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Abstract

In this article we consider a new separable nonparametric volatility model that

includes second-order interaction terms in both mean and conditional variance func-

tions. This is a very flexible non-parametric ARCH model that can potentially explain

the behavior of the wide variety of financial assets. The model is estimated using the

generalized version of the Local Instrumental Variable Estimation method (LIVE)

first introduced in Kim and Linton (2004). This method is computationally more

effective than most other nonparametric estimation methods that can potentially be

used to estimate components of such a model. Asymptotic behavior of the result-

ing estimators is investigated and their asymptotic normality is established. Explicit

expressions for asymptotic means and variances of these estimators are also obtained.

Keywords and phrases: nonparametric volatility model, second-order interac-

tion, time series, instrumental variable.

1 Introduction

Volatility modeling has been one of the most active research areas in empirical finance

and time series econometrics in the past two decades. Given the importance of predicting

volatility in a number of asset-pricing and portfolio management problems, this is hardly

surprising. The most popular class of volatility models historically has been the class of
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ARCH/GARCH models, originally introduced by Engle (1982) and generalized to GARCH

by Bollerslev (1986).

The parametrization employed in the classical ARCH and GARCH models cannot

capture some of the salient features of financial data such as, for example, the leverage

effect first documented in Black (1976). In the parametric setting, one possible way

to capture leverage effect is to use models with cross-product terms in the conditional

variance function. One of the most important models of that kind that generalizes the

standard ARCH (GARCH) paradigm is the QARCH (Quadratic ARCH) model of Sentana

(1995) that considers the conditional variance function to be a quadratic polynomial of

the past q values of the process Yt.

That model encompasses a number of earlier considered volatility models proposed in

the literature, such as the classical ARCH model of Engle (1982), Augmented ARCH(AARCH)

of Bera and Lee (1990) and others. Another example of an earlier model that has inter-

action terms in the conditional variance and is capable of capturing the leverage effect is

the Nonlinear Asymmetric GARCH (NGARCH) model of Engle and Ng (1993).

There are a few reasons why parametric models are sometimes inadequate. First, there

is often very little reason to choose one parametric specification over the other; as a result,

parametric models are often subject to misspecification. Nonparametric specification, on

the contrary, imposes only some basic smoothness constraints on the conditional variance

function. In practice, in order to make the model tractable, additional assumptions (such

as additivity) often need to be imposed; however, even in this case, it is a much more

general approach to modeling than the parametric one. Second, many features present in

the data (such as nonnormality, asymmetric cycles, nonlinearity between lagged variables)

require nonlinear models to describe the law that generates the data. However, the number

of such models is infinitely large and time series analysts cannot explore all of them.

Therefore, a more general nonparametric setting can be explored as an alternative.

The general nonparametric volatility model assumes that the conditional variance

function depends on a given number of past lags of the process Yt; in other words, the

conditional variance function v ≡ v(Yt−1, . . . , Yt−d) for some integer d > 0. In general,

the unstructured version of this model suffers from the well-known “curse of dimensional-
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ity” problem. This means that the best possible rate of convergence for an estimator

of v quickly decreases as the number of dimensions d increases. Such a model, un-

der assumption of zero mean, was considered in Pagan and Schwert (1990) and Pagan

and Hong (1991). Historically, the first way to get around the curse of dimensional-

ity has been to assume the generalized additive structure of the function to be esti-

mated. Thus, a simple generalized additive model for the conditional variance function

is v(Yt−1, . . . , Yt−d) = v1(Y 2
t−1) + . . . + v(Y 2

t−p); such a model has been discussed in, for

example, Fan and Yao (2003). This model is, clearly, a generalization of ARCH(p) model.

In many situations, however, generalized additive structure is not sufficiently flexible and

other alternatives have to be considered.

Yang, Härdle and Nielsen (1999) introduced the nonparametric volatility model with

additive mean structure but multiplicative volatility; they argued that this is rather nat-

ural since volatility function must be presumed to be non-negative. A rather general

nonparametric volatility model was considered in Kim and Linton (2004) who called it

GANARCH (generalized additive nonlinear ARCH). That model defines both conditional

mean and conditional variance as m(yt−1, yt−2, · · · , yt−d) = Fm(Cm +
∑d

α=1 mα(yt−α))

and v(yt−1, yt−2, · · · , yt−d) = Fv(Cv +
∑d

α=1 vα(yt−α)) where mα(·) and vα(·) are any

smooth but unknown functions, while Fm(·) and Fv(·) are known monotone transforma-

tions. Note also that the generalized additive model in both mean and variance is also a

special case of the GANARCH model when both link functions are identically equal to

1. The GANARCH model assumes that the link function is known and, therefore, some

information about the distribution of data is available. Such information is often very

hard to obtain, particularly so in multidimensional settings.

We are interested in studying a model that avoids the assumption of the known dis-

tribution of the data that is needed for the GANARCH model of Kim and Linton (2004)

does. Because of that, we do not consider link functions for mean and variance. We would

also like to avoid the fairly rigid assumption of additivity of the mean and variance func-

tion; therefore, we take a step ahead and introduce a model that contains nonparametric

“interactions” in the volatility function as well as in the conditional mean function. The

resulting model is indirectly related to the model of Kim and Linton (2004) and can be
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represented in the nonlinear ARCH form as

yt = m(yt−1, yt−2, · · · , yt−d) + v1/2(yt−1, yt−2, · · · , yt−d)εt (1)

m(yt−1, yt−2, · · · , yt−d) = Cm +
d∑

α=1

mα(yt−α)

+
∑

1≤α<β≤d

mαβ(yt−α, yt−β) (2)

v(yt−1, yt−2, · · · , yt−d) = Cv +
d∑

α=1

vα(yt−α)

+
∑

1≤α<β≤d

vαβ(yt−α, yt−β) (3)

where mα(·) and vα(·) are smooth but unknown univariate functions while mαβ(·) and

vαβ(·) are also smooth but unknown bivariate functions. Such a model can be viewed as

a generalization of the QARCH model of Sentana (1995)and, indeed, nests the QARCH

model of Sentana (1995) directly with the appropriate choice of functions vα and vαβ. As

is the case with QARCH, this model allows us to consider the possibility of two lags of

the process yt with the same sign influencing the volatility more than the regular ARCH

model, or even a generalized additive model for conditional variance, would allow. Due

to the nonparametric specification of the conditional variance function, this influence can

take on many different functional forms and is, thus, more flexible than QARCH. As is

the case with QARCH model, the model (1)-(3) also allows for a dynamic asymmetric

effect of positive and negative values of yt on the conditional variance; thus, it is capable

of capturing the leverage effect that may have an arbitrary functional form. In this way

it is also more flexible than the QARCH model.

