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Abstract

We consider a heteroscedastic nonparametric regression model with an autoregressive error process
of finite known order p. The heteroscedasticity is incorporated using a scaling function defined at
uniformly spaced design points on an interval [0,1]. We provide an innovative nonparametric estimator
of the variance function and establish its consistency and asymptotic normality. We also propose a
semiparametric estimator for the vector of autoregressive error process coefficients that is

√
T consistent

and asymptotically normal for a sample size T . Explicit asymptotic variance covariance matrix is
obtained as well. Finally, the finite sample performance of the proposed method is tested in simulations.

Keywords and phrases: autoregressive error process; heteroscedastic; semiparametric estimators;
difference-based estimation approach.

1 Introduction

In this manuscript, we consider the estimation of a time series process with a time-dependent conditional
variance function and serially dependent errors. More precisely, we assume that there are T observations
{(xt, yt)}t∈{1,...,T} available that have been generated by the following model:

yt = σtvt, σt = σ(xt), (1.1)

vt =

p∑
j=1

ϕjvt−j + εt, (1.2)

where {εt : −∞ < t <∞} are independent identically distributed with mean 0 and variance 1, while the
autoregressive order is a fixed known integer p > 0. We also assume that xt’s form an increasing equally
spaced sequence on the interval [0, 1]. Then, the model (1.1)-(1.2) can be viewed as a nonparametric
regression model with the mean function identically equal to zero and scaled autoregressive time series
errors vt. The simplest case of p = 1 was treated earlier in Dahl and Levine(2006). Another interpretation
of this model would be as a type of functional autoregressive models (FAR) that were first introduced in
Chen and Tsay (1993). Indeed, the process yt can be re-expressed as

yt =

p∑
j=1

ϕjσtσ
−1
t−jyt−j + σtεt, (1.3)

with functional coefficients being ϕjσtσ
−1
t−j , j = 1, . . . , p.

Nonparametric regression models with autoregressive time series errors have a long history. Hall and
Van Keilegom (2003) and, more recently, Shao and Yang (2011) considered a general nonparametric
model of the form

yt = µt + σtvt, (1.4)
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with a regression mean process µt given by µt = g(xt) for a smooth trend function g, an error process
{vt : −∞ < t < ∞} given as in (1.2), and an error scaling function σt given by σt ≡ σ, for a (possibly
unknown) constant σ. Note that our model has a more general correlation structure since it rescales the
AR(p) error process by the conditional variance of the unobserved process σ(xt). Phillips and Xu (2005)
also considered the model (1.4) with a general scaling function σt = σ(xt), but with the autoregressive
mean process structure µt = θ0+θ1yt−1+ . . .+θqyt−q and with zero mean martingale difference sequence
as an error process {vt : −∞ < t <∞}. As mentioned above, the model considered in this manuscript is
an extension of that studied in Dahl and Levine (2006), who treated the particular case p = 1.

In the present manuscript, we provide an innovative nonparametric estimator of the variance function
σ(x) and establish its consistency and asymptotic normality. We also propose a semiparametric estimator
for the autoregressive error process coefficients (ϕ1, . . . , ϕp), which is

√
T consistent and asymptotically

normal. The estimators of the error covariance structure (determined by σ(xt) and (ϕ1, . . . , ϕp)) are
needed, for example, in order to estimate the variance of the regression mean function µt. Another
possible application is in using bootstrap methods when constructing confidence bands for the regression
mean. For some discussion on this subject see, for example, Hall and Van Keilegom (2003). Our results
can also be used for testing the martingale difference sequence hypothesis H0 : ϕ1 = · · · = ϕp = 0, that
is often uncritically adopted in financial time series, against a fairly general alternative.

Our estimation approach is based on the two-lag difference statistics (pseudoresiduals):

ηt =
yt − yt−2√

2
. (1.5)

Both Hall and Van Keilegom (2003) and Dahl and Levine (2006) also use two-lag difference statistics
but the method in the former paper does not apply in the presence of a non-constant scaling function
σ(xt) (see Remark 3.5 below), while the method in the second paper relies heavily on the autocorrelation
properties of an AR(1) process and, thus, cannot deal with higher order autocorrelation models for
{vt : −∞ < t < ∞} (see justification in the paragraph after Eq. (2.4)). For simplicity, we mostly
focus on the case of a regression mean µt which is identically equal to zero since our main goal is the
estimation of the covariance structure of the process (1.1)-(1.2). Nevertheless, we also analyze the effect
of a nonzero mean function and propose a natural correction method in this case (see end of Section 3
for more details). We also show that the addition of a sufficiently smooth non-zero mean function has no
effect on the asymptotic properties of ϕ̂. This fact is explained in more details in Corollary 3.6; see also
Hall and Van Keilegom (2003) for some additional heuristics on this subject.

The rest of the paper is organized as follows. In Section 2, we present our estimation approach. The
consistency and central limit theorem for estimators of autoregressive coefficients ϕ1 and ϕ2 are given in
Section 3. The analogous results for the estimator of the variance function σ(x) are presented in Section
4. A Monte Carlo simulation study and a real data application of our estimators are then presented in
Section 5. In Section 6, we conclude the paper with a discussion section about extensions of our method
and some interesting open problems. The proofs of main results are given in the Appendix section.

2 Estimation method based on two-lag differences

In this section, we present our estimation approach. For simplicity, we first illustrate our method for
p = 2; however, it will work for any finite order p as we explain further at the end of the present section.
As it was mentioned in the introduction, Dahl and Levine (2006) proposed an estimation method for the
model (1.1)-(1.2) in the simple case of p = 1 based on the two-lag difference statistics ηt defined in (1.5).
In order to explain in simple terms the intuition behind our method, we recall the approach therein.
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Suppose for now that the scaling function σt is constant; i.e. σt ≡ σ. We denote γk the autocovariance
of the error process vt at lag k. Then, note that η2t =

σ2

2

(
v2t + v2t−2 − 2vtvt−2

)
and, therefore,

E η2t = σ2 (γ0 − γ2) ≡ σ2, (2.1)

because, under the AR(1) specification,

γ2 = ϕ1γ1 =
ϕ21

1− ϕ21
.

It is now intuitive that η2t can be used to develop a consistent estimator for a non-constant function σ2t as
well. Indeed, in the case of non-constant σt and under a fixed design on the unit interval (i.e., xt := t/T
for t = 1, . . . , T − 1), we have

E η2t =
1

2

(
σ2t γ0 + σ2t−2γ0 − 2σtσt−2γ2

)
.

Simple heuristics suggest that the above expression can be accurately approximated by σ2t in large samples
for sufficiently large T . This, in turn, suggests turning the original problem (1.1) into a non-parametric
regression

η2t = σ2(xt) + ε̃t, (2.2)

where {ε̃t}t=2,...,T are approximately centered random errors. Dahl and Levine (2006) used a local linear
estimator σ̂2t to estimate σ2t := σ2(xt), while the parameter ϕ1 was estimated using a weighted least
square estimator (WLSE). More specifically, noting that (1.3) with ϕ2 = · · · = ϕp = 0 implies

σ−1
t yt = ϕ1σ

−1
t−1yt−1 + εt, t = 2, . . . , T, (2.3)

it follows that a natural estimator for ϕ1 is given by

ϕ̂1 := arg minϕ1∈(−1,1)

1

T

T∑
t=2

(
σ̂−1
t yt − ϕ1σ̂

−1
t−1yt−1

)2
=

(
1

T

T∑
t=2

σ̂−2
t−1y

2
t−1

)−1(
1

T

T∑
t=2

σ̂−1
t σ̂−1

t−1ytyt−1

)
, (2.4)

where above {σ̂2t }t=1,...,T is the local linear estimator of σ2(xt) based on non-parametric model (2.2).

