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Abstract

A possible approach to bandwidth selection for difference-based variance estimators in the nonpara-
metric regression is proposed. The approach is based on the crossvalidation-type idea modified for the
case of correlated data. The method is compared to an alternative plug-in style method. Difficulties in
implementing the latter are highlighted and it is argued that the proposed method represents a better
alternative. Simulations for several models are given that illustrate good practical performance of the
proposed method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The model we consider in this article is the nonparametric regression model

yi = g (xi) +√
f (xi)�i , i = 1, . . . , n, (1)

where g(x) and f (x) are unknown mean and variance functions, respectively. It is as-
sumed that f (x) ∈ Cp, p�2, belong to some functional smoothness classes. The errors �i ,
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i = 1, . . . , n are independent standard normal random variables N(0, 1). For convenience
purposes, we further assume that x ∈ [0, 1] and the (fixed) design is equispaced, t.i. xi = i

n
.

Our problem of interest is estimating the variance function f (x) in the presence of the
(infinite dimensional) nuisance parameter g(x).

It was pointed out in the late 1980s in Carroll and Ruppert (1988) that variance (and
not only the mean) estimation is also an important problem. As a practical example, we
may need to construct confidence(prediction) intervals for the mean function or to analyze
immunoassay (building prediction and calibration intervals)—either task will require an
estimate of the variance. At first, only the mean was assumed to be functionally dependent
on the predictor variable and the error variance was assumed to be constant. A few of
the articles that dealt with estimating the constant variance are Rice (1984), Gasser et al.
(1986) and Hall et al. (1990). The heteroscedastic case is a fairly recent research topic. Some
notable publications dedicated to it are Müller and Stadtmüller (1993), Härdle and Tsybakov
(1997), Fan and Yao (1998) and Dette (2002). The functional nature of the variance means
that different local estimation techniques, such as local polynomial estimation, are needed.
The author in his dissertation (see Levine, 2003) proposed a class of Nadaraya–Watson-type
local kernel estimators of the variance function.

It is well known that for any kernel estimator to become a workable procedure it has to be
accompanied by a bandwidth selection procedure. The traditional application field for the
kernel estimation—estimation of the mean function in nonparametric regression—contains
many different bandwidth selection procedures.

Two most common classes of those procedures are

• plug-in-type procedures,
• data-driven procedures that minimize some estimator of the mean squared error

(MSE).

However, the same problem with respect to the kernel variance estimators has received scant
attention so far.

In this article, we work with the variance estimation method described in Levine (2003).
First, we briefly describe the method. Next, we introduce a suitable crossvalidation-type
method for use with this procedure. The next step is investigating its properties in Monte-
Carlo settings. We will also show why an alternative approach via a plug-in-type procedure
does not seem to be a good option for our variance estimation approach although it is very
attractive conceptually. As a matter of fact, there are other possible nonconstant variance
estimation procedures that have been suggested in recent years. We can mention, among
others, the approach in Fan and Yao (1998) that is based on smoothing squared residuals
from the local linear fit of the mean function. Neumann (1994) uses a similar idea, only in
place of local linear regression the Gasser–Müller kernel estimation (see, e.g., Gasser and
Müller, 1979) is used. A quite general method, based on the localized quadratic forms in
observations, has been considered in Müller and Stadtmüller (1993). As for the bandwidth
selection procedures, Fan and Yao (1998) uses the bandwidth selection method from Fan
and Gijbels (1995); as possible alternatives, the crossvalidation bandwidth rule or the plug-
in approach of Ruppert et al. (1995) are also mentioned. Neumann (1994) use a simple
“leave-one-out” crossvalidation. Note that those are not methods designed specifically for
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the bandwidth selection in the variance estimation context: since the problem of variance
estimation in both of the aforementioned articles is being reduced to the local linear regres-
sion, the methods used are the classical ones designed in the local polynomial regression
setting.

2. Method description

Once again, we consider model (1). What follows is a brief review of the method to be
used to estimate the variance. For a more detailed treatment of this subject please see Levine
(2003).

Definition 1. A difference sequence of order r is a sequence of real numbers di, i=0, . . . , r

such that its elements sum up to zero:

r∑
i=0

di = 0 (2)

while the sum of squares is 1

r∑
i=0

d2
i = 1. (3)

The first step is to construct the building blocks for the variance estimator. We call them
pseudoresiduals of order r and use the following definition:

Definition 2. A pseudoresidual of order r is

�r,i =
r−1∑
j=0

djyj+i , (4)

where {di}ri=1 is a difference sequence as defined in (2) and (3).

Example. The (unique) difference sequence of order 2 is
{

1√
2
, − 1√

2

}
. The corresponding

pseudoresidual is �i = (yi − yi−1)/
√

2.

Remark 3. It is also possible to define the pseudoresidual �i as being symmetric
around yi :

�r,i =
r−1∑
j=0

djy
i−
[
r+1

2

]
+j+1

. (5)

Note that this choice does not influence any asymptotic results.

Next, we define the variance estimator as the weighted local average of the squared pseu-
doresiduals of order r. Each pseudoresidual is a normalized difference of r+1 observations;
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it can be viewed as the rough first-step estimate of the variance function f (x). If this view
is adopted, the next step of taking a weighted local average is nothing else but smoothing
of several rough estimates to produce a more precise one. The following definition should
provide a clear insight into the nature of this estimator.

Definition 4. Let us assume that the kernel function K(·) is a proper density on [−1, 1].
Then, the variance estimator of order r is defined as

f̂h(x) =
∑n−r

i=1 �2
r,iK

(
x − xi

h

)
∑n−r

i=1 K

(
x − xi

h

) . (6)

Remark 5. By definition, any kernel function K(·) must satisfy
∫

K(u) du = 1 but it need
not be the proper density. (see, e.g. Härdle, 1990). We can also define (6) with this more
general kernel in mind. In such a case, the “best” bandwidth has to be defined in the minimax
sense over a certain class of variance functions F and the rates of convergence are then
different from those we obtain. The functional class F has to be wide enough to contain
the set of p times continuously differentiable functions we use in this article. For example,
we can assume that F = W

p
2 —an L2-based Sobolev space.