In terms of estimation note that, according to Stone (1994), interactive components

in such a model can be estimated at the same rate as a regular two-dimensional non-

parametric smoothing problem; more specifically, the interactive terms can be estimated

at the optimal rate O(n−q/(2q+2)) whenever the function to be estimated is q-smooth in

the sense of Stone (1994). In other words, the interactive effect estimation is as hard a

problem as a two-dimensional nonparametric smoothing. Note also that the expansion of

functions m and v used in (1) can be interpreted as a functional ANOVA representation

for general functions m(yt−1, . . . , yt−d) and v(yt−1, . . . , yt−d).
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The specific contribution of this paper consists in proposing an easy to implement and

computationally effective estimation method for the model (1) that represents a non-trivial

extension of the instrumental variable method of Kim and Linton (2004). Moreover, we

prove asymptotic normality of the resulting estimators under a fairly mild set of regularity

conditions and provide explicit expressions of asymptotic mean and variance for all of the

functional components’ estimators.

The rest of the paper is organized as follows. In Section 2 we make some comments

on stationarity and strong mixing property of our model. Section 3 describes the main

estimation idea and defines the local instrumental variable (LIVE) estimators. In Section 4

we describe our main theoretical results and then give the proof of the first one in Section

5. The last Section contains discussion of the results. The Appendix with simulation

results is attached.

2 Stationarity, Strong Mixing and Identifiability Properties

of the Model (1)-(3)

Under some weak assumptions, the general nonlinear autoregressive time series model

can be shown to be stationary and strongly mixing with mixing coefficients decaying

exponentially fast. Auestad and Tjostheim (1990) used α-mixing or geometric ergodicity

to identify the nonlinear time series model. Ango Nze (1992) studied the L1 geometric

ergodicity of the multivariate model Xt = f(Xt−1, . . . , Xt−p)+H(Xt−1, . . . , Xt−q)εt where

Xt and εt are two sequences of m-dimensional random variables defined on a common

probability space and εt is an m-dimensional white noise process. Ango Nze (1992) gave,

probably, the first in the literature sufficient condition that ensures L1 geometric ergodicity

of such a model. Lu and Jiang (2001) derived another sufficient condition that also

ensures L1 geometric ergodicity of the same model but that is much less restrictive. In

this paper we impose constraints from Lu and Jiang (2001) and, in doing so, assume that

the conditions for strict stationarity and strong mixing property of the process {yt}n
t=1 in

(1)-(3) are met.

The model (1)-(3) is not identifiable unless specific conditions are met. These condi-
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tions are similar to those of Kim and Linton (2004); they can be summarized as

E[mα(Yt−α)] = 0 , α = 1, · · · , d (4)

E[vα(Yt−α)] = 0 , α = 1, · · · , d (5)

and

E[mαβ(Yt−α, Yt−β)|Yt−α = yα] = E[mαβ(Yt−α, Yt−β)|Yt−β = yβ] = 0 (6)

E[vαβ(Yt−α, Yt−β)|Yt−α = yα] = E[vαβ(Yt−α, Yt−β)|Yt−β = yβ] = 0 (7)

where 1 ≤ α < β ≤ d.

3 The Local Instrumental Variable Estimators

3.1 Estimation Methods

The generalized additive model literature suggests several possible approaches that can be

conceptually extended to our model. The first one is the so-called backfitting algorithm

of Breiman and Friedman (1985); see also Hastie and Tibshirani (1987, 1990) as well as

Buja, Hastie and Tibshirani (1989). It can be extended to our model but it is rather hard

to analyze theoretically. Another possibility is to extend the marginal integration method

that was introduced independently by Newey (1994), Tjostheim and Auestad (1994), and

Linton and Nielsen (1995). However, marginal integration is relatively computationally

expensive even in case of generalized additive model and this shortcoming is only going

to become more dramatic if it is used to fit our proposed model.

In this paper, we suggest an alternative approach that is a generalization of the LIVE

idea suggested first in Kim and Linton (2004). There, instrumental variables were used

to estimate each additive component of the mean and/or variance function separately.

We extend this approach by suggesting an extra set of instruments that can be used to

estimate the interactive components of both functions as well. One of the most important

advantages of this approach is that it reduces the number of smoothings required to

estimate a model component by a factor of n, compared to the similar (and related)
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marginal integration method; for example, it takes only O(n2) smoothings to estimate

an additive component in the example we give later in the next section as opposed to

O(n3) when using marginal integration. Also, the asymptotic properties of the LIVE

estimator are fairly easy to derive and, in this regard, it is much more tractable than the

backfitting. The rest of this section is dedicated to the description of the LIVE approach

in our context.

3.2 LIVE algorithm for the additive-interactive model (1)-(3)

We begin with introducing the notation that will be used repeatedly throughout the

paper. We denote yt = (yt−1, . . . , yt−d), y = (y1, . . . , yd). We use underscore to imply

that a particular direction α or directions α and β have been omitted; boldface is used

for all multidimensional quantities. Thus, yt,α = (yt−1, . . . , yt−α+1, yt−α−1, . . . , yt−d) and

yα = (y1, . . . , yα−1, yα+1, . . . , yd). Analogously, yt,αβ = (yt−α, yt−β), yαβ = (yα, yβ) while

yt,αβ and yαβ are defined analogously to yt,α and yα. Let pα(yα) be the marginal density

of yt−α while pα(yα), pαβ(yα, yβ), pαβ(yαβ) and p(y) are joint densities of yt,α, yt,αβ, yt,αβ

and yt, respectively.