The approach described in the previous paragraph will not work for any p > 1 because, in that case,
γ0 − γ2 ̸= 1 and, therefore, even the constant variance function σ2 cannot be estimated consistently. A
first natural idea to extend the method in Dahl and Levine (2006) is to look for a linear statistic

ηt :=

m∑
i=0

aiyt−i, (2.5)

such that
E η2t ≈ σ2t ,

for sufficiently large sample size T. The following result shows that this is essentially impossible even
for the simplest AR(1) case. The impossibility for a general AR(p) model will immediately follow since
obviously the AR(1) model can be seen as a degenerate case of the general AR(p) model. The proof of
the following result is deferred to the appendix section.
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Proposition 2.1. Consider again the case where σ2t ≡ σ2 is constant and the error process is AR(1) (i.e.,
ϕ2 = · · · = ϕp = 0 in (1.1)-(1.2)). Then, if Eη2t = σ2 for any ϕ1 ∈ (−1, 1), there exists a 0 ≤ k ≤ m− 2
such that

ak = ± 1√
2
, ak+2 = ∓ 1√

2
, ai = 0, ∀i ̸= k, k + 2.

The previous result shows that the only linear statistic (2.5) with a0 ̸= 0 that can result in Eη2t being
independent of ϕ1 is the two-lag difference statistic

ηt =
yt − yt−2√

2
.

Now we show that the expectation of η2t is indeed independent of ϕ1 and introduce our new method to
estimate the model (1.1)-(1.2) with an AR(2) error process. Recall that (see, for example, Brockwell and
Davis (1991)) for a stationary AR(2) process vt, its variance and autocovariances are:

γ0 := Var(vk) =
1− ϕ2

(1 + ϕ2)((1− ϕ2)2 − ϕ21)
, (2.6)

γ1 := Cov(vk, vk+1) =
ϕ1

1− ϕ2
γ0, (2.7)

γj := Cov(vk, vk+j) = ϕ1γj−1 + ϕ2γj−2, for any k ∈ N, j ≥ 2. (2.8)

Therefore, the mean of squared pseudoresidual of the 2nd order, η2t , can be simplified as follows under
the assumption of constant variance function σ2t ≡ σ:

E η2t = σ2 (γ0 − γ2) =
σ2

1 + ϕ2
.

Indeed, using (2.6)-(2.7),

γ2 = ϕ1γ1 + ϕ2γ0 =

(
ϕ21

1− ϕ2
+ ϕ2

)
γ0 =

ϕ21 + (1− ϕ2)ϕ2
1− ϕ2

γ0,

γ0 − γ2 = γ0

(
1− ϕ21 + (1− ϕ2)ϕ2

1− ϕ2

)
= γ0

(
(1− ϕ2)

2 − ϕ21
1− ϕ2

)
=

(
1− ϕ2

(1 + ϕ2)((1− ϕ2)2 − ϕ21)

)(
(1− ϕ2)

2 − ϕ21
1− ϕ2

)
=

1

1 + ϕ2
.

As before, for a general smooth enough function σ2t and under a fixed design on the unit interval
(xt = t/T , t = 1, . . . , T − 1) with T large enough, we expect that

E η2t ≈
σ2t

1 + ϕ2
,

and, hence, we expect to estimate correctly σ2t up to a constant. It turns out that this will suffice to
estimate the parameters ϕ1 and ϕ2 via weighted least squares (WLSE). Indeed, suppose for now that we
know the variance function σ2t and let ȳt := σ−1

t yt. In light of the relationship (1.3), it would then be
possible to estimate (ϕ1, ϕ2) by the WLSE:

(ϕ̄1, ϕ̄2) := arg minϕ1,ϕ2
1

T

T∑
t=4

(ȳt − ϕ1ȳt−1 − ϕ2ȳt−2)
2 .
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Basic differentiation leads to the following system of normal equations

−
T∑
t=4

ȳtȳt−1 + ϕ̄1

T∑
t=4

ȳ2t−1 + ϕ̄2

T∑
t=4

ȳt−1ȳt−2 = 0,

−
T∑
t=4

ȳtȳt−2 + ϕ̄1

T∑
t=4

ȳt−1yt−2 + ϕ̄2

T∑
t=4

ȳ2t−2 = 0.

Ignoring negligible edge effects (so that
∑T

t=4 ȳtȳt−1 ≈
∑T

t=4 ȳt−1ȳt−2 and
∑T

t=4 ȳ
2
t ≈

∑T
t=4 ȳ

2
t−1), we can

write the above system as

Āϕ̄1 + B̄ϕ̄2 − B̄ = 0, B̄ϕ̄1 + Āϕ̄2 − C̄ = 0,

with

Ā :=
T∑
t=4

ȳ2t , B̄ :=
T∑
t=4

ȳtȳt−1, C̄ :=
T∑
t=4

ȳtȳt−2.

We finally obtain

ϕ̄2 := (Ā2 − B̄2)−1(ĀC̄ − B̄2), ϕ̄1 = Ā−1B̄(1− ϕ̂2). (2.9)

Obviously, these estimators are not feasible since σ2t is unknown. However, we note that these estimators
will not change if instead of σt in the definition of ȳt, we use cσt where c is an arbitrary constant that
is independent of t. This fact suggests the following two-step estimation method for the scaling function
σt = σ(xt) and the autocorrelation coefficients (ϕ1, ϕ2):

Algorithm 2.1 (AR(2) case).

1. First, estimate the function

σ2,biast :=
σ2(xt)

1 + ϕ2
, (2.10)

by a non-parametric smoothing method (e.g. local linear regression) applied to the two-lag difference
statistics η2t defined in (1.5). Let σ̃2t be the resulting estimator.

2. Standardize the observations, ỹt := σ̃−1
t yt, and, then, estimate (ϕ1, ϕ2) via the WLSE:

ϕ̂2 := (A2 −B2)−1(AC −B2), ϕ̂1 = A−1B(1− ϕ̂2). (2.11)

with

A :=

T∑
t=4

ỹ2t , B :=

T∑
t=4

ỹtỹt−1, C :=

T∑
t=4

ỹtỹt−2.

3. Estimate σ2t := σ2(xt) by
σ̂2t := (1 + ϕ̂2)σ̃

2
t . (2.12)

The same method can be easily extended to the case of an arbitrary autoregressive error process
AR(p) with p > 2. Indeed, let ϕ1, . . . , ϕp be the coefficients of the AR(p) error process. It can be shown
that, for large T , the expectation of the squared pseudoresidual of order 2, η2t , is approximately equal to
the scaled value of σ2t :

E η2t ≈ Ψσ2t ,

where the scaling constant Ψ is an explicit function Ψ ≡ Ψ(ϕ1, . . . , ϕp) of ϕ1, . . . , ϕp. As with the case of
p = 2, since the scaling constant does not depend on the variance function, the following natural extended
procedure follows:
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Algorithm 2.2 (General AR(p) case).

