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SUMMARY

We introduce an algorithm for estimating the parameters in a finite mixture of completely
unspecified multivariate components in at least three dimensions under the assumption of
conditionally independent coordinate dimensions. We prove that this algorithm, based on a
majorization-minimization idea, possesses a desirable descent property just as any EM algorithm
does. We discuss the similarities between our algorithm and a related one, the so-called non-
linearly smoothed EM algorithm for the non-mixture setting. We also demonstrate via simulation
studies that the new algorithm gives very similar results to another algorithm that has been shown
empirically to be effective but that does not satisfy any descent property. We provide code for
implementing the new algorithm in a publicly available R package.

Some key words: EM algorithm; Majorization-minimization algorithm; Nonlinearly smoothed EM algorithm; Nonpara-
metric mixture.

1. INTRODUCTION

Suppose the r -dimensional vectors X1, . . . , Xn are a simple random sample from a finite
mixture density of m components f1, . . . , fm , with m > 1 and known in advance. It is assumed
throughout this paper that each of these densities f j equals the product of its marginal densities:

f j (x)=
r∏

k=1

f jk(xk). (1)

Taking a fully nonparametric approach with regard to estimating the f jk , we may therefore
express the finite mixture density as

Xi ∼ gθ (xi )=
m∑

j=1

λ j

r∏
k=1

f jk(xik), (2)
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404 M. LEVINE, D. R. HUNTER AND D. CHAUVEAU

where λ= (λ1, . . . , λm) must satisfy

m∑
j=1

λ j = 1, λ j � 0. (3)

Here, we assume Xi = (Xi1, . . . , Xir )
T and we let θ denote the vector of parameters to be esti-

mated, including the mixing proportions λ1, . . . , λm and the univariate densities f jk . Throughout,
j and k always denote the component and coordinate indices, respectively.

According to (2), conditional on knowing the particular subpopulation the observation X j

came from, its coordinates are independent. This conditional independence assumption has
appeared in a growing body of literature on non- and semi-parametric multivariate mixture mod-
els; see, for example, Benaglia et al. (2009a). Conditional independence may be thought of as
a simplification of the commonly used repeated measures random effects model, which often
assumes that multivariate observations on an individual are independent, conditional on the iden-
tity of the individual in question. Here, we simply replace the individual-level effects of a repeated
measures model by component-level effects. We demonstrate the usefulness of this model on real
data in § 5·3.

The question of identifiability of the parameters in (2) is of central theoretical importance.
By identifiability, we refer to the question of when gθ uniquely determines λ and each of the
f jk , at least up to label-switching and any changes to the densities f jk that occur on a set of
Lebesgue measure zero that therefore do not change the distributions Fjk . Here, label-switching
refers to permuting the order of the summands 1, . . . ,m in (2). Hall & Zhou (2003) established
that when m = 2, identifiability of parameters generally follows in r � 3 dimensions but not
fewer. However, a general result for more than two components proved elusive, though several
articles on the topic have appeared (e.g., Hall et al., 2005; Kasahara & Shimotsu, 2008). Finally,
Allman et al. (2009) proved an elegant and powerful result using a theorem of Kruskal (1977),
establishing the identifiability of the parameters in (2) whenever r � 3, regardless of m, as long as
the density functions f1k, . . . , fmk are linearly independent except possibly on a set of Lebesgue
measure zero.

An EM-like algorithm designed to estimate θ in (2) was introduced in Benaglia et al. (2009a).
That algorithm is much simpler than alternatives in the literature and yields considerably smaller
mean integrated squared errors than an alternative algorithm (Hall et al., 2005) in a simulation
study. However, the algorithm lacks any sort of theoretical justification and can only be called
EM-like because it resembles an EM algorithm in its formulation. The current paper corrects this
shortcoming by introducing a smoothed loglikelihood function and formulating a new itera-
tive algorithm with a provable monotonicity property that produces results similar to those of
Benaglia et al. (2009a) in tests.

