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Abstract

We are interested in modelling the time series process yt ¼ sðxtÞ�t, where �t ¼ f0�t�1 þ vt. This model is of interest as it

provides a plausible linkage between risk and expected return of financial assets. Further, the model can serve as a vehicle

for testing the martingale difference sequence hypothesis, which is typically uncritically adopted in financial time series

models. When xt has a fixed design, we provide a novel nonparametric estimator of the variance function based on the

difference approach and establish its limiting properties. When xt is strictly stationary on a strongly mixing base (hereby

allowing for ARCH effects) the nonparametric variance function estimator by Fan and Yao [1998. Efficient estimation of

conditional variance functions in stochastic regression. Biometrika 85, 645–660] can be applied and seems very promising.

We propose a semiparametric estimator of f0 that is
ffiffiffiffi
T
p

-consistent, adaptive, and asymptotic normally distributed under

very general conditions on xt.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider estimation of a time series process with an unknown and possibly time varying
conditional variance function and serially dependent innovations. By allowing for dependence in the
innovation process, the model provides a plausible linkage between risk and expected return of financial assets
not previously analyzed. Furthermore, the model provides a vehicle for testing the martingale difference
sequence hypothesis, which is typically uncritically assumed in financial time series models, such as ARCH
and GARCH.

We characterize the estimated parameters of the serially correlated innovation process as a solution
to a weighted least squares (WLS) problem, where the weights are given by a nonparametric estimator
of the conditional variance function. This semiparametric estimator belongs to the class of so-called
MINPIN estimators. By using the framework of Andrews (1994) the asymptotic properties of the
e front matter r 2006 Elsevier B.V. All rights reserved.
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estimated parameters in the innovation process can be established under very general conditions.
If the regressors entering the variance function are strictly stationary on an a-mixing base, the non-
parametric estimator of the variance function suggested by Fan and Yao (1998) can be used. However,
if the design is fixed, a new and in some cases more efficient nonparametric estimator is proposed
and its asymptotic properties are established. Based on simulation experiments we show that under a
fixed design this novel estimator has better small sample properties than the one proposed by Fan and
Yao (1998).
2. The model

Consider the following process for the time series of interest denoted yt 2 R; t ¼ 1; 2; . . . ;T where

yt ¼ st�t, (1)

�t ¼ f0�t�1 þ vt. (2)

Furthermore, assume (i) vt�i:i:d:ð0; 1Þ, Eðjvtj
lþgÞo1 for l ¼ 1; . . . ; 4 and for some g40, (ii) f0 2 Y ¼ ð�1; 1Þ,

(iii) s2t � sðxtÞ
2
2F ¼ C2½0; 1�, Pðs2t40Þ ¼ 1 for all t ¼ 1; 2; . . . ;T , and finally (iv) �t is a strongly

mixing sequence with mixing coefficient equal to �ð1þ 2=dÞ for d40. s2t (denoted also as s2Þ will be referred
to as the variance function although strictly speaking it does not fully describe the variance structure of the
model whenever f0a0. It should be noticed that the model given by (1)–(2) belongs to the general class
of function coefficient autoregressive (FAR) models, as can be seen from the following simple re-
parameterization:

yt ¼ sts�1t�1f0yt�1 þ stvt.

Here, the functional autoregressive coefficient is given by the term gðxt;f0Þ ¼ sts�1t�1f0. This coefficient is
allowed to be numerically larger than unity for certain values of t; and during these periods yt will exhibit
explosive behavior. A second important feature of the model is that an increase in the variance will have a
positive (negative) effect on the conditional expectation of yt provided that f0 is positive (negative). If yt are
observations on a return series associated with a risky asset, this feature can be interpreted as a tradeoff
between risk and expected return. The size and direction of such a tradeoff is of great importance in asset
pricing theory and can easily be quantified using our approach. It is important to note that f0a0 implies that
the estimator of varðytjxt;xt�1; yt�1Þ generally will be inconsistent, if based on residuals from a least squares
regression of yt on yt�1, due to the time varying properties of the functional autoregressive coefficient. This
potential source of inconsistency has often been ignored (e.g., when estimating (G)ARCH models), due to
uncritical adoption of the assumption that the innovation process is a martingale difference sequence. As a by-
product of our analysis, a simple parametric test of the martingale difference hypothesis, i.e., f0 ¼ 0, is
proposed that enables the researcher to avoid this potential pitfall. Our main interest, however, is in the
estimation of s2t and f0. We will proceed under the following two alternative assumptions regarding the
regressor xt:

