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Abstract

In this article we propose a test for additivity of a nonlinear con-
ditionally heteroscedastic autoregressive model. A test is based on the
unequal variance unbalanced design ANOVA scheme. Asymptotic dis-
tribution of the test statistic is derived and the test performance in
finite samples is studied using simulation. To the best of our knowl-
edge, this is the first additivity test for a conditionally heteroscedastic
time series model.

1 Introduction

Historically, nonlinear nonparametric time series models acquired significant
popularity when it became clear that it was hard to choose an appropriate
class of model in a real application study. For a good example of such
a situation see, for example, Lingjaerde et al (2001). ”Letting the data
speak for itself” became an important principle suggesting the choice of
nonparametric models in real life applications. One of the most popular of
these models is the autoregressive model.

A general nonlinear autoregressive model for a time series yt is

yt = f(yt−k1 , . . . , yt−kp) + εt (1)
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where ki, i = 1, . . . , p and p are positive integers, f(·) is p-dimensional
real-valued function and εt is a white noise series with mean zero and fi-
nite variance. Such a model was first considered in Jones (1978). Robinson
(1983) also considered its estimation when yt is stationary and strongly mix-
ing. However, estimating this model in its full generality immediately leads
to the curse of dimensionality. Moreover, even if the sufficient amount of
data is available, interpretation of such a model is also very difficult. This is
why some simplifying assumptions on the structure of the conditional mean
function f(·) are commonly made. The most common of them is the addi-
tivity assumption. The resulting generalized additive model assumes that
f(yt−k1 , . . . , yt−kp) = f1(yt−k1)+ . . .+fp(yt−kp) for a set of smooth functions
fi(·), i = 1, . . . , p. In the time series context, the additivity assumption was
considered in detail in Chen and Tsay (1993). Such a model is convenient
in practice since it only requires nonparametric estimation of functions of
one-dimensional argument. It is also easy to interpret in practice. Another
common choice, though not investigated in this paper, is modeling condi-
tional mean as a piecewise linear function; a combination of piecewise linear
conditional mean function and the classical parametric ARCH structure in
the conditional variance was called a ”second generation” model in Tong
(1990).

In practice, however, one must be cautious before assuming the addi-
tive structure of a conditional mean function; preferably, there should be a
test that would verify whether the additive structure may, indeed, be true,
based on the data. Chen, Liu and Tsay (1995) suggested several tests for
that purpose. Chan, Kristoffersen and Stenseth (2003) suggested a Lagrange
multiplier test for additivity based on the Bürmann expansion of a condi-
tional mean function. Both of these approaches assume that the conditional
variance of the time series yt is unknown but constant.

In practice, the requirement of a constant conditional variance can be
quite restrictive. Conditionally heteroscedastic nonlinear time series models
are widely used today in many areas of application, particularly in econo-
metrics. More specifically, general models that incorporate both nonlinear
autoregression and nonlinear conditional variance function have been inves-
tigated by a number of authors. The bibliography is quite extensive; we
will mention some, for example, Li and Li (1996), Liu, Li and Li (1997),
Lu (1998), Ling (1999), Hwang and Woo (2001), Lu and Jiang (2001), and
Lanne and Saikkonen (2005). However, to the best of our knowledge, there
are no tests that are capable of checking for additivity of a nonlinear time
series with an unknown non-constant conditional variance. One of the meth-
ods considered in Chen, Liu and Tsay (1995) is a conditional mean test that
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is essentially a likelihood ratio based test. Such a test can also be viewed as
based on a two-way unbalanced ANOVA. The method performs very well
when the conditional variance is constant; however, it does not seem likely to
perform well, in common with other F-type tests, if the homoscedasticity as-
sumption is violated. We design a modified version of the conditional mean
test that is capable of handling a conditionally heteroscedastic time series
yt. The test that we suggest is based on an unbalanced design ANOVA with
unequal variances scheme first considered by Bishop and Dudewicz (1978).
The proposed testing procedure is described in detail in Chapter (2). In the
same chapter, we derive the asymptotic result for the proposed test-statistic.
We do not specify the exact structure of the variance function in this paper
since our main interest lies in additivity testing for the mean function. In
practice, variance function can take on a number of possible functional forms
as long as sufficient conditions for test statistic convergence to the asymp-
totic distribution are satisfied. Chapter (3) illustrates numeric properties of
the test using a number of suitable models.

2 A Conditional Mean Test

In this section we extend the idea of conditional mean test introduced in
Chen, Liu and Tsay (1995) to nonlinear autoregression with conditionally
heteroscedastic errors. Such a test would aim to uncover the evidence of
possible non-additivity in the conditional mean function when the process
itself is conditionally heteroscedastic.

