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Abstract:

A multivariate semiparametric partial linear model for both fixed

and random design cases is considered. Earlier, in Brown, Levine and

Wang (2014), the model has been analyzed using a difference sequence

approach. In particular, the functional component has been estimated

using a multivariate Nadaraya-Watson kernel smoother of the resid-

uals of the linear fit. Moreover, this functional component estimator

has been shown to be rate optimal if the Lipschitz smoothness index

exceeds half the dimensionality of the functional component domain.

In the current manuscript, we take this research further and show that,

for both fixed and random designs, the rate achieved is the minimax

rate under both risk at a point and the L2 risk. The result is achieved

by proving lower bounds on both pointwise risk and the L2 risk of

possible estimators of the functional component.
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1. Introduction

Semiparametric models have a long history in statistics and have received

considerable attention in the last several decades. The main reason they are of

considerable interest is that, quite often, the relationships between the response

and predictors are very heterogeneous in the same model. Some of the relation-

ships are clearly linear whereas the detailed information about others is hard to
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come by. In many situations, a small subset of variables is presumed to have an

unknown relationship with the response that is modeled nonparametrically while

the rest are assumed to have a linear relationship with it. As an example, Engle,

Granger, Rice and Weiss (1986) studied the nonlinear relationship between tem-

perature and electricity usage where other related factors, such as income and

price, are parameterized linearly.

The model we consider in this paper is a semiparametric partial linear mul-

tivariate model

Yi = a+X
′
iβ + f(Ui) + εi (1.1)

where Xi ∈ Rp and Ui ∈ Rq, β is an unknown p × 1 vector of parameters, a is

an unknown intercept term, f(·) is an unknown function and εi are independent

and identically distributed random variables with mean 0 and constant variance

σ2. We consider two cases with respect to U : a random design case whereby

Ui is a q-dimensional random variable and a fixed design case with Ui being

a q-dimensional vector where each coordinate is defined on an equispaced grid

on [0, 1]. In the fixed design case the errors are independent of Xi while in

the random design case they are independent of (X
′
i , Ui). To obtain meaningful

results, the function f is assumed to belong in the Lipschitz ball Λα(M) where α

is the Lipschitz exponent. Of particular interest is the fact that, to be coherent,

in the fixed design case when q > 1 the model (1.1) must have multivariate

indices. The version with q = 1 was earlier considered in Wang, Brown and Cai

(2011) while Brown, Levine and Wang (2014) considered the case of q > 1 in

detail. The latter defined two conceptually similar difference based estimators of

the parametric component for fixed and random design cases, respectively, and

showed
√
n asymptotic normality of both of these estimators. Moreover, it was

also established that, in order for the estimator of the parametric component

to be efficient, the order of the difference sequence must go to infinity. Brown,

Levine and Wang (2014) also obtained a uniform over a Lipschitz ball Λα(M)

convergence result for an estimator of the functional component, establishing the

rate of convergence n−2α/(2α+q).

To the best of our knowledge, the optimal in the minimax sense rate of con-

vergence for estimators of the nonparametric component of multivariate partial

linear model (1.1) has not been established. Since results of Brown, Levine and
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Wang (2014) amount to establishing the upper bound of that rate, the remain-

ing task is to establish the lower bound. In this manuscript, we are doing just

that for both fixed and random designs as well as for the two different functional

distances. The first distance considered is the difference at a given fixed point

and the second is that L2[0, 1]q distance. A number of different techniques are

used to obtain these results.

Before proceeding, it is probably useful to recap quickly how the func-

tional component estimator is constructed. The detailed discussion is avail-

able in Brown, Levine and Wang (2014). We only describe what happens in

the fixed design case. We begin with (normalized) “diagonal” differences of

observations Yi. As in Cai, Levine and Wang (2009) and Munk, Bissantz,

Wagner and Freitag (2005), we select first a set of q-dimensional indices J =

{(0, . . . , 0), (1, . . . , 1), . . . , (γ, . . . , γ)}. Some specialized notation is needed first