1. Preliminary density estimation

The instrumental variables we are going to define depend on several marginal and

joint densities. Thus, these density functions need to be estimated first. As we

mentioned before, we use regular product kernel density estimators. Specifically, we

estimate the marginal density pα(·) as

p̂α(yα) =
1

ng1

n∑

t=1

L

(
yt−α − yα

g1

)
, α = 1, 2, · · · , d

and, analogously, joint densities pαβ , pαβ , pα and p(y) as

p̂αβ(yα, yβ) =
1

ngαgβ

n∑

t=1

L

(
yt−α − yα

gα

)
L

(
yt−β − yβ

gβ

)
, 1 ≤ α < β ≤ d

p̂αβ(yα, yβ) =
1

n
d∏

λ=1
λ/∈{α,β}

gλ

n∑

t=1

d∏

λ=1
λ/∈{α,β}

L

(
yt−λ − yλ

gλ

)
, 1 ≤ α < β ≤ d
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p̂α(yα) = 1
n

∏
λ=1
λ 6=α

gλ

∑n
t=1

d∏
λ=1
λ 6=α

L
(

yt−λ−yλ

gλ

)
, α = 1, 2, · · · , d and

p̂(y) = 1

n
d∏

α=1
gα

∑n
t=1

d∏
α=1

L
(

yt−α−yα

gα

)
. In the above, gi = gi(n) are the bandwidths,

i = 1, . . . , d and L(·) is the unimodal one-dimensional symmetric kernel function.

Remark 1 Of course, multivariate product kernels are not the only possibility we

could have considered. In general, two popular ways of constructing multivariate

kernels are usually considered. The product kernel is the first while the second is the

so-called spherically symmetric multivariate kernel. In general, multivariate product

kernel based estimators are slightly less efficient than those based on spherically

symmetric kernels (for details, see e.g. Wand and Jones (1995)). However, since the

observed loss of efficiency is rather minor, we prefer to use the product kernel which

implies an easy and straightforward notation.

2. Estimation of the constant component of the mean Cm

Cm can be directly estimated as Ĉm = 1
n

∑n
t=1 yt.

3. Estimation of the additive components of the mean mα(·)

Define the instrumental variable

Ŵα(yt) =
p̂α(yt−α)p̂α(yt,α)

p̂(yt)
, α = 1, 2, · · · , d

denote ỹt = yt − Ĉm and use it to estimate mα(yα) as

m̂α(yα) = E[Ŵα(yt)ỹt|yt−α = yα] , α = 1, 2, · · · , d

The conditional expectation above is estimated using the local linear regression; in

other words, m̂α(yα) in the above is the minimizer aα of the kernel-weighted least

squares problem minaα,bα

∑d+n
t=d+1 Kh(yt−α − yα){Ŵα(yt)ỹt − aα − bα(yt−α − yα)}2.

Here and further we use h to denote the bandwidth used to estimate functional

components of the conditional mean and variance functions. Also, from this point
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on we denote the kernel function K(·) to suggest that it is not necessarily the same

as the kernel L(·) used to estimate marginal and joint densities earlier.

4. Estimation of the interactive components of the mean mαβ(·)
Let us denote ȳt = yt −

[
Ĉm +

∑d
α=1 m̂α(yt−α)

]
. Define the instrumental variable

Ŵαβ(yt) =
p̂αβ(yt−α, yt−β)p̂αβ(yt,αβ)

p̂(yt)
, 1 ≤ α < β ≤ d

and estimate the interactive component mαβ by means of the minimizer aαβ of the

two-dimensional kernel-weighted least squares problem

min
aαβ ,bαβ

d+n∑

t=d+1

Kh(yt−α − yα)Kh(yt−β − yβ)×

×{Ŵαβ(yt)ȳt − aαβ − bαβ,α(yt−α − yα)− bαβ,β(yt−β − yβ)}2.

In the above, the vector “slope” bαβ = (bαβ,α, bαβ,β)
′
.

5. Estimation of the constant component of the variance Cv

Denote the squared residuals from the mean estimation

y∗t =


ȳt −

∑

1≤α<β≤d

m̂αβ(yt−α, yt−β)




2

and estimate Cv as Ĉv = 1
n

∑n
t=1 y∗t .

6. Estimation of the additive components of the variance vα(·)

Using the instrumental variables defined in step (3) we can estimate vα(·) as the

minimizer of the localized least squares problem

min
aα,bα

d+n∑

t=d+1

Kh(yt−α − yα){Ŵα(yt)y
∗
t − aα − bα(yt−α − yα)}2.

7. Estimation of the interactive components of the variancevαβ(·)
Analogously to estimation of the interactive components of the mean, denote ỹ∗t =

y∗t −
[
Ĉv +

∑d
α=1 v̂α(yt−α)

]
and estimate interactive components vαβ(·) as

min
aαβ ,bαβ

d+n∑

t=d+1

Kh(yt−α − yα)Kh(yt−β − yβ)×

×{Ŵαβ(yt)ỹ
∗
t − aαβ − bαβ,α(yt−α − yα)− bαβ,β(yt−β − yβ)}2.
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4 Main Results

In this section we state the main results for estimation in our additive-interactive nonlinear

ARCH model. For this, we need the following definitions and assumptions. Let Fb
a be the

σ-algebra generated by {yt}t=b
t=a and α(k) the strong mixing coefficient of {yt} defined as

α(k) = supA∈F0
−∞,B∈F∞k |P (A ∩B)− P (A)P (B)|.

1. {yt}∞t=1 is a stationary and strongly mixing process generated by (1)-(3), with a

mixing coefficient α(k) such that
∑∞

k=0 ka{α(k)}1−2/ν < ∞, for some ν > 2 and

a > (1 − 2/ν). For simplicity, we assume that the process {yt}∞t=1 has a compact

support.

2. The functions mα(·),mαβ(·), vα(·), vαβ(·), 1 ≤ α, β ≤ d, are continuous and twice

differentiable with bounded (partial) derivatives on the compact support. Also, the

joint and marginal density functions, p(·), pα(·), pα(·), pαβ(·) and pαβ(·) are twice

continuously differentiable and have bounded third derivatives. All of the density

functions above are also bounded away from zero on the compact support.

3. The functions L(·) and K(·) are bounded, nonnegative, symmetric around zero, com-

pactly supported, Lipschitz continuous first-order kernels. Furthermore, we assume

their moments of order higher than 2 are not equal to zero and ‖ u ‖2 L(u) ∈ L1,

‖ u ‖4 K(u) ∈ L1 and ‖ u ‖(2ν+d) K(u) → 0 as ‖ u ‖→ ∞.

4. As g → 0, h → 0 and n →∞ we have ngd →∞, nhs →∞ and g2ν

hs → 0. Also, there

exists a sequence of positive integers satisfying t(n) →∞ and t(n) = o(
√

nhs) such

that
√

n
hs α(t(n)) → 0. Finally,

√
log n
nhs → 0 as n →∞, h → 0 and nhs →∞, where

s ∈ {1, 2}.