The association of EM algorithms with mixture models has a long history: the paper in which
the initials EM were coined (Dempster et al., 1977) describes a finite mixture model as one of
several examples. A sizable literature on nonparametric mixtures appeared (see Lindsay, 1995,
Ch. 5–8) in which the mixing distribution is nonparametric, unlike the current paper in which
the component distributions are nonparametric. For the earlier notion of nonparametric mixture
models, Vardi et al. (1985) introduced an EM algorithm for maximum likelihood estimation of the
mixing distribution that has an elegant convergence theory but that unfortunately does not deal
with ill-posedness of the problem. Silverman et al. (1990) remedied this shortcoming with the
smoothed EM algorithm that smoothes the result of each step of the classical EM algorithm. The
practical performance of this algorithm is excellent but it is difficult to analyse theoretically. In
an unpublished 1992 paper, Eggermont first proposed the idea of using a regularization approach
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Smoothed likelihood for multivariate mixtures 405

to modify the smoothed EM algorithm in such a way that the resulting algorithm is easier to inves-
tigate theoretically. Eggermont & LaRiccia (1995) showed that the resulting nonlinear smoothed
EM algorithm is a true EM algorithm and that its convergence theory is very similar to that of the
EM algorithm introduced in the mixing density estimation context by Shepp & Vardi (1982). The
nonlinear smoothed EM may be shown to have a unique solution and its practical performance is
competitive with alternatives (Eggermont, 1999).

The current paper unites the two different meanings of nonparametric mixture by introducing
an algorithm inspired by the nonlinear smoothed EM that does in fact possess a descent property
and that converges to a local maximizer of a likelihood-like quantity for the finite mixture model
(2) in which the component densities are completely unspecified. The likelihood-like function
used is similar to that introduced in Eggermont & LaRiccia (1995) for an unspecified continuous
mixing distribution; it is, essentially, a penalized Kullback–Leibler distance between the target
density function and the iteratively reweighted sum of smoothed component density function esti-
mates. For its optimization, we rely on a computational tool called a majorization-minimization
algorithm, which is yet another generalization of an EM algorithm (Hunter & Lange, 2004).

2. SMOOTHING THE LOG-DENSITY

Let us assume that � is a compact subset of R
r and define the linear vector function space

F = { f = ( f1, . . . , fm)
T : 0< f j ∈ L1(�), log f j ∈ L1(�), j = 1, . . . ,m}.

The assumption of compact support may appear limiting, but it is not problematic from a practical
point of view and plays no role in the implementation of the algorithm we propose.

Take K (·) to denote some kernel density function on the real line. With a slight abuse of
notation, let us define the product kernel function K (u)= ∏r

k=1 K (uk) and its rescaled version
Kh(u)= h−r ∏r

k=1 K (h−1uk). Furthermore, we define a smoothing operator S for any function
f ∈ L1(�) by

S f (x)=
∫
�

Kh(x − u) f (u) du.

Furthermore, we extend S to F by defining S f = (S f1, . . . ,S fm)
T. We also define a nonlinear

smoothing operator N as

N f (x)= exp{(S log f )(x)} = exp
∫
�

Kh(x − u) log f (u)du.

This operator is strictly concave, and it is also multiplicative in the sense that N f j = ∏
k N f jk

for f j defined as in (1). The concavity is proved as Lemma 3.1(iii) of Eggermont (1999). The
idea of smoothing the logarithm of the density function goes back to Silverman (1982), where a
penalty based on the second derivative of the log-density is discussed.

To simplify notation, we introduce the finite mixture operator

Mλ f (x)=
m∑

j=1

λ j f j (x),

whence we also obtain Mλ f (x)= gθ (x) and

MλN f (x)=
m∑

j=1

λ jN f j (x).

 by guest on A
ugust 5, 2012

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


406 M. LEVINE, D. R. HUNTER AND D. CHAUVEAU

Let g(x) now represent a known target density function. We begin by defining the following
functional of θ and, implicitly, g:

�(θ)=
∫
�

g(x) log
g(x)

(MλN f )(x)
dx . (4)

We will suppress the subscripted � on the integral sign from now on. Our goal in § 3 will be to
find a minimizer of �(θ) subject to the assumptions that each f jk is a univariate density function
and λ satisfies (3).

Remark 1. An immediate consequence of (4) is that �(θ) can be viewed as a penalized
Kullback–Leibler distance between g(x) and (MλN f )(x). Indeed, if we define

D(a | b)=
∫ {

a(x) log
a(x)

b(x)
+ b(x)− a(x)

}
dx

as usual, it follows that

�(θ)= D(g |MλN f )+
∫

g(x)dx −
m∑

j=1

λ j

∫
N f j (x)dx,

where −λ j
∫ N f j (x) dx is a penalization term; see Eggermont 1999, equation (1.12) and the

discussion immediately following.