to describe resulting differences. For any vector u ∈ Rq, a real number v and

a set A ⊂ Rq, we define the the affine transformation of the set A is the set

B = u + vA = {y ∈ Rq : y = u + va, a ∈ A ⊂ Rq}; then, we introduce a set R

that consists of all indices i = (i1, . . . , iq) such that R + J ≡ {(i + j)|i ∈ R, j ∈
J} ⊂ {1, . . . ,m}q. Let a subset of R + J corresponding to a specific i ∈ R be

i + J . In order to define a difference of observations of order γ, we define first

a sequence of real numbers {dj} such that
∑γ

j=0 dj = 0, and
∑γ

j=0 d
2
j = 1 and∑γ

j=0 djj
k = 0 for any power k = 1, . . . , γ. Moreover, denote ck =

∑γ−k
i=0 didi+k.

Then the difference of order γ “centered” around the point Yi, i ∈ R is defined

as

Di =
∑
j∈J

djYi+J (1.2)

Note that this particular choice of the set J makes numbering of difference coeffi-

cients dj very convenient; since each q-dimensional index j consists of only iden-

tical scalars, that particular scalar can be thought of as a scalar index of d; thus,∑
j∈J dj is the same as

∑γ
j=0 dj whenever needed. Now, let Zi =

∑
j∈J djXi+J ,

δi =
∑

j∈J djf(Ui+J), and ωi =
∑

j∈J djεi+J , for any i ∈ R. Then, by differenc-

ing the original model (2.1), one obtains Di = Z
′
iβ + δi + ωi for all i ∈ R. The



4 Michael Levine

ordinary least squares solution for β can then be written as

β̂ = argmin
∑
i∈R

(Di − Z
′
iβ)2

In Brown, Levine and Wang (2014), the estimator of the nonparametric com-

ponent f has been constructed in several stages. First, the vector coefficient

β has been estimated as described above. Next, the intercept a has been es-

timated using the natural estimator â = 1
n

∑
i≤n(Yi − X

′
i β̂). Finally, the mul-

tivariate Nadaraya-Watson kernel smoother has been applied to the residuals

ri = Yi− â−X
′
i β̂ from that fit to estimate the unknown function f . To construct

the kernel smoother, one can, for example, select a univariate kernel function

K(U l) for a specific coordinate U l, l = 1, . . . , q such that
∫
K(U l) dU l = 1 and

that has bαc vanishing moments. Next, one would usually chose an asymptoti-

cally optimal bandwidth h = n−1/(2α+q) (see, for example, J. Fan and I. Gijbels

(1995)), and define the univariate rescaled kernel as Kh(U l) = h−1K(h−1U l).

The q-dimensional product kernel is, then Kh(U) = h−q
∏q
l=1K(h−1U l). Armed

with this framework, the Nadaraya-Watson kernel weights can be defined as

Wi,h(U −Ui) = Kh(U−Ui)∑
i≤nKh(U−Ui)

Finally, the resulting kernel estimator of the func-

tion f(U) can then be defined as

f̂(U) =
∑
i≤n

Wi,h(U − Ui)ri

Note that in the univariate case, Wang, Brown and Cai (2011) used the Gasser-

Müller kernel to obtain the estimator of the functional component; for the mul-

tivariate case, Nadaraya-Watson estimator seems to be a better choice because

it can be generalized easier to the multivariate case.

The next two sections present detailed results for the fixed and random design

cases, respectively.

2. Optimal rates of convergence for the deterministic design case We

consider the following semiparametric model

Yi = a+X
′
iβ + f(Ui) + εi (2.1)

where Xi ∈ Rp, Ui ∈ S = [0, 1]q ⊂ Rq, εi are iid zero mean random variables

with variance σ2 and finite absolute moment of the order δ + 2 for some small
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δ > 0, that is, E |εi|δ+2 < ∞. As noticed earlier in Brown, Levine and Wang