Case 1: xt has a fixed design on the unit interval.
Case 2: xt is a strictly stationary process with an a-mixing base.
Note that Case 2 encompasses the situation where xt ¼ yt�1, hence allowing for the presence of ARCH

effects. The estimation procedure is simple and consists of two stages: In the first stage the estimator of s2t—
denoted bst

2—is obtained. Secondly, a semiparametric estimator of f0 is computed using WLS, where the
weights are constructed using bst

2. This semiparametric estimator belongs to the class of MINPIN estimators
introduced by Andrews (1994). In Case 1 we propose a novel nonparametric estimator based on the difference
approach, which turns out to have nice asymptotic properties and is very easy to handle computationally.
In Case 2 the estimator proposed by Fan and Yao (1998) seems promising. We begin, however, by
characterizing the asymptotic properties of the MINPIN estimator.
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3. Characterization of bf and its asymptotics

Consider the objective function dðst; st�1;fÞ ¼ mðst; st�1;fÞ
2, where

mðst; st�1;fÞ ¼ s�1t s�1t�1ytyt�1 � s�2t�1fy2
t�1 ¼ vt�t�1. (3)

Since dðst;st�1;fÞ is unobservable (as st is unknown), a GMM estimator of f0 can be defined as the
minimizer of the sample analog of Eðdðst; st�1;fÞÞ, i.e.,

bf ¼ arg min
f2Y

ð2TÞ�1
XT

t¼2

dðbst;bst�1;fÞ ¼ ð1=TÞ
XT

t¼2

bs�2t�1y2
t�1

 !�1
ð1=TÞ

XT

t¼2

bst
�1bs�1t�1ytyt�1

 !
. (4)

Before characterizing the asymptotic properties of bf, the following regularity conditions on mðst;st�1;fÞ and
its derivative need to be established.

Lemma 1. mtðs;fÞ ¼ mðst;st�1;fÞ is twice continuously differentiable in f on Y, 8s 2 F and 8tX1. mtðs;fÞ
and ðq=qfÞmtðs;fÞ satisfy a uniform WLLN on Y�F. Moreover, mðs;fÞ ¼ limT!1ð1=TÞ

PT
t¼2E

ðmðst;st�1;fÞÞ and M ¼ limT!1ð1=TÞ
PT

t¼1Eðqmtðs;fÞ=qfÞ exist uniformly over Y�F and are continuous

at ðs;f0Þ with respect to some pseudo-metric on Y�F for which ðbs; bfÞ �!p ðs;f0Þ.

Proof of Lemma 1. We will begin by verifying that mt ¼ mtðs;fÞ satisfies a uniform WLLN on Y�F
following Andrews (1987): Assumption A1 in Andrews (1987) is trivially satisfied. Assumption A2 is satisfied
since mt ¼ vt

P1
i¼0 f

ivt�1�i and consequently mt�!
p

0 uniformly on the interior of Y�F (not only locally in a
closed ball around fÞ. Next, define m�t ¼ mtðs�t ;s

�
t�1;f

�
Þ and consider

jm�t �mtj ¼ vt

X1
i¼0

f�ivt�1�i � vt

X1
i¼0

fivt�1�i

�����
�����p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
i¼0

f2iv2t�1�iv
2
t

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
i¼0

f�i � fi

fi

� �2
vuut .

By letting btðvt; vt�1;fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1

i¼0f
2iv2t�1�iv

2
t

q
and rðf�;fÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1
i¼0ððf

�i
� fi
Þ=fi
Þ
2

q
this implies that

sup
T

ð1=TÞ
XT

t¼2

Ebtðvt; vt�1;fÞp sup
T

ð1=TÞ
XT

t¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
X1
i¼0

f2iv2t�1�iv
2
t

 !vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� f2

s
,

and rðf�;fÞ # 0 as f� ! f. Consequently, Assumption 4 in Andrews (1987) holds and accordingly (using
Corollary 2 in Andrews, 1987) we can conclude that mt satisfies the uniform WLLN over Y�F. Next, note
that qmt=qf ¼ vt

P1
i¼0 f

ivt�2�i. Using similar steps as above it follows straightforwardly that also for qmt=qf
Assumptions A1, A2, and A4 in Andrews (1987) apply, hence it satisfies the UWLLN uniformly on Y�F.
As mt and qmt=qf do not depend on st, Corollary 2 in Andrews (1987) also establishes uniform continuity of
m ¼ limT!1ð1=TÞ

PT
t¼1Eðmtðf; stÞÞ and of M ¼ limT!1ð1=TÞ

PT
t¼1Eðqmt=qfÞ ¼ 1=ð1� f2

Þ: Finally, notice
that mt is twice differentiable in f uniformly on Y which completes the proof. &

Immediately the following asymptotic results can be established.