1. Obtain an estimate of the scaled variance function

σ2,biast := σ2,bias(xt) := Ψ(ϕ1, . . . , ϕp)σ
2(xt),

by using a non-parametric smoothing method (e.g., local linear regression) applied to η2t . As before,
let σ̃2t = σ̃2(xt) be the resulting estimator.

2. Standardize the observations ỹt := σ̃−1
t yt and then estimate (ϕ1, . . . , ϕp) using the weighted least

squares (WLSE):

(ϕ̂1, . . . , ϕ̂p) := arg minϕ1,...,ϕp
1

T

T∑
t=p+2

(ỹt − ϕ1ỹt−1 − . . .− ϕpỹt−p)
2 .

3. Estimate σ2t := σ2(xt) by
σ̂2t := Ψ(ϕ̂1, . . . , ϕ̂p)

−1σ̃2t . (2.13)

In the next section, we will give a detailed analysis of the consistency and asymptotic properties of
the proposed estimators.

3 Asymptotics

Let us now consider the asymptotic properties of the estimation procedure described at the end of
the previous section in the context of the general heteroscedastic process (1.1-1.2). We will use σ̃2t
to denote the inconsistent estimator of σ2t that is obtained by applying local linear regression to the
squared-pseudoresiduals η2t . As explained above, such an estimator is inconsistent since, e.g., even for
the homoscedastic model (i.e., σ2t ≡ σ2), Eη2t = σ2Ψ(ϕ1, . . . , ϕp). However, note that it is expected to be

a consistent estimator of the quantity σ2,biast = σ2tΨ(ϕ1, . . . , ϕp), as it will be formally proved in Section
4 below. Throughout, we denote

σ = (σ1, . . . , σT )
′
, σ̃ = (σ̃1, . . . , σ̃T )

′
, σbias = (σbias1 , . . . , σbiasT )

′
. (3.1)

As explained before, it seems reasonable to estimate the coefficients ϕ1, ϕ2, . . . , ϕp using an inconsistent
estimator σ̃2t first and, then, correct it to obtain the asymptotically consistent estimator:

σ̂2t = Ψ(ϕ̂1, . . . , ϕ̂p)
−1σ̃2t .

The following detailed algorithm illustrates our approach to obtaining the asymptotic properties of the
proposed estimators:

1. Using the functional autoregression form of the model (1.1), define the least squares estimator

ϕ̂ := (ϕ̂1, . . . , ϕ̂p) of ϕ := (ϕ1, . . . , ϕp) and establish its consistency (i.e. ϕ̂
P→ ϕ as T → ∞), under

additional conditions.

2. Define an asymptotically consistent estimator σ̂2t and establish its consistency and asymptotic nor-
mality.
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For convenience, we recall here the functional autoregressive form of (1.1):

σ−1
t yt = ϕ1σ

−1
t−1yt−1 + . . .+ ϕpσ

−1
t−pyt−p + εt.

Next, for any ϑ = (ϑ1, . . . , ϑT ) and φ = (φ1, . . . , φp), let

m̄k(ϑ;φ) :=
1

T

T∑
t=p

mk,t(ϑ;φ), (k = 1, 2, . . . , p), (3.2)

where

mk,t(ϑ;φ) := ϑ−1
t−kyt−k[ϑ

−1
t yt − ϑ−1

t−1φ1yt−1 − . . .− ϑ−1
t−pφpyt−p], (3.3)

where (yt) is generated by the model (1.1) with true parameters (σt,ϕ). Denote

mt(ϑ;φ) := (m1,t(ϑ;φ); . . . ;mp,t(ϑ;φ))
′
. (3.4)

Note that
mk,t(σ;ϕ) = vt−kεt, (k = 1, . . . , p), (3.5)

and, therefore, none of them depends on {σt}. Then, the first order conditions that determine the
least-square estimator ϕ̂ of ϕ are given by

m̄k(σ̃; ϕ̂) = 0, (k = 1, . . . , p). (3.6)

A few preliminary results are needed to establish consistency for ϕ̂. Throughout, we assume that the
data generating process (1.1)-(1.2) satisfies the following conditions:

1. {εt} are independent identically distributed (i.i.d.) errors with mean zero and variance 1.

2. E|εt|4+γ <∞ for some small γ > 0.

3. σ2(·) ∈ F := C2[0, 1], the class of continuous functions on [0, 1] with continuous second derivatives
in (0, 1).

We denote Θ0 the set of ϕ = (ϕ1, . . . , ϕp) such that the roots of the characteristic equation 1 − ϕ1z −
. . .− ϕpz

p = 0 are greater than 1 + δ in absolute value for some δ > 0. Such a condition on ϕ guarantees
causality and stationarity of the AR(p) error process vt defined in (1.2); moreover, it also implies that vt
can be represented as the MA(∞) process

vt =
∞∑
i=0

ψiεt−i, (3.7)

where all of the coefficients {ψi}i≥0 satisfy

K1ρ
i ≤ |ψi| ≤ K2ρ

i, (3.8)

for some finite ρ such that 1
1+δ < ρ < 1, and positive constants K1 and K2 (see, e.g., Brockwell and

Davis (1991), Chapter 3). In particular, (3.8) implies that the series {ψi}i≥0 is absolutely converging:∑∞
i=0 |ψi| <∞.
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Remark 3.1. The coefficients {ψi}i≥0 satisfy the recursive system of equations

ψj −
∑

0<k≤j
ϕkψj−k = 0, (3.9)

with ψ0 ≡ 1 and ϕk = 0 for k > p. Note that this implies (by induction) that ψj is a continuously
differentiable function of ϕ for any j ≥ 0.

Our first task is to show the weak consistency of the least-square estimator ϕ̂. As pointed earlier
in Dahl and Levine (2006), the estimator ϕ̂ is an example of a MINPIN semiparametric estimator (i.e.,
an estimator that minimizes a criterion function that may depend on a Preliminary Infinite Dimensional
Nuisance Parameter estimator). MINPIN estimators have been discussed in great generality in Andrews
(1994). We first establish the following uniform weak law of large numbers (LLN) for mt(σ;ϕ) (see
Andrews (1987), Appendix A for the definition).

Lemma 3.2. Suppose that Θ ⊂ Θ0 is a compact set with non-empty interior. Then, as T → ∞,

sup
ϕ∈Θ

∣∣∣∣∣ 1T
T∑
t=p

mt(σ;ϕ)

∣∣∣∣∣ P−→ 0.

We are ready to show our main consistency result. The proof is presented in Appendix A.

Theorem 3.3. Let Θ be a compact subset of Θ0 with non-empty interior. Then, the least squares
estimator ϕ̂ converges to the true ϕ in probability.

Our next task is to establish asymptotic normality of ϕ̂.

Theorem 3.4. Let all of the assumptions of Theorem 3.3 hold and, in addition,

1. mt(ϑ;ϕ) is twice continuously differentiable in ϕ for any fixed ϑ;

2. The matrix

M ≡ lim
T→∞

1

T

T∑
t=p

E
∂mt

∂ϕ
(σ;ϕ)

exists uniformly over F × Θ and is continuous at (σbias,ϕ) with respect to any pseudo-metric on
F ×Θ for which (σ̃, ϕ̂) → (σbias,ϕ). Furthermore, the matrix M is invertible.