3. A MAJORIZATION-MINIMIZATION ALGORITHM

Our goal is to define an iterative algorithm that possesses a descent property with respect
to the functional �( f, λ); that is, we wish to ensure that the value of �( f, λ) cannot increase
from one iteration to the next. We write �( f, λ) instead of �(θ) so we may discuss f and λ
separately. Suppose that we were to define an iteration operator G, to be applied to the vector
f = ( f1, . . . , fm)

T, as

G f j (x)= α j

∫
Kh(x − u)

g(u)N f j (u)

MλN f (u)
du

for each j , where α j is a proportionality constant that makes G f j (·) integrate to one. Using an
argument analogous to the proof of Lemma 1, we could show that

�( f, λ)− �(G f, λ)�
m∑

j=1

λ j

α j

∫
G f j (x) log

G f j (x)

f j (x)
dx =

m∑
j=1

λ j

α j
D(G f j | f j )� 0.

Thus, the above definition evidently results in an algorithm that satisfies the descent property.
Unfortunately, however, it does not preserve the essential conditional independence assumption
(1). We must therefore use a slightly different approach.

Let ( f 0, λ0) denote the current parameter values in an iterative algorithm. Our strategy for
minimizing �( f, λ) is based on a majorization-minimization algorithm, in which we define a
functional b0( f, λ) that, when shifted by a constant, majorizes �( f, λ). That is,

b0( f, λ)+ C0 � �( f, λ), with equality when ( f, λ)= ( f 0, λ0). (5)

The superscript on b0 indicates that the definition of b0( f, λ) will in general depend
on the parameter values ( f 0, λ0), which are considered fixed constants in this context.
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Smoothed likelihood for multivariate mixtures 407

Majorization-minimization algorithms are not solely applicable to the current context, but enjoy
widespread usage in statistical problems in which optimization of a difficult objective function
may be avoided by iteratively optimizing a series of simpler functions. A general introduction
to these algorithms, which are sometimes more appropriately called minorization-maximization
algorithms using the same initials, is given by Hunter & Lange (2004).

For j = 1, . . . ,m, let

w0
j (x)=

λ0
jN f 0

j (x)

Mλ0N f 0(x)
. (6)

The weight functions w0
j satisfy

∑
j w

0
j (x)= 1. We now claim that

b0( f, λ)= −
∫

g(x)
m∑

j=1

w0
j (x) log{λ jN f j (x)} dx (7)

gives the majorizing functional we seek.

LEMMA 1. The function of (7) satisfies �( f, λ)− �( f 0, λ0)� b0( f, λ)− b0( f 0, λ0).

Proof. By the convexity of the logarithm function and the fact that
∑

j w
0
j (x)= 1,

�( f, λ)− �( f 0, λ0)= −
∫

g(x) log

∑m
j=1 λ jN f j (x)

Mλ0N f 0(x)
dx

= −
∫

g(x) log
m∑

j=1

w0
j (x)

λ jN f j (x)

λ0
jN f 0

j (x)
dx

� −
∫

g(x)
m∑

j=1

w0
j (x) log

λ jN f j (x)

λ0
jN f 0

j (x)
dx

= b0( f, λ)− b0( f 0, λ0). �

Lemma 1 verifies the majorization claim (5), where we take the constant C0 to be �( f 0, λ0)−
b0( f 0, λ0).

Rewriting (7), we obtain

b0( f, λ)= −
m∑

j=1

r∑
k=1

∫∫
Kh(xk − u)g(x)w0

j (x) log f jk(u) du dx −
m∑

j=1

log λ j

∫
g(x)w0

j (x) dx .

(8)

Above, and henceforth, u denotes a scalar, whereas x is an r -dimensional vector. Also, b0( f, λ)
separates the parameters from each other, in the sense that it is the sum of separate functions of
the individual f jk and λ j .

Subject to the constraint
∑

j λ j = 1, it is not hard to minimize b0( f, λ) with respect to the λ
parameter: for each j , the minimizer is

λ̂ j =
∫

g(x)w0
j (x) dx∑m

j=1

∫
g(x)w0

j (x) dx
=

∫
g(x)w0

j (x) dx . (9)
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Next, let us focus on only the part of (8) involving f jk by defining

b0
jk( f jk)= −

∫∫
Kh(xk − u)g(x)w0

j (x) log f jk(t) du dx .