Theorem 1. Let data be generated according to model (1)–(2) under Assumptions (i)–(iv) with xt defined as in

Case 1 or Case 2. Let bst
2 be a nonparametric estimator of s2t and suppose (1) supf2Ykbs2t � s2t k�!

p
0 for some

s2t 2F and (2) Pðbst
2 2FÞ �!

p
1. Then bf�!p f0.

Proof of Theorem 1. In addition to the requirements (1) and (2), the consistency result requires uniform
continuity of dt ¼ dðst;st�1;fÞ and the existence of a unique minimizer of dðst; st�1;fÞ, see, e.g., Theorem A-
1 in Andrews (1994). Uniform continuity of dt follows directly from Lemma 1 as supðf;sÞ2Y�Fkmðs;fÞk ¼ 0.
The existence of a unique minimizer of dt on Y follows from the compactness of Y, continuity of dt, and since
q2dt=ðqfÞ

2
¼ ðs�2t�1y

2
t�1Þ

240. &

To establish asymptotic normality of bf define mT ðs;fÞ ¼ ð1=TÞ
PT

t¼1mðst; st�1;fÞ. The regularity
conditions on mðst; st�1;fÞ, established by Lemma 1, allow a mean value expansion of

ffiffiffiffi
T
p

mT ðbs; bfÞ about f0
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given asffiffiffiffi
T
p

mT ðbs; bfÞ ¼ ffiffiffiffi
T
p

mT ðbs;f0Þ þ
q
qf

mT ðbs;f�Þ ffiffiffiffiT
p
ðbf� f0Þ, (5)

where f� lies between bf and f0. There are basically three steps involved to establish the asymptotic normality
of

ffiffiffiffi
T
p
ðbf� f0Þ. If (a) limT!1ðq=qfÞmT ðbs;f�Þ�!p M, where M is given by Lemma 1 thenffiffiffiffi
T
p
ðbf� f0Þ ¼ �M�1 opð1Þ þ

ffiffiffiffi
T
p

mT ðbs;f0Þ

� �
, (6)

since
ffiffiffiffi
T
p

mT ðbs; bfÞ ¼ opð1Þ, where bf solves the first order condition mT ðbs; bfÞ ¼ 0 and bf belongs to the interior

of Y wp!1. Consequently, the asymptotic normality of
ffiffiffiffi
T
p
ðbf� f0Þ follows if (b)

ffiffiffiffi
T
p

mT ðs;f0Þ is

asymptotically normally distributed and (c)
ffiffiffiffi
T
p
ðmT ðbs;f0Þ �mT ðs;f0ÞÞ �!

p
0. Let m�T ðs;fÞ ¼

ð1=TÞ
PT

t¼1Eðmðst;st�1;fÞÞ and uT ðsÞ ¼
ffiffiffiffi
T
p
ðð1=TÞ

PT
t¼1mðst;st�1;fÞ �m�T ðs;fÞÞ such thatffiffiffiffi

T
p
ðmT ðbs;f0Þ �mT ðs;f0ÞÞ ¼ uT ðbsÞ � uT ðsÞ �

ffiffiffiffi
T
p

m�T ðbs;fÞ.
Then, condition (c) is true if uT ðbsÞ is stochastic equicontinuous at s and

ffiffiffiffi
T
p

m�T ðs;fÞ �!
p

0. In what follows we

first show that
ffiffiffiffi
T
p

m�T ðs;fÞ �!
p

0 (Lemma 3). Based on this result, it is relatively easy to show that condition

(b) holds (Lemma 5).

Lemma 2. Given the assumptions of model (1)–(2),
ffiffiffiffi
T
p

mT ðbs;f0Þ �!
p

0 in Case 1 and 2.