(2014), the model (2.1) must have multidimensional indices i = (i1, . . . , iq)
′

to be

coherent. Throughout this work, we will use bold font i to refer to multivariate

indices and regular font to refer to coordinates of a multivariate index. For some

positive integer m, we can take ik = 0, 1, . . . ,m for k = 1, . . . , q; thus, the total

sample size is n = mq. Note that this assumption implies that m = o(n) as

n → ∞. Due to the use of multivariate indices, one can also say that εi form

an independent random field with the marginal density function h(x) where x

is a generic argument. We will say that two indices i1 = (i11, . . . , i
1
q) ≤ i2 =

(i21, . . . , i
2
q) if i1k ≤ i2k for any k = 1, . . . , q; the relationship between i1 and i2

is that of partial ordering. Also, for a multivariate index i, we denote |i| =

|i1| + . . . + |iq|. In this section, we assume that Ui follows a fixed equispaced

design: Ui = (ui1 , . . . , uiq)
′ ∈ Rq where each coordinate is uik = ik

m . In the model

(2.1), β is an unknown p-dimensional vector of parameters and a is an unknown

intercept term. We assume that Xi’s are independent random vectors that are

also independent of εi; moreover, we denote the non-singular covariance matrix

of X ΣX . For convenience, we also denote N = {1, . . . ,m}q. This model requires

an identifiability condition to be satisfied; more specifically,
∫

[0,1]q f(u)du = 0.

The version of (2.1) with q = 1 has been considered earlier in Wang, Brown

and Cai (2010). The case of q = 1 is quite different in that it only requires

univariate indices for the model to be coherent. As a reminder, we consider

functions f belonging to the Lipschitz ball Λα(M) for some positive constant M

that is defined as follows. For a q-dimensional index j = (j1, . . . , jq), we define

j(l) = {j : |j| = j1+. . .+jq = l}. Then, for any function f : Rq → R, Dj(l)f

∂u
j1
1 ...∂u

jq
q

is

defined for all j such that |j| = l. Then, the Lipschitz ball Λα(M) consists of all

functions f(u) : [0, 1]q → R such that |Dj(l)f(u)| ≤ M for l = 0, 1, . . . , bαc and

|Dj(bαc)f(v) −Dj(bαc)f(w)| ≤ M ||v − w||α
′

with α
′

= α − bαc. Here and in the

future, || · || stands for the regular l2 norm in Rq. Brown, Levine and Wang (2014)

established a uniform upper bound on the risk at a point for the difference based

estimator f̂ of the nonparametric component f . More specifically, they proved

that, for any Lipschitz indicator α > 0 and any U0 ∈ [0, 1]q, the estimator f̂

satisfies

sup
f∈Λα(M)

E[(f̂(U0)− f(U0))2] ≤ Cn−2α/(2α+q)
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for a constant C > 0. The following result also establishes the lower bound on

the risk of that estimator, therefore proving that n−α/(2α+q) is the minimax rate

of convergence. Since this result requires that the difference-based estimator

of β be asymptotically normal, the assumptions from Theorem (2.1) are still

needed. However, they are not sufficient to obtain the lower bound. One extra

assumption still has to be included in the statement of the Theorem (2.2) to

obtain the lower bound. Also, the lower bound proof in this context requires

the use of the so-called Varshamov-Gilbert Lemma that has been known for a

long time in information theory (see, e.g. Gilbert (1952) as well as Ibragimov

and Hasminskii (1977)). For convenience, we give the full text of this important

result.

Lemma 2.1. Choose a positive integer m ≥ 8. Let Ω be a set of all binary

sequences of length m; clearly, the cardinality of this set is 2m. There exists a

subset {ω(0), . . . , ω(J)} of Ω such that ω(0) = (0, . . . , 0), and ρ((ω(j), ω(k)) ≥ m
8

for any 0 ≤ j ≤ k ≤ J ; moreover, J ≥ 2m/8.

The Varshamov-Gilbert lower bound essentially implies that one can select a

“large” subset of binary sequences of length m from set Ω in such a way that the

Hamming distance between any two sequences from this subset can be guaranteed

to be no less than m
8 . In this context, “large” means that the the size of such a

subset can be guaranteed to be no less than 2m/8.