LEMMA 2. For j = 1, . . . ,m and k = 1, . . . , r , define

f̂ jk(u)= α jk

∫
Kh(xk − u)g(x)w0

j (x) dx, (10)

where α jk is a constant chosen so that
∫

f̂ jk(u) dt = 1. Then f̂ jk is the unique, up to changes on
a set of Lebesgue measure zero, density function minimizing b0

jk(·).
Proof. Fubini’s theorem yields

b0
jk( f jk)= 1

α jk
D( f̂ jk | f jk)− 1

α jk

∫
f̂ jk(u) log f̂ jk(u) du,

where the second term on the right-hand side does not depend on f jk . The result follows
immediately. �

Let us now combine the preceding results. From Lemma 1, we conclude that

�( f̂ , λ̂)− �( f 0, λ0)� b0( f̂ , λ̂)− b0( f 0, λ0). (11)

Furthermore, we know from Lemma 2 and (9) that each individual piece of the b0(·) function of
(8) is minimized by the corresponding piece of ( f̂ , λ̂). We conclude that the right-hand side of
inequality (11) is bounded above by zero, which proves the descent property summarized by the
following theorem.

THEOREM 1. Define λ̂ as in (9) and f̂ as in Lemma 2. Then �( f̂ , λ̂)� �( f 0, λ0).

4. ESTIMATING THE PARAMETERS

We now assume that we are given a simple random sample x1, . . . , xn distributed according
to the gθ (x) density defined in (2). Letting G̃n(·) denote the empirical distribution function of
the sample and ignoring the term

∫
gθ (x) log gθ (x) dx whose empirical version does not involve

any parameters, a discrete version of (4) is

�n( f, λ)=
∫

log
1

(MλN f )(x)
dG̃n(x)= −

n∑
i=1

log{(MλN f )(xi )}.

Here, �n( f, λ) resembles a penalized loglikelihood function except for the presence of the
nonlinear smoothing operator N and the fact that with the negative sign preceding the sum, our
goal is minimization rather than maximization of �n(·).

Using an argument nearly identical to the one leading to (10), we may show that the following
algorithm ensures that the value of �n(·) decreases at each iteration.

Given initial values ( f 0, λ0), iterate the following three steps for t = 0, 1, . . .:

(i) Majorization step. Define, for each i and j ,

wt
i j = λt

jN f t
j (xi )

MλtN f t (xi )
= λt

jN f t
j (xi )∑m

a=1 λaN f t
a (xi )

. (12)
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(ii) Minimization step, part 1. Set

λt+1
j = 1

n

n∑
i=1

wt
i j (13)

for j = 1, . . . ,m.
(iii) Minimization step, part 2. For each j and k, let

f t+1
jk (u)=

∑n
i=1w

t
i j Kh(u − xik)∑n
i=1w

t
i j

= 1

nhλt+1
j

n∑
i=1

wt
i j K

(
u − xik

h

)
. (14)

Equations (12), (13) and (14) are merely the discrete versions of (6), (9) and (10), respectively.
With regard to the convergence properties of the algorithm we have defined here, we prove in the
Appendix that, if we hold λ fixed and repeatedly iterate (10), then the sequence of f functions
converges to a global minimizer of �( f, λ) for that value of λ.

5. IMPLEMENTATION AND NUMERICAL EXAMPLES

5·1. Blocks of identically distributed coordinates

As in Benaglia et al. (2009a), we can extend the model of conditional independence to a more
general model: we allow the existence of blocks of coordinates that are identically distributed.
If we let bk denote the block index of the kth coordinate, where 1 � bk � B and B is the total
number of such blocks, then (2) is replaced by

gθ (xi )=
m∑

j=1

λ j

r∏
k=1

f jbk (xik). (15)

These blocks may all be of size one as in (2) if bk = k (k = 1, . . . , r ), or there may exist only
a single block if bk = B = 1 (k = 1, . . . , r ), which is the case of conditionally independent and
identically distributed variables. The nonlinear smoothing operator N applied to f j is simply
N f j = ∏r

k=1 N f jbk , and definitions of Mλ f and MλN f are unchanged.
The algorithm of § 4 can easily be adapted for handling the block structure. In fact, both the

majorization step (12) and the first part of the minimization step (13) remain unchanged. The
second part of the minimization step (14) becomes:

(iv) Minimization step, part 2, modified. For each component j and block � ∈ {1, . . . , B}, let

f t+1
j� (u)=

∑r
k=1

∑n
i=1w

t
i j I{bk=�}Kh (u − xik)∑r

k=1
∑n

i=1w
t
i j I{bk=�}

= 1

nhλt+1
j C�

r∑
k=1

n∑
i=1

wt
i j I{bk=�}K

(
u − xik

h

)
,

where C� = ∑r
k=1 I{bk=�} is the number of coordinates in the �th block.