Remark 6. This estimator is conceptually equivalent to a NW kernel estimator though of
course �2

r,i are not independent.

Various properties of this estimator were derived in Levine (2003) including closed form
expressions of the asymptotically optimal bandwidth and integrated mean squared error
(MISE). Ignoring the higher-order bias terms that depend on r, Levine (2003) showed that
for fixed r, h → 0, n → ∞ and nh → ∞ the asymptotically optimal (in the sense of
Parzen (1962) and Rosenblatt (1956)) bandwidth h ∼ O

(
n−1/(2p+1)

)
while MISE ∼

O
(
n−2p/(2p+1)

)
. These rates of convergence are the same as those derived in Müller and

Stadtmüller (1993) for similarly defined variance estimator class; however, compared to
Müller and Stadtmüller (1993), Levine (2003) also derives its asymptotic distribution. An-
other possible comparison benchmark here may be Fan and Yao (1998), which bases the
variance estimation on the squared residuals from the estimation of the mean function g(x).
If we look at the higher-order asymptotics, it becomes clear that this estimator class demon-
strates superior to Fan and Yao (1998) second-order asymptotic properties. To be more
specific, let us say that p = 2. Then, while the contribution to MSE from estimating the
mean function g(x) is of the order O

(
n−4/5

)
in Fan andYao (1998), it has the order O

(
n−2

)
in Levine (2003).

Unfortunately, these results do not provide us with a bandwidth selection algorithm which
is an obvious priority before the method can be used in practice. It is worth noting that, as far
as we know, there are no results on the bandwidth selection for the difference-sequence-type
estimators (6). When estimating the variance function as the (normalized) sum of squared
residuals, the options considered in the literature are those in Ruppert et al. (1997) where
some bandwidth selector (e.g. the one from Fan and Gijbels, 1995) is used to estimate both
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the mean function and the variance. Fan and Yao (1998) also suggested several methods;
however, this was not the focus of the paper. The fairly limited literature on the difference
sequence-type variance estimators (e.g. Müller and Stadtmüller, 1993) has not considered
the bandwidth selection so far.

3. Plug-in approach to bandwidth selection

Let us assume that g(x) ∈ C1[0, 1] while f (x) ∈ C2[0, 1]. The kernel function K(x) :
[−1, 1] → R is a second-order kernel function; in other words,

∫
K(u) du=1,

∫
uK(u) du=

0 and
∫

u2K(u) du ≡ �2
K �= 0. Also, RK ≡ ∫

K2(u) du. From Levine (2003), we know
that the exact optimal bandwidth is

h = n−1/5

[
CRK

∫
f 2(x) dx

2�4
K

∫
[f ′′(x)]2 dx

]1/5

, (7)

where

C = 2

⎛
⎜⎝2

r∑
k=1

⎛
⎝r−k∑

j=0

djdj+k

⎞
⎠

2

+ 1

⎞
⎟⎠

is the constant that depends on the chosen difference sequence {di}. (see Levine (2003)).
Expression (7) contains quadratic functionals of the unknown variance function, namely∫

f 2(x) dx and
∫ [

f ′′(x)
]2 dx. A common notation for them is

R(f )
.=
∫

f 2(x) dx (8)

and

R
(
f ′′) .=

∫ [
f ′′(x)

]2 dx (9)

(see, for example, Wand and Jones, 1995). Then, if some estimates of these functionals
R̂(f ) and R̂

(
f ′′) are available, the plug-in estimator of the optimal bandwidth h is

ĥ = n−1/5

[
CRKR̂(f )

2�4
KR̂ (f ′′)

]1/5

. (10)

This suggests using (10) to derive a possible bandwidth selection method. However, we
have not found this method to be practicable.

Remark 7. To help the reader to understand why this method cannot be applied easily note
that already at this stage in order to estimate one unknown quantity (bandwidth h) we have
to estimate two (functionals (8) and (9)).
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Fig. 1. Comparison of the plug-in fit and the oracle fit based on 500 data points.

As an example, we consider the variance function (2a) and the mean function g(x) ≡ 0.5
for x ∈ [0, 1]. Note that, since the mean function is constant, the variance function is the
only source of bias in the mean squared error of the variance function estimator f̂ (x). We
use the bandwidth estimator (10) as an oracle. In order to estimate bandwidth (10), we
need the estimators of the two quadratic functionals (8) and (9). The following is a brief
description of the more extended presentation in Levine (2003); many ideas are parallel to
those expounded in Efromovich (1999). Let us denote the jth element of the standard Fourier
basis on [0, 1] by �j (x); clearly, the jth Fourier coefficient of f (x) �j = ∫ 1

0 f (x)�j (x) dx

can be reasonably estimated by �̂j = n−1∑n
i=1z

2
i �j (xi). Based on Plancherel–Parceval

inequality, we estimate (8) by

R̂(f ) =
J1∑

j=0

(
�̂2
j − Ĉj (f )

n

)

while (9) can be estimated by

R̂
(
f ′′)= 2�4

J2∑
j=0

j4

(
�̂2
j − Ĉj (f )

n

)
.

In the above, J1 and J2 are the cutoffs that depend on the smoothness of the function f (x) and
Ĉj (f ) is some preliminary (pilot) estimate of the functional Cj (f )=2

∫ 1
0 f 2(x)�2

j (xi) dx.
It is also easy to find that the first cutoff should be J1 = O(n), while the second has to be
J2 = O(n−1/9) to ensure that the estimators R̂(f ) and R̂

(
f ′′) are consistent.