Theorem 2.2. Let εi be independent identically distributed random variables

with zero mean and finite variance σ2; moreover, we assume that, for some small

δ > 0, Eε2+δ
i < ∞. We also assume that the marginal density function h(x) of

the field εi must have a bounded variation over the real line. Next, a difference

sequence used dj is of order γ ≥ bαc and such that
∑γ

j=0 dj = 0,
∑γ

j=0 d
2
j = 1,∑γ

j=0 djj
k = 0 for k = 1, . . . , γ. Finally, we assume that the marginal density

function of observations Yi p(Yi) =
∫
pε(Yi − X

′
iβ) dXi satisfies the following

assumption: there exists p∗ > 0, v0 > 0 such that∫
p(U) log

p(U)

p(U + V )
dU ≤ p∗v2 for all ||V || < v0 (2.2)

Then, the convergence rate n−α/(2α+q) is optimal
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1. on (Λα(M), d0) where d0 is the distance at a fixed point U0 ∈ [0, 1]q and

2. on (Λα(M), || · ||2) where || · ||2 is an L2 distance on [0, 1]q.

Remark 2.3. Note that the condition (2.2) is the one that is new here. It is of

a fairly general nature; in particular, a standard Gaussian density satisfies this

condition. For more information on this condition, see Tsybakov (2009).

Proof. 1. To obtain the minimax convergence rate for the first case, we will use

a two-point argument going all the way back to Ibragimov and Has’minskii

(1977) and Has’minskii (1978). First, we need to define an appropriate

”test” function. We will use the optimal bandwidth hn = n
− 1

2α+q in each

dimension j = 1, . . . , q and a bandwidth matrix Hn = diag{hn} = hnIq×q

for the estimator of function f(U). Next, consider a non-negative function

K ∈ Λα
(

1
2

)
such that K(U) > 0 if and only if ||U || ≤ 1

2 . As an exam-

ple of such function, we can select K(U) = a exp
(
− 1

1−||U ||2

)
I
(
||U || ≤ 1

2

)
for a sufficiently small a > 0. Note that this function reaches its maxi-

mum when ||U || = 0 and that this maximum is exp (−1). A pair of func-

tions that we will need for our problem are f0,n(U) ≡ 0 and f1,n(U) =

MhαnK(H−1
n (U − U0)) = MhαnK(h−1

n (U − U0)). The following three condi-

tions must be checked for us to conclude that the lower bound is achieved

at the convergence rate n
− α

2α+q .

• The first condition is that fj,n ∈ Λα(M) for j = 0, 1 and sufficiently

large n. For f0,n ≡ 0 it is clearly satisfied immediately. Next, for any

l = 0, 1, . . . , bαc, |Dj(l)f1,n(U)| = Mhα−ln |Dj(l)K(h−1
n (U − U0))| ≤ M

for sufficiently large n since the function K ∈ Λα
(

1
2

)
. Finally, since

|D(j(bαc))f1,n(V )−D(j(bαc))f1,n(W )| ≤ hα−bαcn |D(j(bαc))K(h−1
n (V−U0))−

D(j(bαc))K(h−1
n (W − U0))| ≤ M ||V −W ||α

′
for all sufficiently large n,

we can say that f1,n ∈ Λα(M)

• Next, we need to check that, for sufficiently large n, the distance be-

tween the two ”test” functions d(f1,n(U0), f0,n(U0)) ≥ n−α/(2α+q). In-

deed, |f1,n(U0)| = |hαnK(0)| ≥ 2An
− α

2α+q for e.g. A = M
4 exp (−1).

Therefore, the distance between the two ”points” in the Lipschitz ball

Λα(M) that we selected is, indeed, of the right order n
− α

2α+q .
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• Finally, let us define two product densities m0,n and m1,n that are

densities of observations generated by (2.1) when the functional com-

ponent is equal to f0,n and f1,n, respectively. Using assumption (2.2),

the Kullback distance between the two is

K(m0,n,m1,n) =

∫
· · ·
∫

log
∏
i≤n

p(Yi)

p(Yi − f1,n(Ui))

∏
i≤n

[p(Yi) dYi]

=
∑
i≤n

∫
p(Y ) log

p(Y )

p(Y − f1,n(Ui))
dY ≤

∑
i≤n

p∗f2
1,n(Ui)

= Mp∗h
2α
n exp (−2)

∑
i≤n

I

(
||Ui − U0|| ≤

hn
2

)
≤ p∗h2α

n exp (−2) max((M/2)nhqn, 1)

≤ (M/2)p∗h
2α
n exp (−2)nhqn = (M/2)p∗ exp (−2)nh2α+q

n ≤ C

for sufficiently large n where C = (M/2)p∗ exp (−2). This establishes the

optimality of the rate n−α/(2α+q).