This algorithm is implemented as the npMSL function in the latest version, currently version
0·4·4, of the publicly available R package (R Development Core Team, 2011) called mixtools
(Young et al., 2010; Benaglia et al., 2009b). The block structure imposes a type of constraint on
the density functions in that certain subsets of these functions are assumed to be the same. Further
constraints, such as densities that are assumed to have the same shape but differ only in a location
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or scale parameter, are discussed by Benaglia et al. (2011); in principle, such constraints should
be straightforward to incorporate using our algorithm.

5·2. Simulated examples

Our first simulation study compares the nonparametric EM-like algorithm from Benaglia et al.
(2009a) with the new algorithm using the same examples for which Hall et al. (2005) tested
their estimation technique based on inverting the mixture model. The three simulated models,
described below, are trivariate two-component mixtures (m = 2, r = 3) with independent but not
identically distributed repeated measures, i.e. bk = k (k = 1, 2, 3). We ran S = 300 replications
of n = 500 observations each and computed the errors in terms of the square root of the mean
integrated squared error for the densities, where

MISE jk = 1

S

S∑
s=1

∫
{ f̂ (s)jk (u)− f jk(u)}2 du, j = 1, 2 k = 1, 2, 3;

and the integral is computed numerically using an appropriate function defined in mixtools. Each
density f̂ (s)jk is computed using the weighted kernel density estimate (14) together with the final
values of the posterior probabilities pt

i j after convergence of the algorithm.
The first example is a normal model, for which the individual densities f j� are N (μ j�, 1),

with component means μ1 = (0, 0, 0) and μ2 = (3, 4, 5). The second example uses double
exponential distributions with densities f j�(t)= exp(−|t − μ j�|)/2, where μ1 = (0, 0, 0) and
μ2 = (3, 3, 3). In the third example, the first component has a central t (10) distribution and
thus μ1 = (0, 0, 0), whereas the second component’s coordinates are noncentral t (10) distri-
butions with noncentrality parameters 3, 4, and 5. Thus, the mean of the third component is
μ2 = (3, 4, 5)× 1·0837. Both algorithms assume only the general model of conditional inde-
pendence, with bk = k for all k.

Since Benaglia et al. (2009a) showed that the nonparametric EM dramatically outperforms the
inversion method of Hall et al. (2005) for the three test cases, Fig. 1 only compares the nonpara-
metric EM against the new algorithm, which is labelled smoothed in the figure. This figure shows
that the two algorithms provide nearly identical efficiency in terms of mean integrated squared
error and that there is no clear winner for the models and the various settings considered.

A second numerical study compares the smoothed algorithm with a parametric Gaussian EM

algorithm for model (15) both when the true model is Gaussian and when it has heavier tails.
The simulated data have m = 2 components and are trivariate with conditionally independent
and identically distributed coordinates. A parametric Gaussian EM algorithm for this situation is
implemented in the mixtools package as the function repnormmixEM(). We ran the simulations
for a Gaussian mixture ofN (0, 1) andN (3, 1), and a mixture of t (5) and t ′(5, 3) so that the mean
of the noncentral t distribution is 3·57, with λ1 = 0·3 in both cases. Table 1 shows comparisons
based on the component weight estimate λ̂1 and mean estimates μ̂1 and μ̂2, though these values
are not estimated directly in the nonparametric case and must be computed as functions of the
other parameter estimates. Our smoothed algorithm performs as well as the parametric Gaussian
EM algorithm when the model is correctly specified and, as expected, far better than the parametric
EM algorithm when the model is slightly misspecified.

Finally, we tested our algorithm for r � 2, where identifiability may fail. Our experience sug-
gests that parameter estimates are often sensible when r = 2 but nonsensical when r = 1. The
reason for the r = 2 success may be the almost identifiability (Hall & Zhou, 2003) that holds in
this case, yet further research appears necessary to determine when it is reasonable to proceed
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Fig. 1. Root mean integrated squared error of estimated densities for λ1 ∈ {0·1, 0·2, 0·3, 0·4}
for the three benchmark models from Hall et al. (2005). Estimates for all three coordinates
are shown, with horizontal values jittered to improve visibility. �, smoothed component 1;
♦, smoothed component 2; +, nonparametric EM component 1; and ×, nonparametric EM

component 2.