Then,
√
T (ϕ̂− ϕ)

d−→ N(0, V ) where

V := Γ−1 with Γ := [γ|i−j|]i,j=1,...,p =


γ0 γ1 γ2 . . . γp−2 γp−1

γ1 γ0 γ1 . . . γp−3 γp−2

. . . . . . . . . . . .
γp−1 γp−2 γp−3 . . . γ1 γ0

. (3.10)

For simplicity, the proof, that can be found in the Appendix A, is only shown for the case p = 2; in
that case, the covariance matrix takes the form:

V :=

(
V1 V2
V2 V1

)
:=

(
1− ϕ22 −ϕ1(1 + ϕ2)

−ϕ1(1 + ϕ2) 1− ϕ22

)
. (3.11)
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Remark 3.5. The following observations are appropriate at this point:

1. The matrix Γ of (3.10) is non-singular if γ0 > 0 and γl → 0 as l → ∞ (see, e.g. Brockwell and
Davis (1991), Proposition 5.1.1). This means that it is non-singular for any causal AR(p) process.

2. In the more general model (1.4) with smooth mean function µt = g(xt) and constant scaling function
σt ≡ σ (possibly unknown), Hall and Van Keilegom (2003) and Shao and Yang (2011) proposed
estimators for the autocorrelation coefficients that are T−1/2 consistent with the same asymptotic
variance covariance matrix as in (3.10). Hence, despite the fact that the scaling factor σ(xt) may
be non-constant in our setting, our estimators of autoregressive coefficients possess the parametric
rate of convergence as if the conditional variance was known.

3. It is also important to emphasize that the methods in Hall and Van Keilegom (2003) won’t apply in
the presence of a varying scaling function σt = σ(xt). Indeed, the method therein first provides the
following estimates for the autocovariances of the error process:

γ̂0 :=
1

m2 −m1 + 1

m2∑
m=m1

1

2(T −m)

T∑
i=m+1

{(Dmy)i}2 , (3.12)

γ̂j := γ̂0 −
1

2(T − j)

T∑
i=j+1

{(Djy)i}2 , (3.13)

where (Djy)i := yi− yi−j and, as before, T is the number of observation. Here, m1,m2 are positive
integer-valued sequences converging to ∞ in such a way that m2 − m1 → ∞, m1/ log T → ∞,
and m2 = o(T 1/2). Then, the method proceeds to estimate the coefficients ϕ := (ϕ1, . . . , ϕp)

′ using
Yule-Walker equations Γϕ = γ (see Section 8.1 in Brockwell and Davis (1991)):

(ϕ̂1, . . . , ϕ̂p)
′ := Γ̂−1(γ̂1, . . . , γ̂p)

′,

where Γ̂ is the p × p matrix having γ̂|i−j| as its (i, j)th entry (i, j = 1, . . . , p). Such an approach
clearly will not work if the scaling function σt is not constant.

4. Shao and Yang’s (2011) approach consists of first estimating the unknown mean function g(xt)
using a B-spline smoother ĝ(xt) and, then, constructing estimators for the coefficients (ϕ̂1, . . . , ϕ̂p)

′

using the estimated residuals rt := yt − ĝ(xt), via the Yule-Walker equations as in Hall and Van
Keilegom (2003). The autocovariances γj are estimated using the sample autocovariances γ̂j :=
1
T

∑T−k
t=1 rtrt+k. Again, the Yule-Walker estimation approach will not work if σt is not constant.

It is interesting to ask ourselves as to what happens if we consider the more general model (1.4) with
a non-trivial mean function µt = g(xt). In this case, in order to estimate ϕ, the following algorithm is an
option:

Algorithm 3.1.

1. Estimate the mean function µt using, say, a local linear regression method applied to the observations
{yt}t∈{1,...,T} (see Section 4 below for more details on this method). Let µ̂t be the resulting estimator.

2. Compute the centered observations ŷt = yt − µ̂t and define the new pseudoresiduals η̂t =
ŷt−ŷt−2√

2
.

3. Again, obtain a biased estimator of σ2t applying local linear regression to η̂2t and then follow (2.11)
and (2.12).
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It turns out that, if the mean function µt can be estimated consistently, ϕ can be estimated at the
same rate of convergence as before. Note that the mean function µt = g( tT ) here depends on the number
of observations T . This helps us separate “trend”, or a “low-frequency component”, represented by the
µt, from the zero-mean error process, that plays the role of the “high-frequency component”. A more
precise formulation is given in the following result, whose proof is outlined in the Appendix A.

Corollary 3.6. Let us assume that g′′(·) exists and is continuous on (0, 1). Also, let K be a kernel
function with bounded support that integrates up to 1 (i.e. it is a proper density) and whose first moment
is equal to 0. Select a sequence h := hT such that h→ ∞ and hT−1 → 0, and let µ̂t be the corresponding
sequence of local linear estimators that use the kernel K̄h(x) :=

h
TK( hT x). Note that it is h

T that plays

the role of bandwidth here and not just h. Then, the estimator ϕ̂ obtained using the Algorithm 3.1 still
satisfies the two assertions of Theorem 3.4.

4 Variance function estimation

Estimating the variance function σ2t (x) is very similar to how it was done in Dahl and Levine (2006). For
simplicity, we will illustrate the idea only for p = 2. As a reminder, the first step of our proposed method
is estimating not σ2 but rather

σ2,bias(x) =
σ2(x)

1 + ϕ2
,

by the local linear regression applied to the squared-pseudoresiduals η2t . As in Dahl and Levine (2006),
we assume that the kernel K(u) is a two-sided proper density second order kernel on the interval [−1, 1];
this means that

1. K(u) ≥ 0 and
∫
K(u) du = 0

2. µ1 =
∫
uK(u) du = 0 and µ2 ≡ σ2K =

∫
u2K(u) du ̸= 0.

We also denote RK =
∫
K2(u) du. Then, the inconsistent estimator σ̃2(x) of σ2(x) is defined as the value

â solving the local least squares problem

(â, b̂) = arg mina,b

T∑
t=3

(η2t − a− b(xt − x))2Km(xt − x),

where as usual Km(x) := m−1K(x/m). Since σ̃2(x) estimates σ2,bias(x) consistently, at the next step we
define a consistent estimator of σ2(x) as follows:

σ̂2(x) = σ̃2(x)(1 + ϕ̂2), (4.1)

where ϕ̂ = (ϕ̂1, ϕ̂2) is the least-squares estimator defined in (2.11). The following lemma can be proved
by following almost verbatim Theorem 3 of Dahl and Levine (2006) and is omitted for brevity. Below, we
will use Dσ2(x) and D2σ2(x) to denote the first and the second-order derivatives of the function σ2(x),
respectively.

Lemma 4.1. Under the above assumptions (1)-(2) on the kernel and assumptions (1)-(3) on the data
generating process (1.1) introduced in Section 3, σ̃2(x) is a consistent estimator of σ2,bias(x) Moreover,

σ̃2(x)− σ2,bias(x)−B(ϕ, x)

V 1/2(ϕ, x)

d−→ N(0, 1),
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where the bias B(ϕ, x) and variance V (ϕ, x) of σ̃2(x) are such that

B(ϕ, x) =

{
m2σ2K

2

[
D2σ2(x)/4− γ2(Dσ

2(x))2/σ2(x)
]
+ o(m2) +O(T−1)

}
V (ϕ, x) = RKC(ϕ1, ϕ2)σ

4(x)(Tm)−1 + o(Tm−1).

and the above constant C(ϕ1, ϕ2) depends only on ϕ1 and ϕ2.