Proof of Lemma 2. Note that for any �40ffiffiffiffi
T
p

m�T ðbs;f0Þ ¼
ffiffiffiffi
T
p

m�T ðs;f0Þ1ðrFðbs;sÞp�Þjs¼bs þ ffiffiffiffi
T
p

m�T ðbs;f0Þ1ðrFðbs; sÞ4�Þ,

where rFðbs; sÞ is a pseudometric defined on F. As Eðmðst;st�1;f0ÞÞ ¼ 0 uniformly on F, it follows thatffiffiffiffi
T
p

m�T ðbs;f0Þ ¼ 0þ opð1Þ where the last term is a result of consistency of bs with respect to s. &

Lemma 3. Define uT ðsÞ ¼
ffiffiffiffi
T
p
ðð1=TÞ

PT
t¼1mðst; st�1;fÞ �m�T ðs;fÞÞ. Then, uT ðsÞ �!

d
Nð0; 1=ð1� f2

ÞÞ in Case 1
and 2.

Proof of Lemma 3. It follows from Lemma 2 that uT ðsÞ ¼ ð1=
ffiffiffiffi
T
p
Þ
PT

t¼1vt�t�1 þ opð1Þ where vt�t�1 is a
martingale difference sequence with an a-mixing base (given by current and lagged values of vtÞ defined
uniformly on Y�F with finite variance varðvt�t�1Þ ¼ 1=ð1� f2

Þ. The result of Lemma 3 then follows in a
straightforward manner from, e.g., Theorem 7.11 in Bierens (2005). &

Before showing that uT ðbsÞ is stochastic equicontinuous we need the following result.

Lemma 4. Given the assumptions of model (1)–(2), T�1=2
PT

t¼2�
2
t�1 ¼ Opð1Þ in Case 1 and 2.

Proof of Lemma 4. Define an increasing sequence of s-fields as Ft ¼ sððyt;xtÞ; ðyt�1;xt�1Þ; . . . ; ðy1; x1ÞÞ such
that f�2t ;F tgt is an adaptive stochastic sequence. Since Eð�2t Þ ¼ 1=ð1� f2

Þo1, then fZt;F tgt for Zt ¼

�2t � Eð�2t jFt�1Þ is a martingale difference sequence on an a-mixing base. Furthermore, note that

EðZ2
t Þ ¼ Eððv2t � 1þ 2fvt�t�1Þ

2
Þ ¼ Eðv4t Þ þ 4f2=ð1� f2

Þ � 1o1,

since Eðv4t Þ ¼ m4o1 by Assumption (ii) and due to independence of vt and �t�1. Consequently, it follows

from, e.g., Theorem 7.11 in Bierens (2005) that
ffiffiffiffi
T
p PT

t¼2Zt�!
d

Nð0;EðZ2
t ÞÞ. The desired result follows from

strict stationarity of �2t and since EðZ2
t Þo1. &

Lemma 5. Let uT ð�Þ be defined as in Lemma 3. Then, uT ðbsÞ is stochastic equicontinuous at s.

Proof of Lemma 5. Write mðst; st�1;fÞ ¼ S0tt where

St ¼
ytyt�1

fy2
t�1

" #
¼

stst�1f�2t�1 þ stst�1vt�t�1

fs2t�1�
2
t�1

" #
,
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and t ¼ ðs�1t s�1t�1;s
�2
t�1Þ
0. Let rFð�; �Þ be the Euclidian metric and note that

lim
T!1

P sup
rFðbs;sÞod0

juT ðbsÞ � uT ðsÞj4Z

0@ 1A ¼ lim
T!1

P sup
rFðbs;sÞod0

T�1=2
XT

t¼2

ðSt � EðStÞ
0
ðbt� tÞÞ

�����
�����4Z

0@ 1A
p lim

T!1
P sup

rFðbs;sÞod0
T�1=2

XT

t¼2

St � EðStÞ

�����
�����4Z=d0

0@ 1A
! 0,

provided that (a)T�1=2
PT

t¼2ðSt � EðStÞÞ ¼ Opð1Þ and (b) d0 is sufficiently small. In Case 1, condition (a) is

satisfied from the results of Lemmas 3 and 4 (implying that T�1=2
PT

t¼2vt�t�1 ¼ Opð1Þ and T�1=2
PT

t¼2�
2
t�1 ¼

Opð1ÞÞ and because 0os2to1 for all t. In Case 2, use T�1=2
PT

t¼2�
2
t�1 ¼ T�1=2

PT
t¼2s

�2
t y2

t�1 ¼ Opð1Þ. It then

follows that

max
1ojpT

ðs2j ÞT
�1=2

XT

t¼2

y2
t�1pT�1=2

XT

t¼2

s�2t y2
t�1 ¼ Opð1Þ,

hence T�1=2
PT

t¼2y
2
t�1 ¼ Opð1Þ. Furthermore,

T�1=2
XT

t¼2

ytyt�1 ¼ fT�1=2
XT

t¼2

sts�1t�1y
2
t�1 þ T�1=2

XT

t¼2

stst�1vt�t�1 ¼ Opð1Þ,

due to the previous established result and since stst�1vt�t�1 is a martingale difference sequence on an a-mixing
base with bounded variance, i.e.,

Eðs2ts
2
t�1v

2
t �

2
t�1Þpmax

t
ðs2ts

2
t�1Þð1� f2

Þ
�1o1,

as s2ts
2
t�1 is bounded. Consequently, it can be concluded that uT ðbsÞ is stochastic equicontinuous at s.