Table 1. Estimated bias, standard deviation and mean squared error for the Gaussian EM

and nonparametric algorithms based on 300 replications for each model with sample size
n = 500. True parameter values of λ1, μ1, and μ2 are 0·3, 0, and 3 or 3·57, respectively

Gaussian EM Nonparametric smoothed
λ1 μ1 μ2 λ1 μ1 μ2

Gaussian Mean 0·3002 0·0028 2·9997 0·3001 0·0033 2·9994
SD 0·0195 0·0501 0·0323 0·0195 0·0501 0·0322
MSE 0·00038 0·00252 0·00104 0·00038 0·00252 0·00104

t (5) Mean 0·36 0·77 3·15 0·299 0·008 3·568
SD 0·18 1·56 1·07 0·0207 0·0689 0·0586
MSE 0·036 3·012 1·319 0·00043 0·00482 0·00344

with estimation when r = 2. Certainly, estimation in the univariate r = 1 case is not viable without
additional restrictions such as those of Bordes et al. (2006) and Hunter et al. (2007).

5·3. The water-level experiment

We consider in this section a dataset from an experiment involving n = 405 children aged 11
to 16 years subjected to a water-level task as initially described by Thomas et al. (1993). In this
experiment, each child is presented with eight rectangular vessels on a sheet of paper, each tilted
to one of r = 8 clock-hour orientations: in order of presentation to the subjects, these orientations
are 11, 4, 2, 7, 10, 5, 1 and 8 o’clock. The children’s task was to draw a line representing the
surface of still liquid in the closed, tilted vessel in each picture. Each such line describes two
points of intersection with the sides of the vessel; the acute angle, in degrees, formed between the
horizontal and the line passing through these two points was measured for each response. The sign
of each such measurement was taken to be the sign of the slope of the line. The water-level dataset
is available in the mixtools package (Young et al., 2010; Benaglia et al., 2009b). This dataset has
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Fig. 2. The water-level data, analysed using the Benaglia et al. (2009a) algorithm (solid grey lines) and the new
smoothed algorithm (dotted lines), assuming (15) with m = 3 mixture components and bandwidth h = 4.

been analysed previously by Hettmansperger & Thomas (2000) and Elmore et al. (2004), who
assume that the r = 8 coordinates are all conditionally identically distributed and then bin the
data to produce multinomial vectors. These authors call this a cut-point approach.

However, because of the experimental methodology used to collect the data, it seems reason-
able to weaken the assumption that each orientation’s measurements are identically distributed;
instead, we only assume that opposite clock-face orientations lead to conditionally independent
and identically distributed responses, so that the eight coordinates may be organized into four
blocks of two each, where the densities within each block are identical, which is (15).

Benaglia et al. (2009a) apply their algorithm to (15) with B = 4 and blocks of coordinates
defined by b = (b1, . . . , b8)= (4, 3, 2, 1, 3, 4, 1, 2), which means, e.g. that b4 = b7 = 1, i.e.
block 1 relates to coordinates 4 and 7, corresponding to clock orientations 1:00 and 7:00.

Figure 2 compares, for m = 3 components, the nonparametric EM solution with the solution
given by the new algorithm of § 5·1, which we refer to as the smoothed algorithm. Although
the overlapping lines in the figure make it difficult to see exactly which component captures
which mode, it is clear that the two solutions are overall quite similar: each appears to detect one
component of children who understand the task, the component peaked around the correct answer
of zero degrees, another group who appear to complete the task correctly when the vessel is near
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Table 2. Estimates and 95% confidence intervals for λ, based on 10 000 bootstrap
replications, for the water-level data example

λ1 λ2 λ3

Nonparametric EM 0·492 (0·446, 0·552) 0·431 (0·337, 0·469) 0·077 (0·054, 0·151)
Smoothed 0·471 (0·420, 0·527) 0·465 (0·361, 0·496) 0·064 (0·052, 0·159)

vertical but who do not do as well in the sideways orientations of blocks 2 and 3, and a third group
who appear to draw the line perpendicular to the sides of the vessel. The estimated proportions of
these three components for the smoothed algorithm, along with the corresponding nonparametric
EM estimates, are summarized in Table 2. The confidence intervals in the table were computed
using a nonparametric bootstrap approach by repeatedly resampling with replacement from the
empirical distribution defined by the n observed r -dimensional vectors and carefully checking for
label-switching occurrences in the resulting estimates. Here, label-switching refers to permuting
the three labels on λ̂1, λ̂2 and λ̂3, which in this example is easy to detect by examining standard
deviations of the estimated densities in combination with the λ̂ estimates obtained. We see that
our bootstrapped confidence intervals are not centred at the estimates in all cases, though this is
not unusual in our experience.