Condition (1) implies that strong mixing coefficients decay at the polynomial rate. This is

milder than the usual assumption for a strongly mixing process where the rate is exponen-

tial. This assumption is similar to the assumption A1 in Kim and Linton (2004). Condi-

tions (2)-(3) are standard in kernel and local polynomial estimation. Set of conditions (4)

on the bandwidths is needed to show asymptotic negligibility of the stochastic error terms

resulting from the preliminary estimation of marginal densities pα(·), pαβ(·, ·) and the
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functions m(·) and v(·). It is also needed to take into account the effect of dependence of

the mixing process on the asymptotic results. Before presenting the main result, some ex-

tra notation has to be introduced. Let us denote µl
K ≡ ∫

K(u)uldu and µl
L ≡

∫
L(u)uldu

for l = 2, 3. Also, ‖ K ‖2
2≡

∫
K2(u)du, κ3(yα, zα) ≡ E

[
ε3
k|(yt−α,yt,α) = (yα, zα)

]
, and

κ4(yα, zα) ≡ E
[
(ε2

k − 1)2|(yt−α,yt,α) = (yα, zα)
]
. Let pα|α(zα|yα) be the conditional den-

sity of yα given yα. Define φ̂α(yα) =


 m̂α(yα) + Ĉm

v̂α(yα) + Ĉv


 , φα(yα) =


 mα(yα) + Cm

vα(yα) + Cv


 ,

Bα(yα) =


 bm

α (yα)

bv
α(yα)


 , and Σ∗α(yα) =


 σm

α (yα) σmv
α (yα)

σmv
α (yα) σv

α(yα)


 where

bm
α (yα) =

1
2
h2µ2

Km(2)
α (yα) +

1
2
g2µ2

L

∫ [
p(2)

α (zα)

+
p
(2)
α (yα)
pα(yα)

pα(zα)− pα(zα)
p(yα, zα)

p(2)(yα, zα)
]
m(yα, zα)dzα

and bv
α(yα) is the same as above with v substituted for m. Let

σm
α (yα) =‖ K ‖2

2

∫ {
p2

α(zα)
p(yα, zα)

v(yα, zα) +
[
pα(zα)m(yα, zα)− pα|α(zα|yα)mα(yα)

]2

}
dzα

σv
α(yα) =‖ K ‖2

2

∫ {
p2

α(zα)
p(yα, zα)

v2(yα, zα)κ4(yα, zα) +
[
pα(zα)v(yα, zα)− pα|α(zα|yα)vα(yα)

]2

}
dzα

and

σmv
α (yα) = ‖ K ‖2

2

∫ [
pα(zα)m(yα, zα)− pα|α(zα|yα)mα(yα)

] [
pα(zα)v(yα, zα)− pα|α(zα|yα)vα(yα)

]

+
p2

α(zα)
p(yα, zα)

v3/2(yα, zα)κ3(yα, zα)dzα

Theorem 1 Let yα be in the interior of the support of pα(·). Then under conditions (1)

through (4) with s = 1, we have

√
nh[φ̂α(yα)− φα(yα)−Bα(yα)] d→ N [0, Σ∗α(yα)]
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Now define analogously φ̂αβ(yα, yβ) =


 m̂αβ(yα, yβ) + Ĉm

v̂αβ(yα, yβ) + Ĉv


 , φαβ(yα, yβ) =


 mαβ(yα, yβ) + Cm

vαβ(yα, yβ) + Cv




Bαβ(yα, yβ) =


 bm

αβ(yα, yβ)

bv
αβ(yα, yβ)


 and Σ∗αβ(yα, yβ) =


 σm

αβ(yα, yβ) σmv
αβ (yα, yβ)

σmv
αβ (yα, yβ) σv

αβ(yα, yβ)


 where

Bαβ(yα, yβ)

=
h2

2
µ2

K

[
∂2φαβ

∂y2
t−α

(yα, yβ) +
∂2φαβ

∂y2
t−β

(yα, yβ)

]

+
g2

2
µ2

L

∫ 
p

(2)
αβ(zαβ) +

p
(2)
αβ(yα, yβ)

pαβ(yα, yβ)
pαβ(zαβ)−

pαβ(zαβ)

p(yα, yβ, zαβ)
p(2)(yα, yβ, zαβ)


∆αβ(yα, yβ, zαβ)dzαβ

+
∫

pαβ(zαβ)∆αβ(yα, yβ, zαβ)dzαβ

σm
αβ(yα, yβ) =‖ K ‖2

2

∫ { p2
αβ(zαβ)

p(yα, yβ, zαβ)
v(yα, yβ, zαβ)

+
[
pαβ(zαβ)m(yα, yβ, zαβ)− pαβ|α,β(zαβ|yα, yβ)mαβ(yα, yβ)

]2 }
dzαβ

σv
αβ(yα, yβ) =‖ K ‖2

2

∫ { p2
αβ(zαβ)

p(yα, yβ, zαβ)
v2(yα, yβ, zαβ)κ4(yα, yβ, zαβ)

+
[
pαβ(zαβ)v(yα, yβ, zαβ)− pαβ|α,β(zαβ|yα, yβ)vαβ(yα, yβ)

]2 }
dzαβ

σmv
αβ (yα, yβ) =‖ K ‖2

2

∫ { [
pαβ(zαβ)m(yα, yβ, zαβ)− pαβ|α,β(zαβ |yα, yβ)mαβ(yα, yβ)

]

[
pαβ(zαβ)v(yα, yβ, zαβ)− pαβ|α,β(zαβ|yα, yβ)vαβ(yα, yβ)

]

+
p2

αβ(zαβ)

p(yα, yβ, zαβ)
v3/2(yα, yβ, zαβ)κ3(yα, yβ, zαβ)

}
dzαβ

and

∆αβ(yα, yβ, zαβ) =


 bm

α (yα) + bm
β (yβ) +

∑d
λ 6=α,β bm

λ (zλ)

bv
α(yα) + bv

β(yβ) +
∑

λ 6=α,β bv
λ(zλ)




∆αβ(yα, yβ, zαβ) =


 mαβ(yα, yβ)− bm

α (yα)− bm
β (yβ) +

∑
λ,θ 6=α,β;λ<θ mλθ(zλ, zθ)−

∑
λ 6=α,β bm

λ (zλ)

vαβ(yα, yβ)− bv
α(yα)− bv

β(yβ) +
∑

λ,θ 6=α,β;λ<θ vλθ(zλ, zθ)−
∑

λ6=α,β bv
λ(zλ)




Define pαβ|α,β(zαβ|yα, yβ) as the conditional density of yαβ given yα and yβ.