Now we are ready to state the main result of this section.

Theorem 4.2. Under the same assumptions as in Lemma 4.1, the estimator σ̂2(x) introduced in (4.1)
is an asymptotically consistent estimator of σ2(x) that is also asymptotically normal with the bias (1 +
ϕ2)B(ϕ, x) and the variance (1 + ϕ2)

2V (ϕ, x).

Proof. By the Slutsky’s theorem, we have σ̃2(x)−σ2,bias(x)−B(ϕ,x)√
V (ϕ,x)

(1 + ϕ̂2)
d→ (1 + ϕ2)ζ with ζ ∼ N(0, 1).

This means that σ̂2 is a consistent estimator of σ2t with the bias (1 + ϕ2)B(ϕ, x) and the variance
(1 + ϕ2)

2V (ϕ, x).

5 Numerical results

5.1 Simulation study

In this part we review the finite-sample performance of the proposed estimators. In order to do this, we
consider three model specifications given in Table 1 of Appendix B. The variance function specifications
are the same as those in Dahl and Levine (2006). The specification of σ2t in Model 1 is a leading example
in econometrics/statistics and can generate ARCH effects if xt = yt−1. Model 2 is adapted from Fan and
Yao (1998). In particular, the choice of σ2t is identical to the variance function in their Example 2. The
variance function in Model 3 is from Härdle and Tsybakov (1997).

We take a fixed design xt = t/T for t = 0, . . . , T and compute the WLSE estimators ϕ̂1 and ϕ̂2
of (2.11) for the previously mentioned variance function specifications and three different samples sizes,
T = 100, T = 1000, and T = 2000. In order to assess the performance of the estimator (2.12), we
compute the Mean Squared Error (MSE) defined by

MSE(σ̂) :=
1

M

M∑
i=1

1

T

T∑
t=1

(σ̂2t,i − σ2t )
2,

where σ̂2t,i is the estimated variance function at xt in the ith simulation andM is the number of simulations.

We use a local linear estimator σ̃2t for estimating the biased variance function σ2,biast of (2.10), as in the
step 1 of the Algorithm 2.1 in Section 2. The selection of the method’s bandwidth was carried out by a
10-fold cross-validation method (see, e.g., Section 8.3.5 in Fan and Yao (2003) for further information).

Table 2 in Appendix B provides the MSE for the above three model specifications and sample sizes,
while Table 3 shows the sampling mean and standard errors for the estimators ϕ̂1 and ϕ̂2. In the Table 3 of
Appendix B, Mn(Sd) stand for “Mean(Standard Deviation)”. We also consider three different parameter
settings:

(1) (ϕ1, ϕ2) = (0.6, 0.3), (2) (ϕ1, ϕ2) = (0.6,−0.6), (3) (ϕ1, ϕ2) = (0.98,−0.6).
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For the true parameter values (ϕ1, ϕ2) = (0.6, 0.3), the asymptotic standard deviation and covariance
given in (3.10) take the values: √

V1 = 0.953, V2 = −0.780.

In particular, the above standard error should be compared with the asymptotic theoretical standard
deviation

√
V1/T from Theorem 3.4. For the sample sizes 100, 1000, and 2000,

√
V1/T takes the values

0.0953, 0.0301, and 0.0213, which match the sampling standard deviations of Table 3 in Appendix B.
The results show clear improvement for increasing sample sizes; Models 2 and 3 seem to be a little easier
to estimate than Model 1.

Finally, again for ϕ1 = 0.6 and ϕ2 = 0.3, Figure 1 below shows the sampling densities for ϕ̂1 and ϕ̂2
corresponding to each of the three models and three sample sizes T . No severe small sample biases seem
to be present in any of the pictures.

Figure 1: Sampling densities in comparison with the standard normal density under the three alternative
variance function specifications of Table 1 of Appendix B. The true parameter values are ϕ1 = 0.6 and
ϕ2 = 0.3. The number of Monte Carlo replications is 1000.
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5.2 Real data application

We now apply our method to the first differences of annual global surface air temperatures in Celsius from
1880 through 19851. This data set has been extensively analyzed in the literature using different versions
of the general nonparametric regression model (1.4). For instance, Hall and Van Keilegom (2003) fixed
σt ≡ 1 and estimated the coefficients of both the AR(1) and AR(2) models for {vt}t∈{1,...,T}, directly from
the observations {yt}t∈{1,...,T} before estimating the trend function µt = g(xt) (see Remark 3.5 above for

further information about their method). They reported point estimates of ϕ̂1 = 0.442 and ϕ̂2 = −0.068.
Assuming again σt ≡ 1 as in Hall and Van Keilegom (2003), Shao and Yang (2011) first used linear
B-splines to estimate the trend function g, and then applied a Yule-Walker type estimation method to
the residuals ŷt = yt − µ̂t, under an AR(1) model specification (see Remark 3.5). They found a point
estimate of ϕ̂1 = 0.386 with a standard error 0.090.

The left panel of Figure 2 shows the scatter plot of the temperature differences against time and the
estimated mean µ̂t = ĝ(xt) using a simple local linear estimator applied to the observations (yt). We then
apply our estimation procedure to the differentials ŷt = yt − µ̂t, assuming an AR(2) model specification
for the error process {vt}t∈{1,...,T}. The point estimates for ϕ1 and ϕ2 are respectively ϕ̂1 = 0.4332 and

ϕ̂2 = −0.0615 with a standard error of 0.08 (see (3.11)). The resulting estimated variance function is
shown in the right panel of Figure 2. As observed there, σ̂2t exhibits an interesting V-shaped pattern with
minimum around the year 1945. Also, the estimated values ϕ̂1 and ϕ̂2 are consistent with those reported
by Hall and Van Keilegom (2003).

Figure 2: Differences of annual global surface air temperatures in Celsius from 1880 through 1985.

6 Discussion

In this manuscript, we propose a method for estimation of the variance structure of the scaled autore-
gressive process’ unknown coefficients and scale variance function σ2t . This method is being proposed to
extend earlier results of Dahl and Levine (2006), where the analogous problem for the specific case of
error autoregressive process of order 1 was solved. The direct generalization of the method of Dahl and
Levine (2006) does not seem to be possible in the case of the autoregressive process of order more than
1; thus, the method proposed in this manuscript represents a qualitatively new procedure.

1This data set was obtained from the web site http://robjhyndman.com/TSDL/meteorology/.
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There is a number of interesting issues left unanswered here that we plan to address in the future
research on this subject. Although we only examined the model (1.1) with the conditional mean equal
to zero, an important practical issue is often the robust estimation of the parametrically specified con-
ditional mean when the error process is conditionally heteroscedastic. As an example, an autoregressive
conditional mean of order l ≥ 1 is commonly assumed. Although standard regression procedures can
be made robust in this situation by using the heteroscedasticity-consistent (HC) covariance matrix esti-
mates as suggested in Eicker (1963) and White (1980), there may be advantages in considering alternative
methods that take a specific covariance structure into account. Such methods are likely to provide more
efficient estimators. This has been done in, for example, Phillips and Xu (2005) who addressed that
issue by conducting asymptotic analysis of least squares estimates of the conditional mean coefficients
µt, t = 1, . . . , T (see (1.4)) under the assumption of strongly mixing martingale difference error process
and a non-constant variance function. Our setting is not a special case of Phillips and Xu (2005) since
for our error process E(vt|Ft−1) ̸= 0 (where Ft = σ(vs, s ≤ t) is the natural filtration). This case, to the
best of our knowledge, has not been considered in the literature before. We believe, therefore, that the
asymptotic analysis of the least squares estimates of the coefficients µt under the same assumptions on
the error process as in (1.1) is an important topic for future research.