Condition (b) is trivially satisfied due to consistency of bst
2 with respect to s2t . &

Theorem 2. Let the assumptions of Theorem 1 hold. Then, under Case 1 and 2,
ffiffiffiffi
T
p
ðbf� f0Þ �!

d
Nð0; 1� f2

0Þ.

Proof of Theorem 2. Consider the mean value expansion given by (5). From Lemma 1 we have that

ðq=qfÞmT ðbs;f�Þ�!p ð1� f2
0Þ
�1. The results of Lemmas 2 and 5 imply that

ffiffiffiffi
T
p

mT ðbs;f0Þ and vT ðsÞ ¼ffiffiffiffi
T
p

mT ðs;f0Þ are asymptotically equivalent and that their asymptotic distribution (from Lemma 3) is given by

Nð0; ð1� f2
0Þ
�1
Þ. Consequently,ffiffiffiffi

T
p
ðbf� f0Þ ¼ � ð1� f2

0Þðopð1Þ þNð0; ð1� f2
0Þ
�1
ÞÞ

¼ Nð0; ð1� f2
0ÞÞ þ opð1Þ,

which completes the proof. &

Theorem 2 gives conditions under which bf is not dependent on the estimator of s2t asymptotically and is
asymptotically equivalent to the maximum likelihood estimator of f0 given that �t is observable.
Consequently, the bf is asymptotically efficient. In addition, since bf is an efficient estimator of f0 and f0 is
the only unknown parameter in the model, the estimator is adaptive, see, e.g., Andrews (1994, p. 59). Finally,
it is noteworthy that bf, as many semiparametric estimators, converge to f0 at the parametric

ffiffiffiffi
T
p

-rate.

4. Asymptotics of the variance function estimators

To characterize the asymptotic properties of the variance function estimator we will use the asymptotic
mean squared error (AIMSE), which consists of the first two terms of a Taylor expansion of integrated mean
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squared error given as IMSE ¼
R 1
0 Eðbst

2 � s2t Þ
2 dt. The minimal value of AIMSE achieved at the optimal

(minimizing) bandwidth is referred to as AIMSEo.
1

4.1. Case 1: the difference based estimator

Following the so-called difference sequence based approach by Hall et al. (1990) and Levins (2003), we
define Zt ¼ ð1=2Þ

�1=2
ðyt � yt�2Þ and consider the local linear estimator bst

2 ¼ bs2ðxtÞ given as ba that solves the
problem

ðâ; b̂Þ ¼ argmin
a;b

XT

t¼3

ðZ2t � a� bðxt � xÞÞ2Khðxt � xÞ, (7)

where Khð�Þ is a kernel function. The choice of Zt is motivated by the observation that for any stationary AR(1)
time series process the difference between the variance, g0 ¼ varð�tÞ, and the covariance, g2 ¼ covð�t; �t�2Þ,
equals unity. We use this property to establish the following consistency result.

Theorem 3. Let data be generated according to model (1)–(2) under Case 1. Suppose that KðuÞ is a second

order non-negative kernel function satisfying: KðuÞX0 for any u 2 ½�1; 1�, m1 ¼
R

KðuÞdu ¼ 0,
s2K � m2 ¼

R
u2KðuÞdua0, and RK ¼

R
KðuÞ2 du. Then, the estimator given by (7) is consistent in mean square

with convergence rate OðT�4=5Þ. Furthermore, the optimal (in the sense of Parzen, 1962 and Rosenblatt, 1956)
bandwidth is h ¼ OðT�1=5Þ.