Theorem 2 Let (yα, yβ) be in the interior of the support of pαβ(·). Then under conditions

12



(1) through (4) with s = 2, we have that

√
nh2[φ̂αβ(yα, yβ)− φαβ(yα, yβ)−Bαβ(yα, yβ)] d→ N [0, Σ∗αβ(yα, yβ)]

Remark 2 Note that constants Cm and Cv are estimated by Ĉm and Ĉv with the

degree of precision of Op

(
1√
n

)
and, therefore, the individual additive and interactive

components mα(yα), mαβ(yα, yβ), vα(yα) and vαβ(yα, yβ) have the same asymptotic bias

and variance as φα(yα) and φαβ(yα, yβ), respectively.

Remark 3 The asymptotic bias expressions bm
α (yα) and bv

α(yα) consist of two main

terms. The first term is of the order O(h2) which is the same as in the ordinary local

linear regression. This would have been the order of the asymptotic bias if the densities

used in constructing instrumental variables were known. The second term in both cases

has the order of O(g2) and is the penalty we pay for not knowing these densities.

Remark 4 The method that is most relevant for comparison purposes here is probably

the traditional version of the marginal integration method. As described in Linton and

Nielsen (1995), in the two-dimensional case it requires the practitioner to choose two

different bandwidths h1 and h2 for the two directions. The resulting bias is then of the

order O(h2
1+h2

2). This is the same situation one encounters in LIVE algorithm since, for an

additive component that is twice continuously differentiable and is defined on the compact

support, the resulting bias is then O(h2+g2) which is conceptually the same as in standard

marginal integration. As we noted already earlier, the main benefit of the LIVE method

is its speed of computation; whereas marginal integration requires O(n3) smoothings to

estimate a linear component the LIVE method only takes O(n2) smoothings.

Remark 5 It is also fairly clear that there is some room for improvement when it comes

to asymptotic variances of LIVE estimators. When compared to the regular marginal

integration estimators of Linton and Nielsen (1995), one can see that, for example, the

asymptotic variance of the additive mean component for LIVE estimator is larger than

the one for the MI estimator. More precisely, if one assumes constant conditional variance

function v(·), the first term of σm
α (yα), which is ‖ K ‖2

2

∫ {
p2

α(zα)

p(yα,zα)v(yα, zα)
}

dzα, coincides

with the asymptotic variance of the MI estimator. This is related to the fact that the

LIVE estimator is based on the omitted variable regression idea that treats everything

13



except the additive component of interest as the error term. Such an error term is not

conditionally independent of the component of interest. Finally, as in Kim and Linton

(2004), a number of possible efficiency standards can be considered in order to construct

possible oracle estimators. This is one of the topics we intend to consider as part of the

future research.

Remark 6 Note that one of the conditions of Theorems 1 and 2 is that g2ν

h → 0 as

g → 0 and h → 0. Recall that ν > 2 is the strong mixing index that characterizes the

strength of dependence of the process yt. In practice, this means that the bandwidth g

can be selected much smaller than h. In other words, undersmoothing of the densities

that comprise instrumental variables is possible. If g is thus selected to be of the smaller

order of magnitude then h, the penalty for not knowing true marginal and joint densities

of the process yt becomes of the order o(h2) and thus can be disregarded asymptotically.

5 Proof of Theorem 1

The proof of Theorem 1 contains four steps: first, we decompose the estimation error

into the main stochastic term and bias; second, we approximate each component, then we

compute the asymptotic bias, and, finally, we establish the asymptotic normality. Without

loss of generality we assume that α = 1.

For expositional convenience we use the subscript 2 to denote the nuisance directions.

For example, p2(yt,1) = p1(yt,1) in the case of density function, and m2(yt,1) = m1(yt,1),

v2(yt,1) = v1(yt,1) in the case of component functions. We use Xn ' Yn to signify

Xn = Yn{1 + op(1)}. Let vec(X) denote the vector of matrix X arranged by columns.

Step I. Decompositions

The LIVE estimator of φ1(y1), as any local linear regression estimator, can be ex-

pressed in the closed form:

φ̂1(y1)T = eT
1 (YTKY )−1YTKWR̃ (8)

14



where

e1 =


 1

0


 , Y =




1 yd+1−1 − y1

1 yd+2−1 − y1

...
...

1 yd+n−1 − y1




, R̃ =




r̃1

r̃2

...

r̃n




=




yd+1 ε̃2
d+1

yd+2 ε̃2
d+2

...
...

yd+n ε̃2
d+n




,

K = diag{Kh(yd+l−1 − y1)}, l = 1, . . . , n, W = diag{Ŵd+k}, k = 1, . . . , n and ε̃2
t = (yt −

m̃(yt))2. The preliminary density estimators used are p̂1(y1) = 1
ng

∑d+n
t=d+1 Lg(yt−1 − y1),

p̂2(y1) = 1
ngd−1

∑d+n
t=d+1

∏d
α=2 Lg(yt−α − yα) and p̂(y) = 1

ngd

∑d+n
t=d+1

∏d
α=1 Lg(yt−α − yα)

while Ŵt =
p̂1(yt−1)p̂2(yt,1)

p̂(yt)
.

Using standard properties of the vec operator, it is easy to verify that (8) can be written as

φ̂1(y1) = [I2⊗eT
1 (YTKY )−1][I2⊗YTK]vec[WR̃] while the true function φ1(y1) satisfies

the identity

φ1(y1) = [I2 ⊗ eT
1 (YTKY )−1][I2 ⊗YTK]vec[lφT

1 (y1) + Y 5 φT
1 (y1)] (9)

where

l =




1

1
...