As before, we use the 100 Monte-Carlo simulations and the sample size is 500 (Fig. 1).
We only consider one sample size since the performance of this estimator is very poor and
does not improve significantly with the increased sample size. Note that even the choice of
the oracle bandwidth gives a very poor fit of the variance function. Such a bad performance
is related to the fact that the plug-in bandwidth relies on the first-order asymptotics only.
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In particular, the asymptotic expansion of the bias only takes into account the first two
derivatives of the variance function f (x) while the variance expansion relies only on the
value of the function itself. Since the function (2a) has only two nonzero derivatives, the bias
expansion is exact; however, the variance is underestimated and the selected bandwidth is
too large, resulting in large bias. The same features are even more pronounced in the oracle
fit, due to the fact that there is an additional variance resulting from estimating functionals
(8) and (9).

It seems that estimating bandwidth by a plug-in method is a more complicated problem
than the original problem of variance estimation itself. That makes the alternative approach
that we consider in the next section all the more attractive.

4. Crossvalidation approach

The basic idea of any crossvalidation-type method is to estimate the true MISE. By
definition, MISE depends on the unknown function f (x); thus, we want to have a data-
driven estimator that mimics its behavior.

In order to make it easier to follow we will use the notation f̂h(x) to stress the fact that
the variance function estimate depends on the bandwidth h. Remember that the integrated
squared error is a global measure of risk defined as

MISE =
∫

E
(
f̂h(x) − f (x)

)2
dx. (11)

We will also introduce its discrete counterpart that we are going to call discrete mean squared
error (DMSE)

DMSE = n−1
n∑

i=1

E
(
f̂h (xi) − f (xi)

)2
. (12)

Both (11) and (12) depend on the unknown variance function f (x) and so we need to
estimate them.

One possible way of estimating (11) can be briefly described as follows. Partition the
data {xi, yi} at random into K approximately equal and disjoint subsets. Each of these

subsets consists of about kj pairs where
∑

kj = n. Let the
{
x̃

j
i , ỹ

j
i

}
, i = 1, . . . , kj denote

the pairs in the j th subset with the values of x̃
j
i arranged in ascending order; that is,

x̃
j
i � x̃

j+1
i , i = 1, . . . , kj − 1. Similarly, let

{
x

j
i , y

j
i

}
, i = 1, . . . , n − kj denote the pairs in

the complement of the jth subset, again with the x
j
i arranged in ascending order. Using the

terminology that originates in machine learning we call the set
{
x

j
i

}
the training dataset and

the set
{
x̃

j
i

}
a validation dataset. Now, let �j

i , �̃
j

i denote the pseudoresiduals formed from{
x

j
i , y

j
i

}
and

{
x̃

j
i , ỹ

j
i

}
, respectively. Then, let f̂

j
h denote the estimator derived from the jth

subset
{
x

j
i , y

j
i

}
when using bandwidth h and squared pseudoresiduals

(
�j

i

)2
. Unless stated
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otherwise, the superscript j will be omitted for the values of the argument x to simplify the
notation.

We estimate the MISE as follows. First, define

CV j (h) =
kj∑
l=1

((
�̃

j

l

)2 − f̂
j
h (x̃l)

)2

. (13)

Then, the crossvalidation criterion is

CV (h) = 1

n

K∑
j=1

CV j (h). (14)

As a final step of the algorithm, we choose as optimal bandwidth

hCV = argmin
h∈H

CV (h), (15)

where H ∈ [0, 1] is the finite grid that we use for simulation purposes.
The reasons we chose a version of K-fold crossvalidation can be described as follows. In

general, the classical “leave-one-out” crossvalidation (K = n) is not popular as it is very
computationally expensive. As a practical measure, the K-fold crossvalidation provides a
useful alternative to the hold-out estimate of the generalization error (the empirical error
on the test set) without reducing the cardinality of the training data set. This intuition
seems to have some basis in reality; for example, Blum et al. (1999) established that for
any nontrivial learning algorithm the K-fold estimate of generalization error is strictly
more accurate than a single hold-out estimate on 1/K of the original data set for any
2 < K < n. For some earlier work on the same subject, see e.g. Anthony and Holden (1998).
However, all of the above handle only uncorrelated data. The question as to what happens
to crossvalidation when the data is correlated has been only partly investigated before.
Chu and Marron found (see Chu and Marron, 1991) that, in the case of “leave-one-out”
crossvalidation and positively correlated data, the crossvalidation will produce very small
bandwidths resulting in undersmoothed estimates; on the other hand, if the observations are
negatively correlated, then crossvalidation will produce very large bandwidths that result
in oversmoothed estimates.

Our method is essentially a K-fold crossvalidation for the correlated data. As far as we
know, the properties of K-fold crossvalidation in this case have not been investigated so
far. Thus, our method may have finite sample properties that are somewhat different from
the standard K-fold crossvalidation. It was established in Levine (2003) that the estimator
class defined by (6) has the variance that decays rapidly as r rises and, therefore, for many
potential applications only small values of r, such as r = 2 or 3, are needed. We conjec-
ture that for small values of r (which implies a relatively low-depth correlation between
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pseudoresiduals z2
i ) the performance of K-fold crossvalidation will be similar to that for

independent data.
The following heuristics should help to understand why the algorithm described by

(13)–(14) works. Note that the CV criterion as defined in (14) gives

1

n

K∑
j=1

kj∑
l=1

[(
�̃

j

l

)2 − f̂
j
h (x̃l)

]2

= 1

n

K∑
j=1

kj∑
l=1

[(
�̃

j

l

)2 − f (x̃l)

]2

+ 1

n

K∑
j=1

kj∑
l=1

[
f (x̃l) − f̂

j
h (x̃l)

]2

+ 2

n

K∑
j=1

kj∑
l=1

[(
�̃

j

l

)2 − f (x̃l)

] [
f (x̃l) − f̂

j
h (x̃l)

]
. (16)

Looking at the terms one by one, we note that the first term in (16) does not depend on the
bandwidth h. More precisely, it is easy to check that the first term on the right-hand side of
(16) behaves asymptotically as

2
∫

f 2(u) du + O
(
n−2

)
(17)

when n → ∞. Thus, the first term is approximately a constant for large n.