Proof of Theorem 3. From (7), Eðbst
2Þ ¼ e0ðX 0WX=TÞ�1X 0WEðZ2t Þ=T , where e ¼ ð1; 0Þ0,W ¼ diagðKhðx1�

xÞ; . . . ;KhðxT � xÞÞ for Khð�Þ ¼ h�1Kð�=hÞ, and a typical row of X is ð1; ðx� xtÞÞ. Existence of two continuous
derivatives of s2t guarantees that s2t ¼ s2 �Ds2ðx� xtÞ þD2s2ðx� xtÞ

2=2þ oðh2
Þ. Writing

Z2t ¼
1
2
ðs2t �

2
t þ s2t�2�

2
t�2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ts

2
t�2

q
�t�t�2Þ, using the expansions for s2t and s2t�2, and the fact that

ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

¼

1þ x=2þ oðxÞ for small x gives

EðZ2t Þ ¼ ðg0 � g2Þs
2 � g0Ds2½ðx� xtÞ þ ðx� xt�2Þ�=2

þ g0D
2s2½ðx� xtÞ

2
þ ðx� xt�2Þ

2
�=2þ g2Ds2½ðx� xtÞ þ ðx� xt�2Þ�=2

� g2D
2s2½ðx� xtÞ

2
þ ðx� xt�2Þ

2
�=4� g2ðDs2Þ2ðx� xtÞðx� xt�2Þ=s2 þ oðh2

Þ, ð8Þ

where covð�t; �t�lÞ � gl . Defining srðx; hÞ ¼ T�1
P

tðx� xtÞ
rKhðx� xtÞ and sr;mðx; hÞ ¼ T�1

P
tðx� xtÞ

r
ðx�

xt�2Þ
mKhðx� xtÞ and noticing that srðx; hÞ ¼ sr�1;1ðx; hÞ ¼ hr

R 1
�1 urKðuÞduþOðT�1Þ implies

ðX 0WX=TÞ�1 ¼
1þOðT�1Þ OðT�1Þ

OðT�1Þ h2s2k þOðT�1Þ

" #�1
.

In addition, as the first entry in X 0WEðZ2Þ=T equals

ðX 0WEðZ2t Þ=TÞ1 ¼ s2 þ ½D2s2=4� g2ðDs2Þ2=s2�h2s2K=2þ oðh2
Þ þOðT�1Þ,

it follows that Biasðbst
2Þ ¼ ½D2s2=4� g2ðDs2Þ2=s2�h2s2K=2þ oðh2

Þ þOðT�1Þ. Using similar techniques, the

variance of bst
2 can be found as

varðbst
2Þ ¼ RK Cðf0Þs

4ðThÞ�1 þ oððThÞ�1Þ, (9)

where CðfÞ is a constant that depends on f0 only. Finally, the optimal bandwidth can be found to be

h ¼ T�1=5 Cðf0ÞRK

Z
s4t dt

� �1=5

s4K

Z
½D2s2t =4� g2ðDs2t Þ

2=s2t �
2 dt

� �1=5
,

, (10)
1The following notation will be used: Dkf ðtÞ ¼ dkf ðtÞ=ðdtÞk.
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and consequently

AIMSEo ¼ ð5=4ÞT
�4=5 RK CðfÞ

Z
s4t dt

� �4=5

s4K

Z
½D2s2t =4� g2ðDs2t Þ

2=s2t �
2 dt

� �1=5

.

Hence, the optimal AIMSE is of the order OðT�4=5Þ and the variance estimator bst
2 converges in the mean

square (pointwise), i.e., E½ðbst
2 � s2Þ2� ¼ OðT�4=5Þ hereby completing the proof. &

A few remarks are in order here. First, note that the quadratic functionalZ 1

0

½D2s2t =4� g2ðDs2t Þ
2=s2t �

2 dt, (11)

characterizes the degree of curvature of the function s2t corrected for the correlation present in the data. The
larger the expression in (11), the smaller the bandwidth we have to choose. Secondly, the rates of convergence
are identical to those obtained for the kernel regression estimator of the mean function under identical
smoothness requirements, see, e.g., Simonoff (1996). Thirdly, as an immediate consequence of Theorem 3,
Dkbst

2�!
p

Dks2 for any positive integer k. In addition to the result of Theorem 3, these results are very useful
in obtaining consistency of bf as they imply that conditions (1) and (2) in Theorem 1 hold. Finally, notice that
since bst

2 converges in L2-sense, it also converges in probability at the rate Opð1=
ffiffiffiffiffiffi
Th
p
Þ.

Theorem 4. Let the assumptions of Theorem 1 hold. Then,

bst
2�!

d
NðEðbs2t Þ; varðbst

2ÞÞ, (12)

as T !1, h! 0 and Th!1, where Eðbst
2Þ ¼ s2t þ Biasðbst

2Þ and where the expression of bias and variance ofbs2t are as given in the proof of Theorem 3.