1




, Y =




yd+1−1 − y1

yd+2−1 − y1

...

yd+n−1 − y1




It follows easily from the above results that the estimation error can be represented as

φ̂1(y1)− φ1(y1) = [I2 ⊗ eT
1 Q−1

n ]τn (10)

where Qn = 1
nD−1

h YTKY D−1
h and τn = 1

n [I2⊗D−1
h YTK]vec[WR̃−lφT

1 (y1)−Y 5φT
1 (y1)]

with Dh = diag{1, h}
Step II. Approximations

We rewrite τn in (5) as

τn =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)[Ŵkr̃k − φ1(y1)− (yk−1 − y1)5 φ1(y1)]⊗

(
1,

yk−1 − y1

h

)T
}
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and expand it next by adding and subtracting φ1(yk−1) within the inner factor enclosed

in brackets as

τn =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)[Ŵkr̃k − φ1(y1)− (yk−1 − y1)∇φ1(y1)]⊗

(
1,

yk−1 − y1

h

)T
}
(11)

=
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)[Ŵkr̃k − φ1(yk−1)]⊗

(
1,

yk−1 − y1

h

)T
}

+
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)[φ1(yk−1)− φ1(y1)− (yk−1 − y1)∇φ1(y1)]⊗

(
1,

yk−1 − y1

h

)T
}

At this point, we introduce the notation rk = [m(yk), v(yk)]T and r̃∗k =


 v1/2(yk)εk

v(yk)(ε2
k − 1)




that will prove useful in deriving approximations of the two terms in the last formula. By

plugging in the estimated instruments and bounding the difference between the true and

estimated values of instruments Wk, k = 1, . . . , n, we find in a way similar to Kim and

Linton (2004) that the bias can be viewed as consisting of the four components

T1n =
h2

2n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

(
yk−1 − y1

h

)2

D2φ1(y1)⊗
(

1,
yk−1 − y1

h

)T
}

T2n =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

[
p̂1(yk−1)p̂2(yk,1)

p̂(yk)
− p1(yk−1)p2(yk,1)

p(yk)

]
r̃k ⊗

(
1,

yk−1 − y1

h

)T
}

T3n =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

p1(yk−1)p2

(
yk,1

)

p(yk)
r̃∗k ⊗

(
1,

yk−1 − y1

h

)T
}

T4n =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

[
p1(yk−1)p2(yk,1)

p(yk)
rk − φ1(yk−1)

]
⊗

(
1,

yk−1 − y1

h

)T
}

,

Step III. Asymptotic Bias

As a reminder, we assume that the sufficient conditions of Lu and Jiang (2001) are satis-

fied, and, therefore, the process yt is geometrically ergodic. This implies strict stationarity

and β-mixing (therefore, also α-mixing).

Since measurable function of strictly stationary and α-mixing process is again strictly

stationary and α-mixing, we can apply the ergodic theorem for α-mixing stationary pro-

cesses to T1n (see e.g. Fan and Yao (2003) for details). As a result, using the Taylor
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expansion of the density function p1(·), we obtain:

T1n =
h2

2n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

(
yk−1 − y1

h

)2

D2φ1(y1)⊗
(

1,
yk−1 − y1

h

)T
}

p→ h2

2
E

[
Kh(yk−1 − y1)

(
yk−1 − y1

h

)2

D2φ1(y1)⊗
(

1,
yk−1 − y1

h

)T
]

=
h2

2
p1(y1)D2φ1(y1)⊗ (µ2

K , µ3
K)T + o(h2)

Next, we define marginal expectations of estimated density functions p̂1(·), p̂2(·) and

p̂(·) as p̄1(yk−1) =
∫

Lg(z1 − yk−1)p1(z1)dz1, p̄2(yk,1) =
∫

Lg(z2 − yk,1)p2(z2)dz2 and

p̄(yk) =
∫

Lg(z1 − yk−1)Lg(z2 − yk,1)p(z1, z2)dz1dz2;

it can be shown analogously to Kim and Linton (2004) that T2n can be approximated

as

T2n =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

[
p̄1(yk−1)p̄2(yk,1)

p̄(yk)
− p1(yk−1)p2(yk,1)

p(yk)

]
r̃k ⊗

(
1,

yk−1 − y1

h

)T
}

+ op(1/
√

nh).

Applying the ergodic theorem for α-mixing stationary process and using the fact that

E

[
Kh(yk−1 − y1)[

p̄1(yk−1)p̄2(yk,1)

p̄(yk) − p1(yk−1)p2(yk,1)

p(yk) ] [m̃(yk)−m(yk)]
2 ⊗

(
1,

yk−1−y1

h

)T
]

= o(1/
√

nh),

we have

T2n =
1
n

d+n∑

k=d+1

{Kh(yk−1 − y1)[
p̄1(yk−1)p̄2(yk,1)

p̄(yk)
− p1(yk−1)p2(yk,1)

p(yk)
]r̃k ⊗

(
1,

yk−1 − y1

h

)T

}+ op(1/
√

nh)

p→ E

[
Kh(yk−1 − y1)

[
p̄1(yk−1)p̄2(yk,1)

p̄(yk)
− p1(yk−1)p2(yk,1)

p(yk)

]
r̃k ⊗

(
1,

yk−1 − y1

h

)T
]

' g2

2
p1(y1)

∫ [
p
(2)
2 (z2) +

p
(2)
1 (y1)
p1(y1)

p2(z2)− p2(z2)
p(y1, z2)

p(2)(y1, z2)

]
φ(y1, z2)dz2 ⊗ (µ2

L, 0)T

As a next step, we note that the terms T3n and T4n consist of are Fk−1-measurable for any

k, and, therefore, we can argue that, by ergodic theorem for α-mixing stationary process,

both T3n and T4n converge in probability to zero: Tmn
p→ 0, for m = 3 and m = 4.

Finally, for the probability limit of [I2 ⊗ eT
1 Q−1

n ], we have Qn = 1
nD−1

h YTKY D−1
h =

 qn0 qn1

qn1 qn2


 where qni = 1

n

∑d+n
k=d+1 Kh(yk−1 − y1)

(
yk−1−y1

h

)i
, i = 0, 1, 2. Using the
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Taylor expansion of p1(y1+uh), it is easy to obtain qni
p→ qi where q0 = p1(y1)µ0

K = p1(y1),

q1 = p1(y1)µ1
K = 0, q2 = p1(y1)µ2

K .

Clearly, eT
1 Q−1

n
p→ 1

p1(y1)e
T
1 . By Slutzky theorem, we conclude that the bias of the

estimator φ̂1(y1) is

B1n(y1) = [I2 ⊗ eT
1 Q−1

n ](T1n + T2n + T3n + T4n)

p→




1
2h2µ2

Km
(2)
1 (y1) + 1

2g2µ2
L

∫ [
p
(2)
2 (z2) + p

(2)
1 (y1)
p1(y1) p2(z2)− p2(z2)

p(y1,z2)p
(2)(y1, z2)

]
m(y1, z2)dz2

1
2h2µ2

Kv
(2)
1 (y1) + 1

2g2µ2
L

∫ [
p
(2)
2 (z2) + p

(2)
1 (y1)
p1(y1) p2(z2)− p2(z2)

p(y1,z2)p
(2)(y1, z2)

]
v(y1, z2)dz2




≡ B1(y1)

Step IV. Asymptotic Normality

As a final step, we derive the asymptotic distribution of
√

nh[I2 ⊗ eT
1 Q−1

n ](T1n + T2n +

T3n + T4n).