To check this, note that since
(
�̃

j

l

)2
can be viewed as an estimator of the variance function

f (x) at the point x̃l the expected value of the first term in (16)

E

[(
�̃

j

l

)2 − f̂
j
h (x̃l)

]2

(18)

is the mean squared error of �̃
2
l as an estimator of f̂

j
h (x̃l). Let us approximate[(

�̃
j

l

)2 − f (x̃l)

]2

by its expectation

[(
�̃

j

l

)2 − f (x̃l)

]2

≈ Bias2
(
�̃

j

l

)2 + V ar
(
�̃

j

l

)2
. (19)

The notation ȳi
.= yi − g (xi) (where i is the generic index) will be used for centered

observations. Next, using the first-order Taylor formulas for both f (x) and g(x) we
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find

E
(
�̃

j

l

)2 = E

⎡
⎣r−1∑

j=0

djg
(
x̃j+l

)+
r−1∑
j=0

dj ȳj+l

⎤
⎦

2

=
⎡
⎣r−1∑

j=0

dj

(
g (x̃l) + g′ (x̃l + �1)

j

n

)⎤⎦
2

+ f (x̃l) + n−1
r−1∑
j=0

jd2
j f

′ (x̃l + �2)

�f (x̃l) + C1

n2

⎛
⎝r−1∑

j=1

jd2
j

⎞
⎠

2

+ n−1C2

r−1∑
j=1

jd2
j , (20)

where 0 < �i < 1, i = 1, 2, C1 > 0 and C2 > 0 are constants that depends on the choice of

g(x) and f (x) only. Thus, the squared bias of
(
�̃

j

l

)2
is of the order O

(
n−2

)
as n → ∞.

Next, note that
(
�̃

j

l

)2
is a scaled �2

1(0) where the scaling factor is equal to f (x̃l) plus

the terms of the order o(1). As a result, it is easy to check that the variance of the squared

pseudoresidual
(
�̃

j

l

)2
is

V ar
(
�̃

j

l

)2 = 2f 2 (x̃l) + O
(
n−2

)
. (21)

Eq. (21) and the asymptotic behavior of the bias of
(
�̃

j

l

)2
mean that (17) is true.

The second term in (16) is an approximation for the average integrated mean squared
error (MISE) of the estimator f̂h(x). If we can argue that the expected value of the third
term goes to zero at the rate faster than the second, the minimizer of the left-hand side in
(16) (the crossvalidation criterion as we defined it) can be expected to mimic the behavior
of the minimizer of the mean squared error of f̂h(x).

To analyze the third term, note that the estimator f̂
j
h (x) is the same as the generic variance

estimator f̂h(x) except that it is defined using not the entire data set of size n but only n−kj

points
{
x

j
i

}
, i = 1, . . . , n − kj .

Thus, at any point x̃l from the validation data set we have

f̂
j
h (x̃l) =

∑n−kj

m=1

(
�j

m

)2
K

(
x̃l − xm

h

)
∑n−kj

m=1 K

(
x̃l − xm

h

) . (22)
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Using the notation first introduced in Härdle (1990), we denote

W (x̃l − xm) =
K

(
x̃l − xm

h

)
∑n−kj

m=1 K

(
x̃l − xm

h

) (23)

thus enabling us to write estimator (22) in the form

f̂
j
h (x̃l) =

n−kj∑
m=1

(
�j

m

)2
W (x̃l − xm) . (24)

Remember that the pseudoresiduals �j
m form an r-dependent sequence; this means that the

number of those �j
m that are correlated with �̃

j

l is O(r). Let us represent (24) as

f̂
j
h (x̃l) = f̂

j
h,r (x̃l) + f̂

j
h,−r (x̃l) , (25)

where

f̂
j
h,r (x̃l) =

∑
m∈J1

(
�j

m

)2
W (x̃l − xm) (26)

and

f̂
j
h,−r (x̃l) =

∑
m∈J2

(
�j

m

)2
W (x̃l − xm) . (27)

Here the index set J1 includes those pseudoresiduals �j
m that are correlated with �̃

j

l . Clearly,
the cardinality of this set is at most O(r). The index set J2 is its complement. Of course,
|J1| + |J2| = n − kj . The crossproduct term

C2n = 2

n

K∑
j=1

kj∑
l=1

[(
�̃

j

l

)2 − f (x̃l)

] [
f (x̃l) − f̂

j
h (x̃l)

]
(28)

can be now split into two terms:

C2n = 2

n

K∑
j=1

kj∑
l=1

[((
�̃

j

l

)2 − f (x̃l)

)(
f (x̃l) − f̂

j
h,−r (x̃l)

)]

− 2

n

K∑
j=1

kj∑
l=1

[((
�̃

j

l

)2 − f (x̃l)

)
f̂

j
h,r (x̃l)

]
. (29)

It is easy to analyze the first term. The factors that comprise it are independent; also, as

was pointed out before in (20), the bias of
(
�̃

j

l

)2
as an estimator of f (x̃l) is of the order

O
(
n−1

)
. At the same time, note that the second factor can be viewed as the bias of f̂

j
h,−r
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used as an estimator of f (x̃l). Since the cardinality of the set J1 is O(r), we can easily
conclude that |J2|=O(n). Hence, this bias is asymptotically the same as the order of the bias

of the regular estimator f̂h (x̃l): E
[
f (x̃l) − f̂

j
h,−r (x̃l)

]
= O

(
h2
)
. Consequently, choosing

the usual optimal bandwidth h = O
(
n−1/5

)
we find that

E

[(
�̃

j

l

)2 − f (x̃l)

] [
f (x̃l) − f̂h,−r (x̃l)

]

= E

[(
�̃

j

l

)2 − f (x̃l)

]
E
[
f (x̃l) − f̂h,−r (x̃l)

]

= O

(
1

n

)
O
(
h2
)

= O

(
h2

n

)
= O

(
n−7/5

)
.

