and the sample size is 150. The
table shows that under the scenarios g2, g3, and g6, the FEM algorithm was slower than
the EMS algorithm; but under the scenarios g1, g4, and g5, the FEM algorithm was in
fact faster. And under none of the scenarios, one algorithm was slower or faster than the

Table 3. Average CPU time (in sec) for computing the oracle estimates by FEM and EMS.

Algorithm g1 g2 g3 g4 g5 g6

FEM 0.0218 0.4111 0.5146 0.2152 0.1350 0.2709
EMS 0.0436 0.2122 0.2194 0.2232 0.1972 0.2123
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other by more than one and half folds. This is consistent with our discussion at the end of
Section 3.3 that the FEM algorithm does not incur too much computational burden, even
though it is a fully implemented nonparametric EM procedure.

6.2 FEM VERSUS EMS IN NON-DECONVOLUTION

We draw an i.i.d. sample y1, y2, . . . , yn from the density

h(y) =
∫ b

a

γ (y;25, x/25)g(x) dx, (6.2)

where γ (y;25, x/25) is the density of the Gamma distribution with a shape parameter α =
25 and a scale parameter θ = x/25. Given x > 0, the standard deviation of the distribution
with density γ (y;25, x/25) is

√
25(x/25)2 = x/5. The same simulation scheme as stated

in the previous subsection was used to compare the performances of FEM and EMS in this
example. The numerical results are summarized in Table 4. Due to limited space, we only
present one plot including the estimates generated by the algorithms in Figure 4 and omit
the other plots. Again, the FEM algorithm demonstrated much better performance in terms
of mean and variability in all scenarios except the one of density g3. Visually the FEM
algorithm generated smoother estimates than the EMS algorithms. The computing costs
of the two algorithms are similar. Therefore, the FEM algorithm outperforms the EMS
algorithms in this non-deconvolution problem.

Table 4. Non-deconvolution with the gamma component density γ .

n = 150 n = 400

FEM EMS FEM EMS

g Dist. Mean St. error Mean St. error RC Mean St. error Mean St. error RC

g1 ISE 0.0204 0.00140 0.0422 0.00207 51.7% 0.0110 0.00070 0.0168 0.00088 34.5%
IAE 0.1070 0.00411 0.1634 0.00207 34.5% 0.0792 0.00262 0.1007 0.00262 21.4%
KLD 0.0114 0.00078 0.0238 0.00142 52.1% 0.0059 0.00033 0.0087 0.00044 32.2%

g2 ISE 0.1030 0.00865 0.1255 0.00990 17.9% 0.0457 0.00304 0.0567 0.00365 19.4%
IAE 0.2313 0.00883 0.2611 0.00991 11.4% 0.1565 0.00516 0.1787 0.00580 12.4%
KLD 0.0497 0.00367 0.0658 0.00413 24.5% 0.0234 0.00140 0.0317 0.00173 26.2%

g3 ISE 0.1229 0.00456 0.1007 0.00399 −22.0% 0.0790 0.00462 0.0690 0.00239 −14.5%
IAE 0.2770 0.00684 0.2548 0.00519 −8.7% 0.2112 0.00616 0.2096 0.00402 −0.8%
KLD 0.0604 0.00209 0.0504 0.00193 −19.8% 0.0388 0.00210 0.0342 0.00111 −13.5%

g4 ISE 0.0139 0.00241 0.0502 0.00458 72.3% 0.0050 0.00071 0.0221 0.00157 77.4%
IAE 0.0587 0.00453 0.1372 0.00522 57.2% 0.0349 0.00281 0.0897 0.00302 61.1%
KLD 0.0048 0.00081 0.0259 0.00205 81.5% 0.0017 0.00024 0.0102 0.00066 83.3%

g5 ISE 0.0132 0.00130 0.0445 0.00237 70.3% 0.0056 0.00053 0.0194 0.00109 71.1%
IAE 0.0850 0.00443 0.1648 0.00464 48.4% 0.0553 0.00270 0.1095 0.00322 49.5%
KLD 0.0066 0.00068 0.0223 0.00122 70.4% 0.0027 0.00026 0.0097 0.00054 72.2%

g6 ISE 0.0451 0.00452 0.0621 0.00387 27.4% 0.0209 0.00151 0.0308 0.00152 33.0%
IAE 0.1434 0.00536 0.1817 0.00505 21.1% 0.0997 0.00345 0.1231 0.00295 19.0%
KLD 0.0198 0.00152 0.0320 0.00203 38.1% 0.0095 0.00073 0.0159 0.00089 40.3%
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Figure 4. Solid line: true mixing density (g1); long-dashed line: estimate by Algorithm 1; dashed line: estimate
by the EMS algorithm. Smoothing parameters are oracle ones. The sample size is 150 and the component density
is gamma.