2. Next, we establish the minimax rate of convergence for the L2[0, 1]q risk.

First, recall the earlier result that, for any α > 0 ,

sup
f∈Λα(M)

E

[∫
[0,1]q

(f̂(U)− f(U))2 dU

]
≤ Cn−2α/(2α+q)

We will argue that the rate n−α/(2α+q) is also the minimax rate under the

L2[0, 1]q loss. In what follows, we denote dxe the smallest integer that is

larger than x ∈ R. First, let us define m = dc0n
q

2α+q e where c0 > 0 is some

real number. As a second step, we choose the bandwidth hn = m−1/q. Our

next purpose is to define a partition of [0, 1]q into a set of disjoint subsets

and define a sequence of functions that take non-zero values on just one of

these subsets. Such a multivariate partition with Rq-valued partition points

(vectors) Uk = (u1
k, . . . , u

q
k)
′

can be defined by selecting ujk =
k− 1

2
m , for k =

1, . . . ,m. Now, denote ∆k =
{

[k−1
m , km), . . . , [k−1

m , km)
}′
∈ Rq; note that the

entire [0, 1]q = ∪k∆k and that ∆k∩∆k′ = ∅ if k 6= k
′
, that is ∆ks are disjoint.

The next step consists of selecting hypotheses based on a function K(U) :

[0, 1]q → R such that K(U) ∈ Λα
(

1
2

)
and K(U) > 0 if and only if ||U || <

1
2 . As before, we select the function K(U) = exp

(
− 1

1−||U ||2

)
I
(
||U || ≤ 1

2

)
.



Minimax rate of convergence for an estimator of the functional component in a semiparametric partial linear model 9

Also, denote ||K||2 the L2[0, 1]q norm of the function K. To simplify the

notation, let the diagonal bandwidth matrix be H = diag hn = hnIq×q.

Now, we can define a set of m functions Φk(U) = MhαnK(H−1(U − Uk)),
for k = 1, . . . ,m. Finally, denote the set of all binary sequences of length m

Ω = {ω = (ω1, . . . , ωm), ωi ∈ (0, 1)} = {0, 1}m. Then, the ”test functions”

fj,n, j = 0, . . . , J will be selected from the set of functions

E = {fω(u) =

m∑
k=1

ωkΦk(u), ω ∈ Ω} (2.3)

.

The following three conditions now must be verified to ensure that n−α/(2α+q)

is, indeed, the minimax rate.

(a) First, we need to show that the L2[0, 1]q distance between any two of

the ”test functions” is bounded below by the multiple of n−α/(2α+q).

For any two functions fω, fω′ ∈ E, the L2[0, 1]q-distance between them

is

d(fω, fω′ ) =

√∫
[0,1]q

[
fω(U)− fω′ (U)

]2
dU

=

√√√√∫
[0,1]q

[
m∑
k=1

(ωk − ω
′
k)Φk(U)

]2

dU

=

√√√√ m∑
k=1

(ωk − ω
′
k)

2

∫
∆k

Φ2
k(U) dU = Mh

α+ q
2

n ||K||2
√
ρ(ω, ω′)

where ρ(ω, ω
′
) =

∑q
k=1 I(ωk 6= ω

′
k) is the Hamming distance between ω

and ω
′
. Now we need to use the Lemma(2.1). In our context, it suffices

to choose the ω and ω
′

such that
√
ρ(ω, ω′) � h−q/2n which is equivalent

to ρ(ω, ω
′
) � m. In other words, to show that the rate n−α/(2α+q) is,

indeed, the minimax rate of convergence, we need to use an infinite

number of ”testing hypotheses” J . It is now easy to verify that, for a
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sufficiently large n,

d(fω, fω′ ) ≥Mh
α+ q

2
n ||K||2

√
m

16
(2.4)

=
M

4
||K||2hαn =

M

4
||K||2n−

α
2α+q

and so the rate is correct

(b) Clearly, each Φk(U) ∈ Λα(M); since each ωk ≤ 1 and the functions

Φk(U) have disjoint supports for different k, fω ∈ Λα(M).