Thus, the first term in (16) goes to zero much faster than O
(
n−4/5

)
.

Analyzing the second term in (29), it is important to remember that f̂ j
h,r (x̃l) is based on a

finite number of terms only. Without loss of generality, it is possible to assume that the mean
g(x) ≡ 0 for the purpose of this analysis. Then, using representation (26) for f̂h,r (x̃l), we
find that

kj∑
l=1

(
�̃

j

l

)2
f̂

j
h,r (x̃l)

=
kj∑
l=1

(
�̃

j

l

)2 ∑
k∈J1

(
�j

k

)2
W (x̃l − xk)

=
kj∑
l=1

∑
k∈J1

⎛
⎝ r−1∑

p,q=0

dpdq ỹp+lyq+k

⎞
⎠

2

W (x̃l − xk) .

In order to estimate the expected value of the above, we will use the upper bound for the
absolute sth moment of quadratic forms in independent random variables due to Whittle
(1960). It allows us to conclude that

E

⎛
⎝ r−1∑

p,q=0

dpdq ỹp+lyq+k

⎞
⎠

2

�C

r−1∑
p,q=0

d2
pd2

q

(
Eỹ4

p+l

)1/4(
Ey4

q+k

)1/4

= C

r−1∑
p,q=0

d2
pd2

q

√
f
(
xp+l

)
f
(
xq+k

)
, (30)
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where the constant C depends on r and the choice of the difference sequence {di}. As the
function f (x) is bounded expression (30) is bounded as well. This allows us to conclude
that

kj∑
l=1

(
�̃

j

l

)2
f̂

j
h,r (x̃l) �C

kj∑
l=1

∑
k∈J1

W (x̃l − xk) (31)

for some constant C. By definition, the coefficients W (x̃l − xk) are normalized and add up
to one:

n−kj∑
k=1

W (x̃l − xk) = 1.

Since the kernel function K(·) is assumed bounded, it is easy to see that asymptotically, as
n → ∞, each coefficient W (x̃l − xk) behaves as O

( 1
n

)
. The number of observations in J1

is finite (at most O(r)), and thus

1

n
E

K∑
j=1

kj∑
l=1

(
�̃

j

l

)2
f̂

j
h,r (x̃l) = O(1). (32)

It was shown in Levine (2003) that the estimator f̂
j
h,r (xl) is asymptotically consistent and,

in particular,

f̂
j
h,r (x) = f (x) + 1√

n
Op(1). (33)

As the variance function f (x) is bounded, (33) means that the expected value of the product
f (xl) f̂

j
h,r (xl) is bounded as well. This fact and (32) mean that the expectation of the second

term in (29) is of the order O
( 1

n

)
. As the first term goes to zero much faster, the expectation

of the entire crossproduct (16) is also of the order O
( 1

n

)
.

We know that the first term in (16) behaves as a constant asymptotically, the second term
imitates MISE of the variance estimator f̂h(x) and the third one tends to zero at the rate
of O

( 1
n

)
. Thus, minimizing the crossvalidation criterion CV(h) mimics equivalent to min-

imizing the MISE of the variance estimator f̂h(x) and the minimizer of the crossvalidation
criterion (14) mimics the behavior of the minimizer of the MISE of the variance estimator
f̂h(x).

5. The finite sample performance of the method and the choice of K: the first case
study

It is known from Levine (2003) (and earlier literature cited there) that the shape of the
mean function is not important asymptotically as long as the minimal smoothness condition
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(the existence and continuity of the first derivative g′(x)) is satisfied. However, the mean
function can become rather important in finite samples. The mean-function related bias
term can be easily estimated for any sample size n. It was shown in Levine (2003) that
asymptotically this term becomes approximately equal to

C ({di} , r)
[
g′(x)

]2
n2 , (34)

where C ({di}, r) is the constant that depends on the choice of the difference sequence {di}
and its order r. It is possible to show that, given the order r, the difference sequence can be
uniquely selected in a way that minimizes the variance of estimator (6) under constraints
(2) and (3). Such a sequence cannot be written down in the closed form but it is possible
to calculate its elements for any order r; for details, see Levine, 2003 and Hall et al., 1990.

If this optimal difference sequence is chosen, the constant C ({di} , r) becomes (2r+1)(r+1)
12

(see, for example Dette et al., 1998).

Example. Suppose our variance function is constant:f (x) ≡ 1 while the mean function is
such that it has large (in absolute value) first derivative; for example, let us define

g(x) =
{

100x if 0�x < 1,

0 otherwise.
(35)

Then, it is easy to check that for n ≈ 112 term (34) is of the same magnitude as the variance
function (parameter to be estimated) itself; its absolute value is approximately equal to 1.
Clearly, in this example the bias-related mean term is anything but negligible.

Thus, it is important to investigate how our method will perform for finite samples.
Another important issue is a choice of parameter K. The opinion prevailing in the literature
(see, for example Hastie et al., 2001) is that K =5 or 10 should be used; however, it is better
to run a test to see what the experience may suggest in our case.

In order to do this, we run a fixed model with different choices of K. We use a simple
choice of smooth quadratic variance function f (x)= (x − 0.5)2 + 0.5 and a constant mean
function g(x)= 3

4 . The design is equispaced and fixed; in other words, xi = i
n

, i=1, 2, . . . , n.
We use three different sample sizes: first, n = 500, then n = 1000 and n = 2000 data points
on [0, 1]. For each of the choices of n we try three different choices of K: K =5, 10 and 15,
respectively. Results are shown in Figs. 2–4. All of them employ the following convention.