Proof of Theorem 4. Since bst
2 can be written as a partial sum process, i.e., bst

2 ¼
PT

i¼3aT ðxi;xtÞZ2i where,

aT ðxt; xÞ ¼ T�1
ðs2ðx; hÞ � s1ðx; hÞðxt � xÞÞKhðxt � xÞ

s2ðx; hÞs0ðx; hÞ � s1ðx; hÞ
2

,

asymptotic normality of bst
2 can be shown using Theorem 2.2(c) in Peligrad and Utev (1997). First, the ‘‘kernel

function’’ aT ðxt;xÞ must satisfy (2.1) in Peligrad and Utev (1997), which consists of two conditions: (1) it
requires that max1ptpT jaT ðxt;xÞj ! 0 as T !1. This follows immediately from the fact that (a) the kernel
function Kð�Þ has bounded support and (b) its first moment is equal to zero. Indeed, asymptotically as h! 0,
T !1, and Th!1, s2ðx; hÞs0ðx; hÞ � s1ðx; hÞ

2
! h2s2K and the same is true of s2ðx; hÞ � s1ðx; hÞðxt � xÞ.

Therefore, the entire coefficient asymptotically behaves as Kððxt � xÞ=hÞ=Th and therefore max1ptpT Kððxt �

xÞ=hÞ=Th! 0 as T !1 and Th!1, as desired. (2) it requires that supT

P
a2

T ðxt; xÞo1. To establish that
this condition holds just note that asymptotically a2

T ðxt; xÞ ¼ ðKððxt � xÞ=hÞÞ2=ðThÞ2. As the support of the
kernel function Kð�Þ is bounded, the infinite sum of a2

T ðxt; xÞ will converge and we can conclude that the entire
(2.1) in Peligrad and Utev (1997) holds.Next, condition (2.2) in Peligrad and Utev (1997) needs to be verified:
Uniform integrability of Z4þgt for some g40 follows directly from Shiryaev (1996), with GðtÞ ¼ t4þg for g40
such that limt!1GðtÞ=t ¼ 1 and supt E ðjZtj

4þgÞo1. The last condition is due to boundedness of s2 and since
E jvtj

4þgo1. The remaining conditions of Theorem 2.2(c) are easily established: Z2t is strongly mixing as it is a
measurable function of the strongly mixing process �t and inf t varðZ2t Þ40 follows from the assumption that
s2t 40 for 8t. Finally,

P
taðtÞt

2=do1 follows as �t, and therefore—by assumption—Z2t , has mixing coefficient
equal to �ð1þ 2=dÞ. &
4.2. Case 2: the Fan and Yao estimator

Here the variance function estimator suggested by Fan and Yao (1998) seems natural to employ with
EðytjxtÞ ¼ f0yt�1sðyt�1Þ=sðyt�2Þ and varðytjxtÞ ¼ sðyt�1Þ

2: Under conditions similar to the ones assumed in
relation to the model given by (1)–(2), Fan and Yao prove consistency and asymptotic normality of the
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estimators of EðytjxtÞ and varðytjxtÞ; denoted bat and bat, respectively, and given as

ðbat; bbtÞ ¼ argmin
at;bt

XT

s¼3

ðys � at � ðxs � xtÞbtÞ
2K1

h1
ðxs � xtÞ, (13)

ðbat;bbtÞ ¼ argmin
at;bt

XT

s¼3

ðbr2s � at � ðys�1 � yt�1ÞbtÞ
2K2

h2
ðys�1 � yt�1Þ, (14)

where brt ¼ yt � ât and K1
h1
ð�Þ, K2

h2
ð�Þ are kernel functions. It should be noticed that the Fan and Yao variance

function estimator also works in Case 1. However, in this case xt ¼ ðxt;xt�1; yt�1Þ and convergence can be
expected to be relatively slow. The finite sample efficiency relative to the difference based estimator in Case 1
might also be affected adversely by bandwidth selection which has to be performed twice.
5. Simulations

In this section properties of the estimators bst
2 and bf are studied using simulations. We consider the data

being generated by model (1)–(2) for alternative choices of variance functions and for various values of f0.
The specification of s2t in Model 1 is a leading example in econometrics/statistics and can generate ARCH-
effects when xt ¼ yt�1. Model 2 is adapted from Fan and Yao (1998). In particular, the choice of s2t is identical
to the variance function in their Example 2. The variance function in Model 3 is from Hardle and Tsybakov
(1997). When xt is i.i.d. Uð0; 1Þ (Case 1) we refer to the models in Table 1 as Models 1–3, respectively. When
xt ¼ yt�1 (Case 2) we refer to the models in Table 1 as Models 1e–3e. We consider first the precision of the
nonparametric estimator using