(c) Finally, we also need to verify that the average Kullback-Leibler dis-

tance between the null hypothesis and others is bounded from above as

follows: 1
J

∑J
j=1K(f0,n, fj,n) ≤ α log J . Indeed, proceeding as before

in the case of pointwise risk, one can find that

K(f0,n, fj,n) ≤ p∗
∑
i≤n

f2
j,n(Ui) ≤ p∗

m∑
k=1

∑
i:Ui∈∆K

Φ2
k(Ui)

≤ p∗M2K2
maxh

2α
n

m∑
k=1

{# : Ui ∈ ∆k}

≤ p∗M2K2
maxnh

2α
n ≤ p∗M2K2

maxc
(−2α+q)/q
0 m

for a sufficiently large n. Since Varshamov-Gilbert result suggests

that m ≤ 8 logM/ log 2, the claim is, indeed, true if we select c0 =(
8p∗L2K2

max
α log 2

) q
2α+q

.

3. Optimal rates of convergence for the random design case

In the same way as in Wang, Brown and Cai (2011), our next step is to

obtain minimax convergence rates in the case of random design. For convenience

purposes, we restate the assumptions of that case. Our model is again

Yi = a+X
′
iβ + f(Ui) + εi (3.1)

for i = 1, . . . , n; we also assume that Ui are random variables on [0, 1]q and

that (X
′
i , Ui) ∈ Rp × Rq are independent with an unknown joint density g(x, u).

The random errors εi are independent identically distributed with mean zero,
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variance σ2 and are independent of (X
′
i , Ui). Moreover, we assume that the

conditional covariance matrix Σ∗ = E[(X1−E(X1|U1))(X1−E(X1|U1))
′
] is non-

singular. As in any linear regression model, β ∈ Rp is a vector of coefficients.

For any U with the marginal distribution g(u), we also need to assume that

E(f(U)) ≡
∫
f(u)g(u) du = 0 to ensure identifiability of the model (3.1). Finally,

an individual coordinate of the vector Xi is denoted X l
i , for l = 1, . . . , p and an

individual coordinate of the random vector U is denoted U r, for r = 1, . . . , q.

Note that, unlike the fixed design case, the indices i here are univariate.

As a first step, we obtain least squares estimates of the coefficient vector

β̂ and the intercept â. Note that, unlike in the fixed design case, the nearest

neighbor type approach has to be used because it is impossible to arrange the

points Ui in a meaningful order while keeping them in a small neighborhood of

the point U where the function has to be estimated. In other words, only the

points Ui such that the Euclidean norm ||Ui − U ||2 ≤ ε for some small ε > 0

are considered. Let the number of these points be γi(ε); clearly, this number

depends on the choice of ε as well as on the marginal distribution of Ui. Then, a

difference ”centered” on the point Ui will be δi =
∑γi(ε)

t=1 dtf(Ui+t). Note that, as

opposed to the fixed design case, the difference sequence considered here is of a

variable order that depends on the value of the marginal density function g(Ui)

at which the function f is to be estimated as well as the ”tuning” parameter ε.

From this point on, the estimation of β proceeds exactly as in the fixed design

case.

The asymptotic normality and efficiency of the estimator β̂ in the random

design case were established in the Theorem 3.5 of Brown, Levine and Wang

(2014). To estimate the function f(U), we apply a multivariate kernel smoother

to the residuals ri = Yi−â−X
′
i β̂ in the same way as it was done in the fixed design

case. As in the fixed design case, we use again the multivariate version of the

Nadaraya-Watson estimator that uses a product kernel. The Nadaraya-Watson

estimator of f(U) is, then

f̂n(U) =

n∑
i=1

Wi,h(U − Ui)ri

where the weights Wi,h(U − Ui) are the multivariate Nadaraya-Watson weights.