On the X-axis are the values of the discrete oracle loss which is denoted

ODMSE = min
h∈H

n−1
n∑

i=1

[
f̂h (xi) − f (xi)

]2
. (36)

Here, ODMSE stands for Oracle Discrete Mean Squared Error. Of course, we can calculate
ODMSE only because we work with the simulated data where f (x) is known beforehand.
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Fig. 2. Comparison of the crossvalidation risk and the oracle risk based on 500 data points for different choices of
partition size K.

The Y-coordinate is a crossvalidation DMSE (CDMSE) that is defined as

CDMSE = n−1
n∑

i=1

[
f̂hCV (xi) − f (xi)

]2
(37)

with hCV defined by (15). Clearly, ODMSE�CDMSE. The closer CDMSE is to the
ODMSE, the better choice of the bandwidth has been made.

First, note that for the fairly low sample size of n = 500, increasing K seem to decrease
slightly the variability of CDMSE values. At the same time, the method performance is also
getting better (in case of K = 15, all values of CDMSE except for three outliers are less
then 0.025 while for K = 5 the largest nonoutlier value is above 0.03). This is not true for
larger sample sizes, though. When n = 1000, we have values of CDMSE that are highly
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Fig. 3. Comparison of the crossvalidation risk and the oracle risk based on 500 data points for different choices of
partition size K.

spread out. Increasing K does little to reduce the variability of CDMSE; only the choice of
K = 15 seems to offer some improvement over K = 5, but the reduction is not great. At the
same time, the method performance as measured by the difference between ODMSE and
CDMSE gets worse as K increases; when K = 15, the largest values of CDMSE are over
0.015 while for K = 5 they are (except for a very few outliers) staying close to 0.010. The
same trends hold when sample size is n = 2000. In other words, increasing K does very
little, if anything, to decrease the variability while making the method performance worse.

One of the few literary sources on the subject, Hastie et al. (2001) suggests K = 5 or 10
as an optimal choice. The argument goes that the choice of K is, probably, the matter of
bias-variance tradeoff for the K-fold crossvalidation criterion as an estimator of the global
mean squared error. Our empirical analysis suggests that, unless the sample size is quite
small, K = 10 is, probably, the better option.
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Fig. 4. Comparison of the crossvalidation risk and the oracle risk based on 2000 data points for different choices
of partition size K.

6. Second case study

To test how well the method performs for different possible mean functions, the following
study design was followed. We chose a smooth quadratic variance function

f (x) =
(

x − 1

2

)2

+ 1

2
(38)

that remained fixed throughout this study. The mean function choices ranged from ones
with the small mean-related bias term (34) to less smooth ones. Since this term, if measured
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globally over [0, 1], is asymptotically proportional to the

R
(
g′)=

∫ [
g′(x)

]2 dx (39)

we will use the quadratic functional (39) as a measure of the mean function influence on
the variance estimation. Clearly, the larger (39) is, the more distortion the mean function
would be expected to bring to the process.

Next we define a sequence of mean functions we use for our simulation study. Let us
define first the indicator function

I (A) =
{

1 if x ∈ A,

0 otherwise
(40)

for any set A. Then, the following choices are considered:

1. g1(x) = 3
4 ,

2. g2(x) =
(
x +

√
3

2

)2 ∗ I (x < 0.5) +
(

2+√
3

2 − x
)2 ∗ I (x > 0.5),

3. g3(x) = 3
4 ∗ sin(16� x) + 3

4 .

Setup (1)–(3) is fairly logical. Function choices range from constant to the sinusoid (thus
increasing the value of (39)). The mean function (1) is constant, thus all its derivatives and
the functional (39) are equal to zero. Consequently, the mean-related bias term is also zero
and the difference between the small sample and large sample performance of the method
is, probably, not very large. This is clearly not the case for (2) and (3); it is easy to calculate
the value of R

(
g′) for each of them and find out that (39) is greater for (3) than it is for (2).

Consequently, the finite sample performance is likely to be the best for (1) and the worst
for (3).

As before, we consider an equidistant design with xi = i
n
, i=1, . . . , n where the number

of observations n is first assumed to be 500, then 1000 and, finally, 2000. We perform 100
simulations for each choice of n and use K = 10 (Figs. 5–7).

Definition 8. We define the oracle bandwidth as

ho = argmin
h∈H

DMSE(h) (41)

and the crossvalidation bandwidth as before in (15).

Remark 9. The ODMSE, previously defined in (36), can be also described as Ro =
DMSE (ho) while CDMSE is RCV = DMSE(hCV). As before, RCV �Ro. The smaller (and
closer to the oracle loss, respectively) the crossvalidation loss is, the better the performance
of our method.

In graphs (5)–(7), we want to compare crossvalidation risk to the oracle risk. To achieve
the best visual effect, we plot the oracle risk as a function of itself (the diagonal straight
line) while the values of crossvalidation risk are depicted as separate points above the oracle
risk line. We show three graphs corresponding to the three possible mean function choices
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Fig. 5. Comparison of the crossvalidation risk and the oracle risk based on 500 data points for different choices of
the mean function g(x).

for each of the sample sizes n = 500, 1000 and 2000. In each panel, we move clockwise
from (1)–(3).

Tables 1 and 2 summarize values of R
(
g′) for each of the choices (1)–(3). It also gives

the respective median oracle loss and median crossvalidation loss for every combination
of the mean function (1)–(3) and the sample size. We report both ODMSE and CDMSE in
the form of approximate 95% binomial confidence intervals. Their boundaries are m1st and
m2d (ordered) values of ODMSE (CDMSE) where mi =Npi and the percentiles pi =0.5±
1.96
2
√

N
, i = 1, 2, N being the number of simulations performed (which in our case is equal

to 100).
Note that for different choices of the mean function the differences in ODMSE do not

look statistically significant as the confidence intervals overlap strongly. This seems to be
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Fig. 6. Comparison of the crossvalidation risk and the oracle risk based on 1000 data points and different choices
of the mean function g(x).

true for each of the three sample sizes considered. In other words, the oracle loss changes
very little, if at all, with the introduction of a more complicated mean function.