MSEðbst
2Þ ¼

1

M

XM
s¼1

ð1=TÞ
XT

t¼1

ðbs2t;s � s2t;sÞ
2

 !
, (15)

where M denotes the number of Monte Carlo replications, T equals the sample size, and bs2t;s is the
nonparametric estimator of s2t;s at time t based on the sth Monte Carlo replication. In Fig. 1 the MSE based on
the difference estimator and the Fan and Yao (1998) estimator (hereafter, Fan–Yao estimator) are compared
for the specifications of s2t given in Table 1 (Cases 1 and 2) and alternative values of f0.

Bandwidths for the simulation experiments are chosen such that MSEðbst
2Þ is minimized based on

appropriate training data set which is feasible because the true data generating process is known. This
procedure is adapted to minimize uncertainty related to bandwidth selection.2 Fig. 1 illustrates that for
numerically small values of f0 the two estimators perform approximately equally well in Case 1. However, for
values of f040:7 the difference estimator of bs2t is clearly more efficient that the Fan–Yao estimator. In Case 2,
we have included the difference estimator for easy comparison. We would expect the Fan–Yao estimator to be
relatively efficient, which is also the case under Model 2e. However, when applied to Models 1e and 3e the
differences are negligible for small values of f0. In Model 3e the difference estimator actually outperforms the
Fan–Yao estimator for larger values of f0. This may be due to the simplicity of the difference estimator,
however, caution is needed when interpreting these results as the asymptotic properties of the difference
estimator are unknown under Case 2.

Finally, we consider the sample density of bnT ¼
ffiffiffiffi
T
p
ðbf� f0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

0

q
, which according to Theorem 2

should converge to a standard normal density. In Fig. 2 the density of bnT for each of the Models 1–3 and 1e–3e
based on T ¼ 1000 and f0 ¼ 0:5 is depicted together with the standard normal density. From the illustration,
it is clear that the simulation results confirm the prediction of Theorem 2. No severe small sample biases seem
to be present in any of the pictures and the small sample approximation to the standard normal distribution in
general seems to be very good.
2For empirical applications, bandwidths could be chosen using either the approach suggested by Fan and Gijbels (1995) or plug-in

methods as the asymptotic variance function of both nonparametric estimators is known.
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Fig. 1. MSE from the difference based variance function estimator (solid line) and the Fan–Yao estimator (dotted line) under alternative

variance function specifications and alternative values of f0. T ¼ 1000 and the number of Monte Carlo replications equals 1000.

Table 1

Alternative data generating processes

Specifications

Model 1 yt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1þ 0:5x2

t

p
�t

Model 2 yt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4 expð�2x2

t Þ þ 0:2
p

�t
Model 3 yt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðxt þ 1:2Þ þ 1:5jðxt � 1:2Þ

p
�t

jð�Þ is the standard normal c.d.f.
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6. Conclusion

We introduce and analyze a model that has at least two important implications for research in empirical
finance. First, it provides a plausible linkage between risk and expected return of financial assets. Secondly, it
can serve as a vehicle for testing the martingale difference sequence hypothesis which typically is uncritically
adopted in financial time series models. Under general conditions, we discuss how to estimate the model and
establish the asymptotic properties of the proposed estimators. It is important to stress that the present
analysis has been limited to a very simple dependence structure in the innovation process. Allowing for a
general ARMA structure would be a natural extension and we conjecture that similar results can be obtained.
In particular, it is very likely that the difference approach will produce a nonparametric estimator that is
inconsistent up to a multiplicative constant and consequently the MINPIN estimators based on WLS will be
unaffected asymptotically. Furthermore, if the multiplicative constant depends on the MINPIN parameters,
bias-correcting the initial nonparametric estimator will be straightforward. Research addressing these possible
extensions is ongoing.
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Fig. 2. Finite sample (simulated) densities and the asymptotic density of
ffiffiffiffi
T
p
ðbf� f0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

0

q
under alternative variance function

specifications for T ¼ 1000 and f0 ¼ 0:5. Solid line: Nð0; 1Þ. Dashed line: Fan–Yao. Dotted line: Difference based. The number of Monte

Carlo replications equals 1000.
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