First, we rewrite T1n as

T1n =
h2

2n

d+n∑

k=d+1

{Kh(yk−1 − y1)
(

yk−1 − y1

h

)2

D2φ1(y1)⊗
(

1,
yk−1 − y1

h

)T

}

≡ h2

2
(r1n, r2n, r3n, r4n)T

where rqn = 1
n

∑d+n
k=d+1 {Kh(yk−1 − y1)

(
yk−1−y1

h

)q+1
m

(2)
1 (y1)}, q = 1, 2 and

rqn = 1
n

∑d+n
k=d+1 {Kh(yk−1 − y1)

(
yk−1−y1

h

)q−1
v

(2)
1 (y1)}, q = 3, 4. Applying Theorem 1

in Masry (November 1996) directly, we can easily find that each of the nh · var(rin),

i = 1, . . . , 4 is uniformly bounded: supy1∈R nh · var(r1n) ≤ supy1∈Rm
(2)
1 (y1) · C2ν

4(1 +

o(1)), supy1∈R nh · var(r2n) ≤ supy1∈Rm
(2)
1 (y1) · C2ν

6(1 + o(1)), supy1∈R nh · var(r3n) ≤
supy1∈Rv

(2)
1 (y1) ·C2ν

4(1+o(1)) and supy1∈Rnh ·var(r4n) ≤ supy1∈Rv
(2)
1 (y1) ·C2ν

6(1+o(1))

where νi ≡
∫

K2(u)uidu, i = 1, · · · , 6 and C2 is the upper bound of the density function

p1(·); recall that functions m1 and v1(·) have bounded second derivatives by Condition

2 and observe that, as a result, we have var(
√

nhT1n) = O(h4) uniformly over y1 ∈ R.

Note that the orders of the covariances are O(h4) due to Cauchy-Schwartz Inequality,

i.e., cov(
√

nhrin,
√

nhrjn) ≤
√

var(
√

nhrin) · var(
√

nhrjn), for 1 ≤ i < j ≤ 4. It can

be similarly shown that var(
√

nhT2n) is asymptotically negligible as well. To see this,
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rewrite T2n as

T2n =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

[
p̂1(yk−1)p̂2(yk,1)

p̂(yk)
− p1(yk−1)p2(yk,1)

p(yk)

]
r̃k ⊗

(
1,

yk−1 − y1

h

)T
}

≡ (x1n, x2n, x3n, x4n)T

where

x1n =
1
h

1
n

d+n∑

k=d+1

{
K

(
yk−1 − y1

h

)[
p̂1(yk−1)p̂2(yk,1)

p̂(yk)
− p1(yk−1)p2(yk,1)

p(yk)

]
yk

}

=
1
h

1
n

d+n∑

k=d+1

ξ1k

≡ 1
h

1
n

ξ1,

x3n = 1
h

1
n

∑d+n
k=d+1 ξ3k ≡ 1

h
1
nξ3 with ξ3k being the same as ξ1 except that ε̃2t is sub-

stituted for yt, and x2n = 1
h

1
n

∑d+n
k=d+1 ξ2k ≡ 1

h
1
nξ2, with ξ2k = ξ1k

(
yk−1−y1

h

)
, x4n =

1
h

1
n

∑d+n
k=d+1 ξ4k ≡ 1

h
1
nξ4 with ξ4k = ξ3k

(
yk−1−y1

h

)
Applying Davydov’s lemma (see Theo-

rem 1.0 in Rio (1993)), we obtain 1
nvar(ξ1) ≤ 2CMν,1

∑
i∈[0,n+d−1] α(i)1−2/ν where Mν,1 =

E[|ξ1k|ν ] = O(g2ν) and C is a nonnegative constant. Thus, we find that var(
√

nhx1n) =

O
(

g2ν

h

)
→ 0, as n →∞; it can be shown analogously that var(

√
nhxin) → 0, as n →∞,

for i = 2, 3, 4. By Cauchy-Schwartz inequality, cov(
√

nhxin,
√

nhxjn) → 0 as n →∞, for

1 ≤ i < j ≤ 4 as well.

Third, we rewrite T3n as

T3n =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

p1(yk−1)p2(yk,1)
p(yk)

r̃∗k ⊗
(

1,
yk−1 − y1

h

)T
}

≡ (s0n, s1n, t0n, t1n)T

where

sln =
1
n

d+n∑

k=d+1

Kh(yk−1 − y1)
(

yk−1 − y1

h

)l p1(yk−1)p2(yk,1)
p(yk)

v1/2(yk)εk

tmn =
1
n

d+n∑

k=d+1

Kh (yk−1 − y1)
(

yk−1 − y1

h

)m p1(yk−1)p2(yk,1)
p(yk)

v(yk)(ε
2
k − 1),
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l = 0, 1 and m = 0, 1. We first examine the term s0n. It’s easy to see that E [s0n|Fn+d] = 0

and

var [s0n|Fn+d] = E
[
s2
0n|Fn+d

]

=
1

nh

{
1
n

d+n∑

k=d+1

1
h

K2

(
yk−1 − y1

h

)
p2
1(yk−1)p2

2(yk,1)
p2(yk)

v(yk)

}

Applying the ergodic theorem for α-mixing processes and changing variables, we find that

var
[√

nhs0n

]
= E [nh · var [s0n|Fn+d]]

= E

[
1
h

K2

(
yk−1 − y1

h

)
p2
1(yk−1)p2

2(yk,1)
p2(yk)

v(yk)

]

=‖ K ‖2
2 p2

1(y1)
∫

p2
2(z2)

p(y1, z2)
v(y1, z2)dz2[1 + o(1)]

Applying the central limit theorem (Theorem 2.22) in Fan and Yao (2003), we have that

√
nhs0n

d→ N [0, σm
0,s(y1)]

where

σm
0,s(y1) =‖ K ‖2

2 p2
1(y1)

∫
p2
2(z2)

p(y1, z2)
v(y1, z2)dz2 (12)

It is equally easy to conclude that E [t0n|Fn+d] = 0 and

var [t0n|Fn+d] = E
[
t20n|Fn+d

]

=
1
n2

E




(
d+n∑

k=d+1

Kh(yk−1 − y1)
p1(yk−1)p2(yk,1)

p(yk)
v(yk)(ε

2
k − 1)