6.3 EFFECTIVENESS OF SMOOTHING PARAMETER SELECTION

Recall that the self-voting principle and the maximum smoothing principle are used
to select λ. In this subsection, we show the effectiveness of this approach by comparing
minλ ISE(ĝλ, g) with ISE(ĝλLS∗ , g) and minλ KLD(ĝλ, g) with KLD(ĝλKL∗ , g), where λLS∗
and λKL∗ are the values selected by the pLS CV score and the pKL CV score, respectively.
The deconvolution examples from Section 6.1 are used in the comparison. Recall that
g ∈ {gi}6

i=1, φ ∈ {φ1, φ2}, and Sλ = {10−8 × 2k/2}40
k=0. Let n = 400, N = 100, and K = 10.

We randomly partition {1,2, . . . , n} into ten folds of roughly the same size, which are
denoted as V1,V2, . . . , VK . The basic comparison procedure is given below. Note that the
pseudo-CV score in the procedure can be pLS or pKL.

(a) Generate N samples of size n. Denote the j th sample as {yij }ni=1 where j =
1,2, . . . ,N .

(b) For any 1 ≤ j ≤ N and λ ∈ Sλ, use Algorithm 1 to compute the density estimate
based on {yij }ni=1 and denote the resulting estimate as ĝλ,j ; for any 1 ≤ k ≤ K ,
compute the estimate based on {yij }i /∈Vk

and denote the resulting estimate as
ĝ

[−k]
λ,j , k = 1,2, . . . ,K .

(c) Compute the pseudo-CV score pCVj (λ
′|λ) for any λ,λ′ ∈ Sλ, where the subscript

j indicates that the pseudo-CV score is based on the j th sample.

(d) Apply the self-voting and maximum smoothing principles to select λ, that is, to
find the largest λ ∈ Sλ that satisfies pCVj (λ|λ) = maxλ′∈Sλ

pCVj (λ
′|λ). Denote the

result by λLS
j or λKL

j depending on whether pLS or pKL is used as the pCV score.

(e) Generate the scatterplots of ISE(ĝλLS
j ,j , g) versus minλ∈Sλ ISE(ĝλ,j , g) and

KLD(ĝλKL
j ,j , g) versus minλ∈Sλ KLD(ĝλ,j , g), separately, where 1 ≤ j ≤ N .
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Figure 5. The left plot: ISE(ĝ
λLS∗ , g) versus minλ ISE(ĝλ, g); the right plot: KLD(ĝ

λKL∗ , g) versus

minλ KLD(ĝλ, g). λLS∗ and λKL∗ are data-driven selected smoothing parameters based on pLS and pKL, respec-
tively. The comparisons are based on g2.

In essence, the above procedure is to compare the density estimates based on λ selected
by oracle and by Algorithm 2 in various deconvolution problems. A representative pair of
plots generated from the procedure are shown in Figure 5. In the left plot, the vertical axis
represents ISE(ĝλLS

j ,j , g) whereas the horizontal axis represents minλ∈Sλ ISE(ĝλ,j , g). No-

tice that the majority of the points are close to the straight line y = x. This indicates the per-
formances of the oracle estimate and the estimate based on the λ selected by Algorithm 2
are similar to each other. The right plot is for KLD(ĝλKL

j ,j , g) and minλ∈Sλ KLD(ĝλ,j , g),

and it demonstrates the same pattern as the left plot. Both plots suggest that Algorithm 2 is
an acceptable smoothing parameter selection procedure.

7. CONCLUDING REMARKS

In this article, we have proposed the FEM algorithm to compute the mixing density in a
mixture model. The algorithm can be considered an extension of the maximum penalized
likelihood approach for direct density estimation to indirect density estimation. Simulation
studies have shown that the new algorithm outperforms many existing methods such as
the EMS algorithm and kernel methods. We have proposed to use Gu’s self-voting prin-
ciple and the maximum smoothing principle to select the smoothing parameter. Though it
performs well in general, the optimal selection of the smoothing parameter for the FEM
algorithm is still an open problem and invites further study. An important characteristic of
our work is the use of methods from the calculus of variations and differential equations.
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As a matter of fact, theories and methods in the calculus of variations and differential equa-
tions are developed to study functions that possess certain optimality over various function
spaces. They are naturally related to many nonparametric function estimation problems in
statistics. We believe that their use in statistics deserves further exploration.

SUPPLEMENTAL MATERIALS

Computer Code: See the supplemental files !Read Me.pdf and Codereadme.txt
for details. Both files are in the archive. (Computer-code.tar, tar archive)

Appendix: This file contains the proofs of the major propositions, theorems and corollar-
ies in the paper. (appendix.pdf, pdf file)

[Received September 2007. Revised April 2009.]
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