The two algorithms took a comparable number of iterations to converge, 69 on average for the
smoothed algorithm versus 71 for the nonparametric EM algorithm, using the same convergence
criterion, though each iteration of the smoothed algorithm took roughly 1/3 longer due to the
numerical convolution involved. Overall, despite the small differences in the estimates obtained
by the two algorithms, we do not notice a systematic pattern in these differences and the results
are really quite close.

6. DISCUSSION

The algorithm we propose in this paper is a refinement of the algorithm proposed in
Benaglia et al. (2009a), which, despite its many favourable qualities, does not minimize any par-
ticular objective function. In contrast, the algorithm we introduce has a provable descent property
with respect to a smoothed loglikelihood while obtaining parameter estimates similar to the orig-
inal algorithm. The price paid for the theoretically desirable descent property appears to be a
small loss of computational speed, since our algorithm involved numerical convolutions.

The majorization technique used in our majorization-minimization algorithm, exploiting the
convexity of the negative logarithm in the proof of Lemma 1, is the same technique as is used
by a classical EM algorithm. However, the question of whether our algorithm represents a true
EM algorithm is of little importance; our paper demonstrates how a direct majorization approach
can produce the same theoretical advantages as an EM approach. There are some corresponding
disadvantages, such as a slow linear rate of convergence as the algorithm nears an optimum point.
As a potential improvement, one might consider acceleration techniques (Lange et al., 2000).

The basic model of (2) may be generalized in several directions. In addition to the blocking
structure introduced in (15), various location and/or scale models are possible. A thorough dis-
cussion of such generalizations is given in § 4 of Benaglia et al. (2009a). Our algorithm may
easily be adapted to these situations.

Unlike the implicitly defined solution attained by the Benaglia et al. (2009a) algorithm, our
algorithm achieves a local maximum of an explicit smoothed loglikelihood function. This should
facilitate theoretical development and possibly lead to inferential techniques that may be used
in conjunction with this algorithm. Empirical studies in Benaglia et al. (2009a) already suggest
approximate rates of convergence of estimates to the true values in simulation studies as n grows.
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Since our algorithm appears to produce very similar estimates, presumably its convergence rates
are also similar; the theory in this paper should promote work on this conjecture.

Sensible choice of the bandwidth h is a challenging problem. We have simplified the dis-
cussion by assuming a common h for each component and coordinate, or block, though it is
straightforward to introduce component- and block-specific bandwidths h j�. Complicating the
selection of the bandwidth in the mixture setting is the fact that one does not observe individual
component densities. This issue is discussed at length by Benaglia et al. (2011), who recommend
iteratively updating the bandwidths to exploit the knowledge about component assignments as it
is gained. Doing this for our algorithm appears to destroy the desirable descent property. Thus,
effective automatic bandwidth selection remains a topic for further inquiry.
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APPENDIX

Some convergence properties

Fix λ0 and consider the function defined by (10) that maps ( f 0, λ0) �→ ( f̂ , λ0). Iteratively applying this
function yields a sequence

( f 0, λ0), ( f 1, λ0), ( f 2, λ0), . . . . (A1)

Here, we present a few simple convergence results regarding this sequence. The results of this section have
analogues in § 3 of Eggermont (1999) for a slightly different case.

We assume that the kernel K (·) is strictly positive on the whole real line. Define B ⊂F by

B =
{
Sφ : 0 � φ ∈F ,

∫
�

φ j (x) dx = 1, j = 1, . . . ,m

}
.

The idea is that B will contain the whole sequence f 0, f 1, f 2, . . . except possibly the initial f 0, where
each element in the sequence is defined by applying (10) to the preceding element. To verify this claim,
observe that (10) may be rewritten as

f̂ jk(u)= Sφ0
jk(u), (A2)

where

φ0
jk(xk)= α jk

∫
· · ·

∫
g(x)w0

j (x) dx1 · · · dxk−1dxk+1 · · · dxr (A3)

must integrate to one because of the definition of α jk . Furthermore, the functional f �→ �( f, λ) is defined
on B because for any ( f1, . . . , fm) ∈ B, f j is bounded below by inf x∈� Kh(x), which is positive since �
is compact and K is positive. Thus, N f is well-defined for f ∈ B.