Testing for possible presence of non-additive terms in nonlinear models
has been a research topic for some time; as an example, one can mention
Sperlich, Yang and Tjöstheim (2002) and references therein. Most of this
work has been done in the iid data context; the nonlinear autoregression has
received relatively little attention. For simplicity, we use the model of order
two to illustrate the idea; however, it can be applied to a model of any order
d > 2. Consider the following nonlinear autoregressive model of order two:

yt = m(yt−1, yt−2) + v1/2(yt−1, yt−2)εt (2)

where εt is a series of iid random variables with mean zero and variance
1 while m(·, ·) and v(·, ·) are smooth bivariate functions. We will also
use the notation νt ≡ v1/2(yt−1, yt−2)εt. Let Ft be the σ− algebra gener-
ated by {ys, s ≤ t}. We are testing whether the conditional mean function
m(yt−1, yt−2) = E{yt|Ft} can be represented in the additive form or not.
Let us use the notation m(y1, y2) for the value of the mean function m at
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an arbitrary point y1, y2 in its domain. Then, the null hypothesis is

H0 : m(y1, y2) = m1(y1) +m2(y2)

while the alternative is that the conditional mean function is an unstructured
m(y1, y2). Chen, Liu and Tsay (1995) discussed a similar problem earlier;
they assumed, however, that the conditional variance function v ≡ 1. Chan,
Kristoffersen and Stenseth (2003) proposed a Lagrange multiplier test for
additivity based on the Bürmann expansion of a conditional mean function.
That test was also designed for the homoscedastic case. The homoscedas-
ticity assumption does not commonly hold in the nonlinear time series and,
therefore, the extension to the conditionally heteroscedastic case is needed.

The procedure we suggest can be viewed as a two-way unbalanced ANOVA
with unequal variances. This is a fairly difficult problem that has not been
extensively studied before. It has been established in the past that a classi-
cal F-test is not robust to violation of equal variance assumption, especially
when the design itself is unbalanced. A two-stage testing procedure for the
two-way unbalanced ANOVA with unequal variances has been proposed by
Bishop and Dudewicz (1978). That procedure requires additional samples at
the second stage. Chen and Chen (1998) made an improvement by propos-
ing a single stage sampling procedure. This procedure is computationally
much more effective than the earlier procedure by Bishop and Dudewicz
(1978) and it does not require additional sampling.

We begin with the brief description of the procedure of Chen, Liu and
Tsay (1995). Let us assume that N observations had been generated from
the model (2). Then, the procedure can be described as follows.

1. Choose a shrinking factor 0 < δ < 1 and a positive integerm. Partition
the reduced data range δ(ymax−ymin) into m equal intervals (ai, ai+1),
i = 0, . . . ,m−1. The points ai are defined as ai = ymin+(1−δ)(ymax−
ymin)/2 + iδ(ymax − ymin)/m for i = 0, · · · ,m. The data range has
to be shrunk to avoid the boundary bias problem common to many
nonparametric smoothing procedures.

2. For t = 3, · · · , N , we classify yt into the (i, j)-th cell if yt−1 ∈ (ai−1, ai)
and yt−2 ∈ (aj−1, aj). We denote Xijk = yt, where the third subscript
k is used to distinguish different observations in the same cell. If
yt−1 or yt−2 are outside the reduced range, we drop yt from further
consideration. The number of observations in each cell is nij and the
total number of observations is

∑m
i=1

∑m
j=1 nij = n < N.
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3. When the conditional variances are constant, the model (2) can be
viewed as

Xijk = µ+ αi + βj + αβij + εijk (3)

where i = 1, · · · ,m, j = 1, · · · ,m, k = 1, 2, · · · , nij , εijk are indepen-
dent random variables with mean zero and variance 1. We assume
that identifiability conditions

∑m
i=1 αi =

∑m
j=1 βj =

∑m
i=1 αβij =∑m

j=1 αβij = 0 are satisfied. Then, the two-way analysis of variance
procedure is carried out to obtain an F statistic for testing the null
hypothesis H0 : αβij = 0 for all i and j in the model (3)