Also, being able to estimate the exact heteroscedasticity structure is important in econometrics in
order to design unit-root tests that are robust to violations of the homoscedasticity assumption. The size
and power properties of the standard unit-root test can be affected significantly depending on the pattern
of variance changes and when they occur in the sample; an extensive study of possible heteroscedasticity
effects on unit-root can be found in Cavaliere (2004). We also intend to consider the design of robust
unit-root tests under the serial innovations specification as part of our future research.

Finally, yet another interesting topic of future research is a possible extension of these results to the
case of a more general ARMA(p,q) error process. One of the possibilities may be using the difference-based
pseudoresiduals again to construct an inconsistent estimator of the variance function σ2t first. Indeed,
since the scaling constant will only be dependent on the coefficients of the ARMA (p,q) error process,
the MINPIN estimators of the coefficients of the error process based on such an inconsistent variance
estimator will be unaffected. Therefore, estimation of the coefficients of the error process will proceed in
the same way as for usual ARMA processes. The final correction of the nonparametric variance estimator
also appears to be straightforward.
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A Proofs

Proof of Proposition 2.1. It is easy to see that

η2t = σ2

γ0 m∑
j=0

a2j + 2

m∑
i=1

m−i∑
j=0

ajaj+iγi

 .
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Recalling that for an AR(1) time series,

γ0 =
1

1− ϕ21
, and γi = ϕi1γ0,

it follows that  1

1− ϕ21

m∑
j=0

a2j +
2

1− ϕ21

m∑
i=1

m−i∑
j=0

ajaj+iϕ
i
1

 = 1.

This can be written as the following polynomial of ϕ1:

m∑
j=0

a2j − 1 + ϕ21(1 + 2

m−2∑
j=0

ajaj+2) + 2

m∑
i=1,i ̸=2

m−i∑
j=0

ajaj+iϕ
i
1 = 0.

Then, we get the following system of equations:

(i)

m∑
j=0

a2j = 1, (ii) 1 + 2

m−2∑
j=0

ajaj+2 = 0,

(iii)

m−i∑
j=0

ajaj+i = 0, ∀i ∈ {1, 3, . . . ,m}.

Suppose that a0 ̸= 0. Then, equation (iii) for i = m, implies that a0am = 0 and, hence, am = 0.
Equation (iii) for i = m− 1 yields a0am−1 + a1am = 0 and thus am−1 = 0. By induction, it follows that
am = am−1 = · · · = a3 = 0. Plugging in (i-iii),

a20 + a21 + a22 = 1, 1 + 2a0a2 = 0, a0a1 + a1a2 = 0,

which admits as unique solution

a0 = ± 1√
2
, a1 = 0, a2 = ∓ 1√

2
.

If a0 = 0, but a1 ̸= 0, one can similarly prove that the only solution is

a1 = ± 1√
2
, a3 = ∓ 1√

2
, ai = 0, otherwise.

The statement of the proposition can be obtained by induction in k.

Proof of Lemma 3.2. This can be done by appealing to Theorem 1 in Andrews (1987). First, using
representations (3.5)-(3.7), we define

Wt := (εt, εt−1, . . . ) ∈ RN, qt,k(Wt,ϕ) := εt

∞∑
i=0

ψiεt−k−i.

It remains to verify the assumptions A1-A3 of Theorem 1 in Andrews (1987). As stated in Corollary 2
of Andrews (1987), one can check its condition A4 therein instead of condition A3 since A4 implies A3.
We now state these three conditions:

A1. Θ is a compact set.
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A2. Let B(ϕ0; ρ) ⊂ Θ be an open ball around ϕ0 of radius ρ and let

m∗
k,t(σ; ρ) = sup{mk,t(σ;ϕ) : ϕ ∈ B(ϕ0; ρ)}, (A.1)

mk,t∗(σ; ρ) = inf{mk,t(σ;ϕ) : ϕ ∈ B(ϕ0; ρ)}. (A.2)

Then, the following two conditions are satisfied:

(a) All of mk,t(σ;ϕ), m
∗
k,t(σ; ρ), and mk,t∗(σ; ρ) are random variables for any ϕ ∈ Θ, any t and

any sufficiently small ρ;

(b) Bothm∗
k,t(σ; ρ) andmk,t∗(σ; ρ) satisfy pointwise weak laws of large numbers for any sufficiently

small ρ.

A4. For each ϕ ∈ Θ there is a constant τ > 0 such that d(ϕ̃,ϕ) ≤ τ implies

||mt(σ; ϕ̃)−mt(σ;ϕ)|| ≤ Bth(d(ϕ̃,ϕ))

where Bt is a nonnegative random variable (that may depend on ϕ) and limT→∞
1
T

∑T
t=1EBt <∞,

while h : R+ → R+ is a nonrandom function such that h(y) ↓ h(0) = 0 as y ↓ 0. Above, || · ||
denotes the standard Euclidean norm in Rp.

Since condition A1 above is assumed as a hypothesis, we only need to work with conditions A2 and A4.
The verification of these is done through the following two steps:

1. Let ρ > 0 small enough such that B(ϕ0; ρ) ⊂ Θ. Then, recalling the representation (3.5) and (3.7),

m1,t(σ;ϕ) = εt

∞∑
i=0

ψiεt−1−i, (A.3)

we find that the supremum of m1,t(σ;ϕ), taken over ϕ ∈ B(ϕ0; ρ), also exists and is a random
variable. Indeed, each of the summands in (A.3) is a continuous function of ϕ as we already
established earlier, the convergence in mean squared to m1,t(σ;ϕ) is uniform in ϕ due to (3.8) and,
therefore, m1,t(σ;ϕ) is continuous in ϕ as well. That, in turn, implies the existence of m∗

1,t(σ; ρ).
The existence ofm1,t∗(σ; ρ) is established in exactly the same way. Moreover, the pointwise WLLNs
for both supϕ∈Bmk,t(σ;ϕ) and infϕ∈Bmk,t(σ;ϕ) are also clearly satisfied since Emk,t(σ;ϕ) ≡ 0
for any ϕ ∈ B(ϕ; ρ) ⊂ Θ.

2. We now show condition A4 above for m1,t(σ;ϕ) (m2,t(σ;ϕ) can be treated analogously). Denote
m∗

1,t(σ;ϕ) = εt
∑∞

i=0 ψ
∗
i εt−1−i where ψ

∗
i correspond to the MA(∞) representation of the AR(2)

series with the parameter vector ϕ∗ = (ϕ∗
1,ϕ

∗
2) ∈ Θ. For the sake of brevity we will use m∗

1 and m1

for m∗
1,t(σ;ϕ) and m1,t(σ;ϕ), respectively. Note that

|m∗
1 −m1| = |εt

∞∑
i=0

ψ∗
i εt−1−i − εt

∞∑
i=0

ψiεt−1−i|

≤

√√√√ ∞∑
i=0

ψ2
i ε

2
t−1−iε

2
t

√√√√ ∞∑
i=0

(
ψ∗
i − ψi
ψi

)2

.