It is not entirely clear at this stage what is the influence of the particular choice of the
mean on the performance of the bandwidth selection method. There seems to be a tendency
towards increased crossvalidation loss as the mean function curvature increases; however,
the effect is not very pronounced. Tables 1 and 2 show that overlap between the confidence
intervals for CDMSE and ODMSE is still present for all choices of the mean function at
any given sample size, although it becomes very small for quadratic and sinusoid mean
functions for large n = 1000 and 2000. More extensive simulations with wider choice of
the mean function are necessary to clarify this issue better.
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Fig. 7. Comparison of the crossvalidation risk and the oracle risk based on 2000 data points and different choices
of the mean function g(x).

Table 1
Performance under the changing curvature of the mean function

95% Confidence Intervals for Median ODMSE

Mean function R
(
g′) n = 500 n = 1000 n = 2000

Constant 0 0.00390 0.00609 0.00215 0.00375 0.00124 0.00206
Quadratic 5.07 0.00395 0.00663 0.00226 0.00329 0.00124 0.00216
Sinusoid 72�2 ≈ 710.61 0.00357 0.00503 0.00204 0.00314 0.00107 0.00177
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Table 2
Performance under the changing curvature of the mean function

95% Confidence Intervals for Median CDMSE

Mean function R
(
g′) n = 500 n = 1000 n = 2000

Constant 0 0.00512 0.00780 0.00292 0.00464 0.00168 0.00284
Quadratic 5.07 0.00482 0.00814 0.00318 0.00442 0.00203 0.00263
Sinusoid 72�2 ≈ 710.61 0.00405 0.00568 0.00299 0.00441 0.00162 0.00235

Table 3
Performance under the changing curvature of the variance function

95% Confidence Intervals for Median ODMSE

Variance function R
(
f ′′) n = 500 n = 1000 n = 2000

(2a) 4 0.00423 0.00695 0.00223 0.00342 0.00113 0.00175
(2b) 16 0.00579 0.01073 0.00337 0.00496 0.00209 0.00321
(2c) 64 0.01330 0.02189 0.00765 0.01117 0.00438 0.00645

7. Third case study

Of course, the most important issue is whether the method performs well for variance
functions of different smoothness. As a smoothness measure of the variance function the
following quadratic functional is used:

R
(
f ′′)=

∫ [
f ′′(x)

]2 dx. (42)

The reason for this choice is that the asymptotically optimal bandwidth for estimator (6) is
inversely proportional to (42). The larger (42) is, the smaller the optimal bandwidth has to
be chosen to pick up ever smaller details of the original function f (x).

We use the following study design:

1. We assume that the mean function is constant; for example, g(x) = 1
2 for x ∈ [0, 1].

Our main purpose here is to keep the asymptotic mean-related bias term equal to zero so
that only the variance function f (x) contributes to the mean squared error asymptotic
expansion of the estimator (6).

2. We will consider several choices of the variance function f (x). They are arranged in a
“ladder” of possible candidates from the ones having small (42) to those with a larger
value of this functional. The choices are:

(a) f (x) = (x − 0.5)2 + 0.5,
(b) f (x) = 2(x − 0.5)2 + 0.5,
(c) f (x) = 4(x − 0.5)2 + 0.5.
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Table 4
Performance under the changing curvature of the variance function

95% Confidence Intervals for Median CDMSE

Variance function R
(
f ′′) n = 500 n = 1000 n = 2000

(2a) 4 0.00532 0.00818 0.00315 0.00430 0.00165 0.00235
(2b) 16 0.00775 0.01396 0.00505 0.00676 0.00344 0.00516
(2c) 64 0.02220 0.02967 0.01308 0.01750 0.00775 0.01014
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Fig. 8. Comparison of the crossvalidation risk and the oracle risk based on 500 data points and different choices
of the variance function f (x).

As we move from (2a) to (2c), the value of (42) increases; as a consequence, we expect the
bandwidth selection to become increasingly more difficult.

As in the second study, we specify the crossvalidation parameter as K = 10. The sample
size is first n = 500, then n = 1000 and eventually n = 2000. The number of Monte-
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Fig. 9. Comparison of the crossvalidation risk and the oracle risk based on 1000 data points and different choices
of the variance function f (x).

Carlo simulations for each possible combination of the sample size and variance function
is 100. Tables 3 and 4 give some indication of the performance of the method, together with
Figs. 8–10.

The first conclusion we can make is that, indeed, the median oracle loss (ODMSE)
seems to grow as the variance function becomes more difficult to handle. For each of
the three sample sizes, ODMSE grows as we move from (2a) to the (2c) options for the
variance functions. Note also that the median crossvalidation loss (CDMSE) exhibits the
same tendency, in effect mimicking the oracle loss.

It is fairly clear just from the visual inspection of graphs (8)–(10) that the distance between
ODMSE and CDMSE is larger for more complicated choices of the variance function. For
example, for n = 1000 and the simplest choice of the variance function (2a) the ODMSE
and CDMSE confidence intervals still have a small overlap of 0.00027. However, for (2b)
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Fig. 10. Comparison of the crossvalidation risk and the oracle risk based on 2000 data points and different choices
of the variance function f (x).

they do not overlap at all and the same is true for (2c). The situation is exactly the same for
n = 2000. These results suggest that CDMSE becomes an increasingly poor estimator of
ODMSE as the degree of the variance function curvature increases.