LEMMA A1. The set B is convex and �( f, λ) of (4) is strictly convex on B for fixed λ.

Proof. For f 1, f 2 ∈ B and α ∈ (0, 1), the linearity of S implies α f 1 + (1 − α) f 2 ∈ B. Also,

�{α f 1 + (1 − α) f 2} =
∫

g(x) log g(x) dx −
∫

g(x) log
m∑

j=1

λ jN {α f 1
j + (1 − α) f 2

j }(x) dx .

Focusing on the rightmost term above, we first claim that

N {α f 1
j + (1 − α) f 2

j }(x) > αN f 1(x)+ (1 − α)N f 2(x)

 by guest on A
ugust 5, 2012

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Smoothed likelihood for multivariate mixtures 415

by the strict concavity of the N operator (Lemma 3.1(iii) of Eggermont, 1999). Furthermore, the fact that
the logarithm function is concave and strictly increasing implies that

�{α f 1 + (1 − α) f 2, λ}<
∫

g(x) log g(x) dx − α

∫
g(x) log

m∑
j=1

λ j (N f 1
j )(x) dx

− (1 − α)

∫
g(x) log

m∑
j=1

λ j (N f 2
j )(x) dx

= α�( f 1, λ)+ (1 − α)�( f 2, λ). �

Remark 1. Using nearly the same proof as for Lemma A1, we may show that �( f, λ) is strictly convex
in λ for fixed f . However, no strict convexity is possible in general for �( f, λ) since, as in all mixture
model settings, permuting the subscripts 1, . . . ,m on ( f1, λ1), . . . , ( fm, λm) does not change the value of
�( f, λ); thus, there exists no unique global minimizer of �( f, λ).

The following lemma adds the assumption of Lipschitz continuity to those mentioned earlier to establish
a sufficient condition guaranteeing that the sequence of functions in (A1) has a uniformly convergent
subsequence.

LEMMA A2. If there exists L > 0 such that |Kh(x)− Kh(y)| � L|x − y| for any x, y ∈�, then every
functional sequence f 1, f 2, . . . defined by (A1) has a uniformly convergent subsequence.

Proof. Since� is a compact subset of R
r , we may assume that there exist positive constants a < A such

that a � Kh(·)� A on�. Thus, in (A2) and (A3), we must have a � f̂ jk � A for all j, k. We conclude that
the sequence | f 1|, | f 2|, . . . is uniformly bounded.

Furthermore, for arbitrary x, y ∈� and f ∈ B,

| f j (x)− f j (y)| = |Sφ j (x)− Sφ j (y)|

�
∫

|Kh(x − u)− Kh(y − u)||φ j (u)| du � L|x − y|

for all j . We conclude that the sequence f 1, f 2, . . . is uniformly bounded and equicontinuous, so the
Arzelà–Ascoli theorem implies that there is a uniformly convergent subsequence. �

LEMMA A3. The functional f �→ �( f, λ) is lower semicontinuous on B.

Proof. Consider a sequence of functions { fn} = {( f1,1, . . . , fm,n)
T} ∈ B. Let us denote ψ =

(ψ1, . . . , ψm)
T = lim infn fn. By Lemma A2, there always exists a subsequence fnk →ψ; without loss of

generality, assume that this subsequence coincides with the entire sequence { fn}. Since every component
function f j,n ∈ B is bounded away from zero, so is the limit function ψ; therefore, log f j,n → logψ. Con-
sequently, N f j,n →Nψ j and MλN fn →MλNψ. Since the function ρ(t)= t − log t − 1 � 0, Fatou’s
lemma gives ∫

g(x)ρ{MλNψ(x)} dx � lim inf
∫

g(x)ρ{MλN fn(x)} dx .

From the above, the statement of the proposition follows immediately. �

The functional f �→ �( f, λ) is uniformly bounded from below on B, which follows from (5) and the
fact that N f j (x)� S f j (x) by the arithmetic-geometric mean inequality. Thus, the lower semicontinuity
combined with strict convexity, as proved above, imply that for any fixed λ, sequence (A1) converges to a
global maximizer of the functional f �→ �( f, λ). As a practical matter, this means that we could essentially
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replace �( f, λ) by the profile loglikelihood

�∗(λ)= inf
f ∈B

�( f, λ)

because the minimization on the right-hand side may be accomplished by iterating (10) until convergence.
However, dealing with the profile loglikelihood is not the general optimization strategy adopted in § 4.
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