)2

|Fn+d




=
1
n2

d+n∑

k=d+1

K2
h(yk−1 − y1)

p2
1(yk−1)p2

2(yk,1)
p2(yk)

v2(yk)κ4(yk)

In much the same way as before for s0n, applying the ergodic theorem for α-mixing process,

changing variables and using the central limit theorem in Fan and Yao (2003), we have

that

√
nht0n

d→ N [0, σv
0,s(y1)] (13)

where σv
0,s(y1) =‖ K ‖2

2 p2
1(y1)

∫
p2
2(z2)

p(y1, z2)
v2(y1, z2)κ4(y1, z2)dz2 (14)

20



Note that cov(
√

nhs0n,
√

nht0n) = E(nhs0nt0n) since E(s0n) = E(t0n) = 0. Using the

same approach as before, we can easily show that

cov(
√

nhs0n,
√

nht0n) = E [E [nhs0nt0n|Fn+d]]

=‖ K ‖2
2 p2

1(y1)
∫

p2
2(z2)

p(y1, z2)
v3/2(y1, z2)κ3(y1, z2)dz2[1 + o(1)]

Combining the results for s0n and t0n, we have the asymptotic normality for T3n :

√
nhT3n

d→ N(0, Σ1,T3) (15)

where

Σ1,T3 =




σm
0,s(y1) ∗ σmv

0,s (y1) ∗
∗ ∗ ∗ ∗

σmv
0,s (y1) ∗ σv

0,s(y1) ∗
∗ ∗ ∗ ∗

,




(16)

σm
0,s(y1) and σv

0,s(y1) defined as in (12) and (14), while

σmv
1,s (y1) ≡‖ K ‖2

2 p2
1(y1)

∫
p2
2(z2)

p(y1, z2)
v3/2(y1, z2)κ3(y1, z2)dz2 (17)

The rest of the elements of the matrix Σ1,T3 are left blank since they are not needed to

formulate the final result.

Next, we rewrite T4n as

T4n =
1
n

d+n∑

k=d+1

{
Kh(yk−1 − y1)

[
p1(yk−1)p2(yk,1)

p(yk)
rk − φ1(yk−1)

]
⊗

(
1,

yk−1 − y1

h

)T
}

≡ (u0n, u1n, w0n, w1n)T

where

uln =
1
n

d+n∑

k=d+1

Kh(yk−1 − y1)
(

yk−1 − y1

h

)l [p1(yk−1)p2(yk,1)
p(yk)

m(yk)−m1(yk−1)
]

wmn =
1
n

d+n∑

k=d+1

Kh(yk−1 − y1)
(

yk−1 − y1

h

)m [
p1(yk−1)p2(yk,1)

p(yk)
v(yk)− v1(yk−1)

]
,

for l = 0, 1 and m = 0, 1. Corollary 2 in Masry (December 1996) provides us with the tool

we need to establish the asymptotic normality for T4n :

√
nhT4n

d→ N(0, Σ1,T4) (18)
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where

Σ1,T4 =




σm
0,u(y1) ∗ σmv

0,uw(y1) ∗
∗ ∗ ∗ ∗

σmv
0,uw(y1) ∗ σv

0,w(y1) ∗
∗ ∗ ∗ ∗




(19)

with

σm
0,u(y1) =‖ K ‖2

2 p2
1(y1)

∫ [
p2(z2)m(y1, z2)− p2|1(z2|y1)m1(y1)

]2
dz2,

σv
0,w(y1) =‖ K ‖2

2 p2
1(y1)

∫ [
p2(z2)v(y1, z2)− p2|1(z2|y1)v1(y1)

]2
dz2,

σmv
0,uw(y1) =‖ K ‖2

2 p2
1(y1)

∫ [
p2(z2)m(y1, z2)− p2|1(z2|y1)m1(y1)

] [
p2(z2)v(y1, z2)− p2|1(z2|y1)v1(y1)

]
dz2

Finally, it is easy to notice that cov(T3n, T4n) = E[T3nT4n] = E[E[T3nT4n|Fn+d]] = 0.

Now, the asymptotic normality of an additive component is almost at hand. eT
1 Q−1

n
p→

1
p1(y1)e

T
1 implies that I2⊗ eT

1 Q−1
n

p→ I2⊗ 1
p1(y1)e

T
1 . Applying the Slutzky theorem, we find

that

√
nh[I2 ⊗ eT

1 Q−1
n ](T1n + T2n + T3n + T4n) d→ N(0, Σ∗1(y1))

and

√
nh[φ̂1(y1)− φ1(y1)−B1(y1)]

d→ N [0,Σ∗1(y1)]

where

B1(y1) =


 bm

1 (y1)

bv
1(y1)


 , Σ∗1(y1) =


 σm

1 (y1) σmv
1 (y1)

σmv
1 (y1) σv

1(y1)




with the components as in the statement of Theorem 1 for α = 1.

6 Discussion

The additive-interactive model (1) represents a further step in the development of the non-

parametric volatility model theory. The article provides the instrumental variable based

algorithm that can be easily used to fit such a model. The algorithm is computationally
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efficient and easy to implement. At the same time, central limit theorems for the estima-

tors of the individual components are obtained and closed form expressions for asymptotic

biases and variances of these estimators are given. Among several interesting questions

that remain unanswered for now in the context of the model (1) is the question of testing

the statistical significance of individual additive and interactive components. This is the

question of obvious practical interest. It has some prior history in the cross-sectional con-

text. Specifically, a test that can handle the separability hypothesis in the mean function

under a specific alternative (inclusion of second order interactions) for cross-sectional data

had been proposed in Sperlich, Tjostheim and Yang (2002). Consistent specification tests

for nonparametric/semiparametric models proposed in Li, Hsiao and Zinn (2003) are de-

signed for null models that may include, among other possible nonparametric components,

second order interactions. However, not much is known about similar testing problems in

the time series context. Note that many of the modern applications are concerned with

situations where the number of lags d considered can be quite large. Even in the cross-

sectional context, multicollinearity among many different explanatory variables is very

much a commonplace; in the time series context, it is always the case. Therefore, multiple

hypotheses testing is, probably, much more important under these circumstances. For

example, to test the separability hypothesis in the mean(variance) function for model (1),

it is necessary to test mαβ ≡ 0, 1 ≤ α < β ≤ d (vαβ ≡ 0, 1 ≤ α < β ≤ d, respectively). It

may also be of interest to test the null hypothesis that includes both additive and inter-

active components. Thus, the design of the F-type tests here seems to be an important

issue.
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