Visually, the performance of the method seems to improve for larger sample sizes. This
improvement looks to be rather slow for the fixed choice of the variance function f (x)

which seems to indicate similarity between our method and the classical “leave-one-out”
crossvalidation. It is known that the relative rate of convergence of the crossvalidation-
selected bandwidth estimator to the oracle bandwidth is O

(
n−1/10

)
(for details, see Härdle

et al., 1988). We may conjecture that the similar phenomenon is at work here as well.
More extensive simulations with the wider choice of possible variance functions f (x) are
probably needed here.
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8. Conclusions

At this point, we have a workable method that allows us to select the bandwidth for
the general variance function estimator (6). The method can be easily implemented using
any statistical software and is intuitively appealing. The method is reasonably insensitive
to fluctuations in the mean function g(x); however, it does tend to break down for highly
variable variance functions, as shown in Figs. 8–10.

There are a lot of questions that remain unanswered for now and that need a careful
investigation. A number of theoretical questions are raised by this research. To begin with,
it is unclear what is the rate at which the bandwidth estimated by our method converges to the
minimizer of the (11). There is very little research done so far on the K-fold crossvalidation
(except when K=N—the standard “leave-one-out” crossvalidation) even under the ordinary
assumption of independent data, let alone in a case like ours that deals with correlated data.
We know that in the case of “leave-one-out” “crossvalidation” having positively correlated
data results in choosing a bandwidth that is smaller than the minimizer of MISE while the
opposite is true for the negatively correlated data (see Chu and Marron, 1991). It is sensible
to assume that having correlated data also influences K-fold crossvalidation to a degree;
however, a precise theoretical investigation is very much in order here. Another interesting
question that merits further discussion is whether there possibly exists an optimal value of
K such that it minimizes the MISE. In much of our development here we have used K = 10
on the basis of simulations shown in graphs (2)–(4).

Acknowledgements

The author would like to thank his advisor, Prof. Lawrence D. Brown for his invaluable
help while preparing this article.

References

Anthony, M., Holden, S.B., 1998. Cross-validation for binary classification by real-valued functions: theoretical
analysis. in: Proceedings of the International Conference on Computational Learning Theory, pp. 218–229.

Blum, A., Kalai, A., Langford, J., 1999. Beating the hold-out: bounds for K-fold and progressive cross-validation.
Proceedings of the 12th Annual Conference on Computational Learning Theory, pp. 203–208.

Carroll, R., Ruppert, D., 1988. Transformation and Weighting in Regression. Chapman & Hall, New York.
Chu, C.-K., Marron, J.S., 1991. Comparison of two bandwidth selectors with dependent errors. The Ann. Statist.

19, 1906–1918.
Dette, H., 2002. A consistent test for heteroscedasticity in nonparametric regression based on the kernel method.

J. Statist. Plann. Inference 103 (1–2), 311–329.
Dette, H., Munk, A., Wagner, T., 1998. Estimating the variance in nonparametric regression-what is a reasonable

choice? J. Roy. Statist. Soc. Ser. B 60 (Part 4), 751–764.
Efromovich, S., 1999. Nonparametric Curve Estimation. Springer, Berlin.
Fan, J., Gijbels, I., 1995. Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and

spatial adaptation. J. Roy. Statist. Soc. Ser. B 57, 371–394.
Fan, J., Yao, Q., 1998. Efficient estimation of conditional variance functions in stochastic regression. Biometrika

85, 645–660.



M. Levine / Computational Statistics & Data Analysis 50 (2006) 3405–3431 3431

Gasser, T., Müller, H.G., 1979. Kernel estimation of regression functions. in: Gasser, T., Rosenblatt, M. (Eds.),
Smoothing Techniques for Curve Estimation, Lecture Notes in Mathematics, vol. 757, Springer, Heidelberg,
pp. 23–68.

Gasser, U., Sroka, L., Jennen-Steinmetz, C., 1986. Residual variances and residual pattern in the nonlinear
regression. Biometrika 73, 625–633.

Hall, P., Kay, J.W., Titterington, D.M., 1990. Asymptotically optimal difference-based estimation of variance in
nonparametric regression. Biometrika 77, 521–528.

Härdle, W., Hall, P., Marron, J.S., 1988. How far are automatically chosen regression smoothing parameters from
their optimum? (with discussion). J. Amer. Statist. Assoc. 83, 86–101.

Härdle, W., Tsybakov, A., 1997. Local polynomial estimators of the volatility function in nonparametric
autoregression. J. Econom. 81, 223–242.

Härdle, W., 1990. Applied Nonparametric Regression. Cambridge University Press, Cambridge.
Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical Learning. Springer, Berlin.
Levine, M., 2003. Variance estimation for nonparametric regression and its applications. Ph.D. Dissertation,

University of Pennsylvania.
Müller, H.-G., Stadtmüller, U., 1993. On variance function estimation with quadratic forms. J. Statist. Plann.

Inference 35, 213–231.
Neumann, M., 1994. Fully data-driven nonparametric variance estimators. Statistics 25, 189–212.
Parzen, E., 1962. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 1065–1076.
Rice, J., 1984. Bandwidth choice for nonparametric kernel regression. Ann. Statist. 12, 1215–1230.
Rosenblatt, M., 1956. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27,

832–837.
Ruppert, D., Sheather, S.J., Wand, M.P., 1995. An effective bandwidth selector for local least squares regression.

J. Amer. Statist. Assoc. 90, 1257–1270.
Ruppert, D., Wand, M.P., Holst, U., Hössjer, O., 1997. Local polynomial variance-function estimation.

Technometrics 39 (3), 262–273.
Wand, M.P., Jones, M.C., 1995. Kernel Smoothing. Chapman & Hall, New York.
Whittle, P., 1960. Bounds for the moments of linear and quadratic forms in independent variables. Theory Probab.

Appl. 5, 302–305.


	Bandwidth selection for a class of difference-based variance estimators in the nonparametric regression: A possible approach
	Introduction
	Method description
	Plug-in approach to bandwidth selection
	Crossvalidation approach
	The finite sample performance of the method and the choice of =K: the first case study
	Second case study
	Third case study
	Conclusions
	Acknowledgements
	References