We stress the dependence of this estimator on the sample size n by using it as
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a subscript. To make the notation shorter, we will also use || · ||2 to denote the

L2[0, 1]q - norm and || · ||22 the squared norm in the same space. As a first step,

we need to establish the analogue of Theorem 2.4 from Brown, Levine and Wang

(2014) in the case of random design. Since the proof of that result is almost

analogous to Theorem 2.4, we omit it and only state the final result.

Theorem 3.4. Let the marginal density function of Ui g(u) be bounded every-

where on Rq. Also, let the function f(U) ∈ Λα(Mf ) and h(U) ≡ E(X|U) ∈
Λρ(Mh). Define the difference based estimator of β as described above with ε→ 0

as n → ∞; the “nearest neighbor distance” ε is selected in such a way that

o(n)ε2(ρ+α) → 0 when n→∞. Then, for any Lipschitz indicator α > 0 and any

U0 ∈ [0, 1]q, the estimator f̂n satisfies

sup
f∈Λα(M)

E[(f̂n(U0)− f(U0))2] ≤ Cn−2α/(2α+q)

for a constant C > 0. Also, for any α > 0 ,

sup
f∈Λα(M)

E

[∫
[0,1]q

(f̂n(U)− f(U))2 dU

]
≤ Cn−2α/(2α+q)

Theorem (3.4) establishes upper bounds on the rate of convergence for the

distance at a point and the L2[0, 1]q distance. In order to obtain the optimality of

this convergence rate, we need to match these upper bounds with lower bounds.

To characterize these lower bounds, we need a result from the information theory

generally known as Fano’s Lemma (see e.g. Fano (1952)). To make the exposi-

tion easier to follow, we describe this result in full. First, let P0, P1, . . . , PM be

probability measures on some measurable probability space. Suppose we have

a test ψ that can differentiate between {0, 1, . . . ,M} based on a given outcome.

Based on such a test, define the average probability of error and the minimum

average probability of error by

p̄e,M (ψ) =
1

M + 1

M∑
j=0

Pj(ψ 6= j)

and

p̄e,M = inf
ψ
p̄e,M (ψ),
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respectively. Also, define the average probability measure P̄ = 1
M+1

∑M
j=0 Pj .

For any 0 ≤ x ≤ 1, we define the function g(x) = x logM +H(x) where H(x) =

−x log x− (1− x) log(1− x). Now we are ready to introduce Fano’s Lemma.

Lemma 3.5. Let P0, P1, . . . , PM be a set of probability measures for some M ≥ 1.

Then, p̄e,M ≤ M
M+1 and, moreover,

g(p̄e,M ) ≥ log(M + 1)− 1

M + 1

M∑
j=0

K(Pj , P̄ )

Now, we are ready to state and prove the main result of this section.

Theorem 3.6. 1. Let Tn be an arbitrary estimator of the function f . For any

Lipschitz indicator α > 0 and any U0 ∈ [0, 1]q, the following holds:

lim inf
n→∞

inf
Tn

sup
f∈Λα(M)

Ef
[
n

2α
2α+q (Tn(U0)− f(U0))2

]
≥ c1

where c1 is a constant that does not depend on n. In other words, n−α/(2α+q)

is an optimal (minimax) rate of convergence when estimating the function

f(U) at a given fixed point U0.

2. Again, let Tn be an arbitrary estimator of the function f . For any Lipschitz

indicator α > 0,

lim inf
n→∞

inf
Tn

sup
f∈Λα(M)

Ef

[∫
[0,1]q

n
2α

2α+q (Tn(U)− f(U))2 dU

]
≥ c2

where c2 is a constant that doesn’t depend on n.