Let Bt :=
√∑∞

i=0 ψ
2
i ε

2
t−1−iε

2
t and

d(ϕ∗,ϕ) :=
∞∑
i=0

(
ψ∗
i − ψi
ψi

)2

.

16



Then,

sup
T

1

T

T∑
t=2

EBt ≤ sup
T

1

T

T∑
t=2

√√√√E

( ∞∑
i=0

ψ2
i ε

2
t−1−iε

2
t

)
=

√√√√ ∞∑
i=0

ψ2
i <∞.

Now we need to treat the second multiplicative term. First, recalling (3.9), it is easy to conclude,
by induction, that the coefficients ψj are continuously differentiable functions of ϕ = (ϕ1, ϕ2) for
any ϕ ∈ B(ϕ, ρ) ⊂ Θ. Therefore, using (3.8), one can easily establish that

lim
ϕ∗→ϕ

d(ϕ∗,ϕ) = 0.

Note that the quantity
∑∞

i=0

(
ψ∗
i −ψi

ψi

)2
is not a metric and, therefore, the verification of Assumption

A4 seems in doubt at first sight. However (see Andrews (1992)), the fact that Assumption A4 implies
Assumption A3 does not need the argument d(ϕ̃,ϕ) of the function h to be a proper metric but
only that d(ϕ̃,ϕ) → 0 as ϕ̃ → ϕ.

Proof of Theorem 3.3. Our proof of consistency will rely on the Theorem A1 of Andrews (1994) with
Wt = (yt, yt−1, yt−2)

′. We will simply verify that the sufficient conditions of Theorem A1 are true.
The first assumption C(a) follows from Lemma 3.2 taking mt(σ;ϕ) ≡ 0. It remains to show the other
conditions therein.

The first part of Assumption C(b) of the Theorem A is immediately satisfied because m(σ;ϕ) ≡ 0 for
any ϕ and σ. Since σ̃2t is a local linear regression estimator, it is clear that it is twice continuously
differentiable as long as the kernel function K() is twice continuously differentiable; thus, the second part
of of the Assumption C(b) is also true. The Assumption C(c) is true if the Euclidean norm of m(σ;ϕ) =
limT→∞

1
T

∑T
t=2Emt(σ;ϕ) is finite. Hereafter, we denote the euclidian norm by || · ||. In our case, since

both martingale difference sequences vt−1εt and vt−2εt have mean zero, clearly supΘ×F ||m(σ;ϕ)|| =
0 < ∞ and the Assumption C(c) is satisfied. The Assumption C(d) is true because Θ is compact, the
functional

dt = m
′
t(σ;ϕ)mt(σ;ϕ)/2,

is continuous in ϕ and the Hessian matrix ∂2dt
∂ϕ2 is positive definite (can be verified). All of the above

allows us to conclude that the weak consistency holds: ϕ̂
P→ ϕ.

Proof of Theorem 3.4. Recall that σ̃t is the inconsistent estimator of σt which, nevertheless, estimates
the quantity σbiast = σt√

1+ϕ2
consistently (see Lemma 4.1 above); it is corrected to obtain σ̂t = σ̃t(1+ ϕ̂2).

We also recall the notation (3.1) and define, for some generic argument ϑ = (ϑ1, . . . , ϑT ) and φ = (φ1, φ2),

m̄T (ϑ;φ) :=
1

T

T∑
t=2

mt(ϑ;φ),

with mt(ϑ,φ) given as in (3.4). Since the vector valued function mt(ϑ;φ) is twice continuously differen-
tiable, we can use a Taylor expansion around (σ̃;ϕ) to get

√
T m̄T (σ̃; ϕ̂) =

√
T m̄T (σ̃;ϕ) +

∂

∂ϕ
m̄T (σ̃;ϕ

∗)
√
T (ϕ̂− ϕ), (A.4)
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for some ϕ∗ that lies on the straight line connecting ϕ̂ and ϕ. Note that, due to the first order conditions
(3.6), the left-hand side of the equation (A.4) cancels out. Hence, using the consistency of ϕ̂ for ϕ
(Theorem 3.3) and the assumption 2 in the statement of the theorem, we obtain that

√
T (ϕ̂− ϕ) = −[M̄−1 + op(1)]

√
T m̄T (σ̃;ϕ),

provided that the matrix

M̄ = lim
T→∞

1

T

T∑
t=2

E
∂mt

∂ϕ
(σbias;ϕ) (A.5)

exists and is invertible. In order to verify the latter condition, note that in our case,

∂mt

∂ϕ
(σbias;ϕ) =

(
∂m1,t

∂ϕ1

∂m1,t

∂ϕ2
∂m2,t

∂ϕ1

∂m2,t

∂ϕ2

)∣∣∣∣∣
(σbias,ϕ)

= (1 + ϕ2)
−1

(
−v2t−1 −vt−1vt−2

−vt−1vt−2 −v2t−2

)
,

In light of (2.6), it follows that

M̄ = lim
T→∞

1

T

T∑
t=2

E
∂mt

∂ϕ
(σbias;ϕ) = −(1 + ϕ2)

−1

(
γ0 γ1
γ1 γ0

)
,

which, in particular, is clearly invertible.

Next, let m∗
T (ϑ;φ) =

1
T

∑T
t=2Emt(ϑ;φ) and define the empirical process

νT (ϑ) =
√
T [m̄T (ϑ;ϕ)−m∗

T (ϑ;ϕ)] (A.6)

Clearly, √
Tm̄T (σ̃;ϕ) =

√
Tm̄T (σ

bias;ϕ) + νT (σ̃)− νT (σ
bias) +

√
Tm∗

T (σ̃;ϕ)

Now, using (3.5),

√
Tm̄T (σ

bias;ϕ) =
1√
T

T∑
t=2

mt(σ
bias;ϕ) =

1

1 + ϕ2

(
1√
T

T∑
t=2

vt−1εt,
1√
T

T∑
t=2

vt−2εt

)
.

Hence, using the CLT for martingale difference sequences (see Billingsley (1961)),
√
Tm̄T (σ

bias;ϕ) is
asymptotically normal N(0, (1 + ϕ2)

−2S), where

S :=

(
Ev2t−1ε

2
t Evt−1vt−2ε

2
t

Evt−1vt−2ε
2
t Ev2t−2ε

2
t

)
=

(
γ0 γ1
γ1 γ0

)
.

Note that M̄ = −(1 + ϕ2)
−1S. Then, if we can show that

νT (σ̃)− νT (σ
bias)

P→ 0 and
√
Tm∗

T (σ̃;ϕ)
P→ 0, (A.7)

our task is over and we can say that
√
T (ϕ̂− ϕ)

d−→ N(0, V ) with

V = M̄−1((1 + ϕ2)
−2S)(M̄−1)

′
= (−(1 + ϕ2)

−1S)−1((1 + ϕ2)
−2S)(−(1 + ϕ2)

−1S′)−1

= S−1 =
1

γ20 − γ21

(
γ0 −γ1
−γ1 γ0

)
.