Proof. 1. As a first step, we will consider the case of estimation at a point

U0 ∈ [0, 1]q. The proposed minimax rate is ψn = n−α/(2α+q). The subscript

n is used to stress its dependence on the sample size n. We also define

two test functions f0,n(U) ≡ 0 and f1,n(U) = MhαnK(h−1
n (U − U0)) that

are exactly the same as those used in the proof of the first part of the

theorem (2.2). Recall that the distance at a point between these functions

is |f1n(U0)| ≥ 2Aψn where the convergence rate ψn = n−α/(2α+q) and A =
M
4 e
−1. Denote EU1,...,Un the conditional expectation with respect to the

joint distribution of U1, . . . , Un. Also, denote the “test” function Ψ that,
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for a given set of data, selects either the first or the second function f0,n or

f1,n. Then, using Chebyshev’s inequality, we have

sup
f∈Λα(M)

E[ψn[Tn(U0)− f(U0)]]2 ≥ A2 max
f∈f0,f1n

P (|Tn(U0)− f(U0)| ≥ Aψn)

≥ A2

2

1∑
j=0

EU1,...,Un [P (|Tn(U0)− f(U0 ≥ Aψn|U1, . . . , Un)]

= A2EU1,...,Un

1

2

1∑
j=0

P (|Tn(U0)− f(U0)| ≥ Aψn|U1, . . . , Un)


A2EU1,...,Un

inf
Ψ

1

2

1∑
j=0

P ((Ψ 6= j|U1, . . . , Un)


where the last inequality follows from the triangle inequality and the fact

that the distance between the two functions at the point U0 is greater

than or equal to 2Aψn. For fixed U1, . . . , Un we have the distance be-

tween the two product densities m0,n and m1,n associated with functions

f0,n and f1,n K(P0, P1) ≤ C for the same finite C that was obtained

in the proof of theorem (2.2). Thus, the lower bound becomes p̄e,1 =

infΨ P ((Ψ 6= j|U1, . . . , Un) ≥ max

(
1
4 exp(−C),

1−
√
C/2

2

)
according to the

Theorem 2.2 of Tsybakov (2009) which finishes our proof.

2. Next, we need to consider the L2[0, 1]q case. Here, yet again, we will need

not just two, but J+1 “test” functions with J →∞ as n→∞. The needed

“test” functions are defined as fjn, j = 0, . . . , J where fjn are again selected

from the function set (2.3) as before in the case of fixed design. Earlier, we

proved that the L2 distance between any two functions from this set is

||fjn − fkn||2 ≥
M

4
||K||2n−α/(2α+q)

for any 0 ≤ j, k ≤ J . The basic idea we are going to use is to bound the

L2[0, 1]q risk from below by the average probability of error rather than the

minimax probability of error. This approach uses the Fano’s Lemma (3.5)
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that we described earlier. Again, using Chebyshev’s inequality, we obtain

sup
f∈Λα(M)

E
[
n2α/(2α+q)||f̂ − f ||22

]
≥ A2 max

f∈{f0n,...,fJn}
Pf
(
||f̂n − f ||2 ≥ Aψn

)
≥ A2 1

J + 1

J∑
j=0

EU1,...,Un

[
Pj
(
||f̂n − f ||2 ≥ Aψn|U1, . . . , Un

)]

= A2EU1,...,Un

 1

J + 1

J∑
j=0

Pj
(
||f̂n − f ||2 ≥ Aψn|U1, . . . , Un

)
Next, let Ψ be a test that based on the data, makes a choice between the

J + 1 hypotheses considered. Then, the above result means that

sup
f∈Λα(M)

E
[
n2α/(2α+q)||f̂ − f ||22

]

≥ A2EU1,...,Un

inf
Ψ

1

J + 1

J∑
j=0

Pj(Ψ 6= j|U1, . . . , Un)


While proving the theorem (2.2), we showed that 1

J

∑J
j=1K(f0,n, fj,n) ≤

α log J . A direct consequence of Fano’s lemma (for details see, for example,

Corollary 2.6 in Tsybakov (2009) is that the minimum average probability

of error is bounded from below as

inf
Ψ

1

J + 1

J∑
j=0

Pj(Ψ 6= j|U1, . . . , Un) ≥ log(J + 1)− log 2

log J
− α (3.2)

The right hand side of the last inequality does not depend on U1, . . . , Un

and so the desired result is obtained.
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