A simple computation using (2.6)-(2.7) leads to (3.10). We show (A.7) through the following two steps:
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(1) First, denoting the indicator function of an event A by 1A, we have, for any ε > 0,
√
Tm∗

T (σ̃;ϕ) =
√
Tm∗

T (σ̃;ϕ)1{ρ(σ̃,σbias)>ε} +
√
Tm∗

T (σ̃;ϕ)1{ρ(σ̃,σbias)≤ε}.

The first term on the right is op(1) due to consistency of σ̃ as an estimator of σbias. Similarly, the second
term therein is op(1) due to the fact that Emt(σ

bias;ϕ) = 0 and Emt(ϑ;φ) is uniformly continuous in

ϑ. We then conclude that
√
Tm∗

T (σ̃;ϕ)
P→ 0

(2) We can show that νT (σ̃) − νT (σ
bias)

P→ 0 using the argument of Andrews (1994), pp. 48-49, that
requires, first, establishing stochastic equicontinuity of νT (ϑ) at σbias and then deducing the required
convergence in probability. To do this, note first that

T−1/2
T∑
t=2

(
v2t−1 − E v2t−1

)
= Op(1), T−1/2

T∑
t=2

vt−kvt−1−k = Op(1), (A.8)

for k = 0, 1. The empirical process νT (ϑ) has its values in R
2; examining its first coordinate ν1T (ϑ), one

easily obtains ν1T (ϑ) = T−1/2
∑T

t=2 S
′
tτt(ϑ), where

St = (ytyt−1, ϕ1y
2
t−1, ϕ2yt−1yt−2)

′
, τt(ϑ) = (ϑ−1

t ϑ−1
t−1,−ϑ

−2
t−1,−ϑ

−1
t−1ϑ

−1
t−2)

′.

Then, denoting the standard Euclidean norm in R3 by || · ||, for η > 0 and δ > 0, we have

lim sup
T→∞

P

(
sup

ρ(σ̃,σbias)<δ

|ν1T (σ̃)− ν1T (σ
bias)| > η

)

= lim sup
T→∞

P

(
sup

ρ(σ̃,σbias)<δ

∣∣∣∣∣T−1/2
T∑
t=2

(S′
t − E S′

t)(τ̃t(σ̃)− τt(σ
bias))

∣∣∣∣∣ > η

)

≤ lim sup
T→∞

P

(
sup

ρ(σ̃,σbias)<δ

∥∥∥∥∥T−1/2
T∑
t=2

(St − E St)

∥∥∥∥∥ > η

δ

)
< ε,

for δ > 0 small enough, since T−1/2
∑T

t=2(St − E St) = Op(1) due to (A.8). Using exactly the same
argument, one easily obtains stochastic equicontinuity of the second coordinate ν2T (ϑ) at σ

bias; therefore,
needed convergence in probability for νT (σ̃)−νT (σbias) follows from the convergence in both coordinates
separately and the Slutsky’s theorem.

Proof of Corollary 3.6. The following is a sketch of the proof for the case of p = 2. The conditions
given in the corollary are not the least restrictive; they guarantee consistency of the estimator µ̂t ≡ g(xt)
and the order O((h/T )2) for the bias; see Theorem 6.1 in Fan and Yao (2003) for details. Note that the
model (1.4) can be represented in the functional autoregressive form

σ−1
t yt = ft(ϕ) + ϕ1σ

−1
t−1yt−1 + ϕ2σ

−1
t−2yt−2 + εt

where the new mean function is ft(ϕ) = σ−1
t g(xt)−ϕ1σ−1

t−1g(xt−1)−ϕ2σ−1
t−2g(xt−2). Recall that functions

mk,t(ϕ) ≡ vt−kεt, k = 1, 2 do not depend on σt; therefore, (3.5) is still true and the Lemma 3.2 is also true
as well. This implies that the Theorem 3.3 is true as well. Finally , when trying to prove Theorem 3.4,
one quickly discovers that the matrix ∂mt

∂ϕ (ϕ) is now different; for example,
∂m1,t

∂ϕ2
= γ0− g(xt−1)σ

−1
t−1vt−1.

Nevertheless, since the second term of the above has the mean zero, its expectation is the same as before
and the same is true of the other four elements of the matrix; thus, matrix M stays the same. Finally,
the vector St = ((yt − µt(yt − µt−1), ϕ1(yt−1 − µt−1)

2, ϕ2(yt−1 − µt−1)(yt−2 − µt−2))
′
is now different;

nevertheless, it is easy to verify that T−1/2
∑T

t=2(St − E St) = Op(1) again; thus the final result is still
valid.
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B Tables

Model Specifications
1 σ2

t = 0.5x2t + 0.1
2 σ2

t = 0.4 exp(−2x2t ) + 0.2
3 σ2

t = φ(xt + 1.2) + 1.5φ(xt − 1.2)

Table 1: Alternative data generating processes. φ(·) denotes the standard normal probability density.

ϕ1 = 0.6, ϕ2 = 0.3 ϕ1 = 0.6, ϕ2 = −0.6 ϕ1 = 0.98, ϕ2 = −0.6

Model T=100 T=1000 T=2000 T=100 T=1000 T=2000 T=100 T=1000 T=2000
1 0.0241 0.0013 0.0007 0.0220 0.0024 0.0014 0.0271 0.0024 0.0014
2 0.0388 0.0020 0.0009 0.0404 0.0025 0.0018 0.0552 0.0037 0.0018
3 0.0626 0.0026 0.0011 0.0576 0.0019 0.0019 0.0660 0.0041 0.0019

Table 2: Mean Squared Errors (MSE) of σ̂2(x) under the variance function specifications of Table 1 with
1000 Monte Carlo replications and a 10-fold cross-validation for bandwidth selection.

ϕ1 = 0.6, ϕ2 = 0.3
Model T = 100 T = 1000 T = 2000

Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2 Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2 Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2
1 0.559(0.114) 0.298(0.110) 0.594(0.029) 0.301(0.030) 0.595(0.021) 0.301(0.021)
2 0.565(0.105) 0.296(0.098) 0.594(0.029) 0.301(0.030) 0.598(0.021) 0.299(0.021)
3 0.566(0.103) 0.294(0.099) 0.598(0.030) 0.298(0.0302) 0.597(0.022) 0.300(0.021)

ϕ1 = 0.6, ϕ2 = −0.6

Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2 Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2 Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2
1 0.554(0.111) -0.535(0.104) 0.595(0.026) -0.591(0.024) 0.597( 0.017) -0.595(0.017)
2 0.561(0.100) -0.542(0.099) 0.597( 0.025) -0.595(0.025) 0.596(0.017) -0.596(0.018)
3 0.564( 0.100) -0.546(0.097) 0.596(0.025) -0.594(0.025) 0.597(0.017) -0.596(0.017)

ϕ1 = 0.98, ϕ2 = −0.6

Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2 Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2 Mn(Sd) ϕ̂1 Mn(Sd) ϕ̂2
1 0.894(0.140) -0.517(0.118) 0.972(0.026) -0.591(0.025) 0.975(0.017) -0.594( 0.018)
2 0.919(0.108) -0.535(0.099) 0.973(0.025) -0.592(0.025) 0.976(0.017) -0.596(0.017)
3 0.917( 0.102) -0.535(0.098) 0.974(0.026) -0.594( 0.026) 0.976(0.017) -0.596(0.018)

Table 3: Sampling Means and Standard Deviations under under the variance function specifications of
Table 1 with 1000 Monte Carlo replications.
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