The above procedure is based on the heuristic idea that, when functions
m1(·), m2(·) and m(·, ·) are sufficiently smooth, the observations in the same
cell have roughly the same conditional mean values. This argument is true
in large samples as the number of observations N →∞ and the number of
intervals grows at the rate smaller than N but sufficiently large to ensure
that the limiting distribution of the test statistic is non-degenerate. Addi-
tionally, under the strong mixing condition, the observations in a cell behave
as if they were approximately independent. Therefore, testing the null hy-
pothesis H0 can be carried out using the usual two-way analysis of variance.
When the conditional variance function is not constant, that algorithm can-
not be used. We modify the procedure of Chen, Liu and Tsay (1995) to
handle conditional heteroscedasticity in the following way. After grouping
observations yt generated by model (2) in accordance with steps (1)-(2) of
the algorithm of Chen, Liu and Tsay (1995), we can view the setting as an
approximate unbalanced two-way ANOVA model with unequal variances

Xijk = µ+ αi + βj + αβij + εijk (4)

i, j = 1, . . . ,m and k = 1, . . . , nij ; in the above, εijk are independent random
variables with zero mean and unknown finite variances 0 < σ2ij < ∞. This
is based on the heuristic idea that, when functions m1(·), m2(·), m(·, ·) and
v(·, ·) are sufficiently smooth, the observations in the same cell have roughly
the same conditional mean and conditional variance values. Yet again, this
argument is true in large samples as the number of observations N → ∞
and the number of intervals grows at the rate smaller than N but sufficiently
large to ensure that the limiting distribution of the test statistic is non-
degenerate. The approximate independence is implied by a strong mixing
condition that will be described in detail in the main result statement. Now
we can describe the procedure in detail.
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1. We use the first nij − 1 observations within each cell to compute the
sample mean and sample variance as

X̄ij =
1

nij − 1

nij−1∑
k=1

Xijk

S2
ij =

1

nij − 2

nij−1∑
k=1

(
Xijk − X̄ij

)2
2. We compute the weights of the observations in a cell (i, j) as follows:

Uij =
1

nij
+

1

nij

√√√√ 1

nij − 1

(
S2
max

S2
ij

− 1

)

Vij =
1

nij
− 1

nij

√√√√(nij − 1)

(
S2
max

S2
ij

− 1

)

where S2
max = max{S2

11, S
2
12, · · · , S2

mm}.

3. For each cell (i, j), we compute the weighted sample mean as

X̃ij· =

nij∑
k=1

WijkXijk

where Wijk = Uij if 1 ≤ k ≤ nij − 1 and Wijk = Vij if k = nij .
Note that thusly defined weights are normalized:

∑nij

k=1Wijk = 1 and∑nij

k=1W
2
ijk = S2

max

nijS2
ij

4. We compute X̃i·· = 1
m

∑m
j=1 X̃ij·, X̃·j· = 1

m

∑m
i=1 X̃ij· and X̃··· =

1
m2

∑m
i=1

∑m
j=1 X̃ij·

5. The test statistic

Fm =

m∑
i=1

m∑
j=1

(
X̃ij· − X̃i·· − X̃·j· + X̃···

S2
max/

√
nij

)2

(5)

is used to test the modified null hypothesis H̃0 : αβij ≡ 0.
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This procedure can also be directly generalized to the general autoregressive
model of order k

yt = m(yt−1, . . . , yt−k) + v1/2(yt−1, . . . , yt−k)εt. (6)

Such a generalization entails using a k-way unbalanced ANOVA with un-
equal variances. In practice, this may become prohibitively expensive com-
putationally for large k. Another generalization, however, is not nearly as
straightforward as increasing the number of lags present: the proposed
method cannot be applied directly when the conditional variance function
depends on the lags of yt different than those the conditional mean function
depends upon; in other words, it will not work if observations yt are gen-
erated by the model yt = m(yt−k1 , yt−k2) + v1/2(yt−k3 , yt−k4)εt if the set of
double indices (k1, k2) is not the same as (k3, k4). This is an interesting and
potentially important topic for future research.

The following asymptotic result about the test statistic (5) is proved in
the Appendix

Theorem 2.1 Suppose the process yt generated by the model (2) has a
stationary density p(·) and is strongly mixing; moreover, we assume that
E|yt|δ < ∞ and the mixing coefficients αj satisfy

∑∞
j=1 α(j)1−2/δ < ∞ for

some constant δ > 2. We also assume that the process yt satisfies the pos-
itivity condition of Besag (1974): under the stationarity assumption, for
any two points y1, y2 the joint density p(y1, y2) > 0 if and only if both
p(y1) > 0 and p(y2) > 0. Assume that εt are independent random vari-
ables with mean zero and variance 1. Let the functions m1(·) and m2(·)
be continuous differentiable functions with bounded first derivatives while
the conditional variance function v(·, ·) is bounded from below: there exists
η > 0 such that v(y1, y2) ≥ η > 0 for any pair (y1, y2). Then, as N → ∞
and the number of intervals m = mN goes to infinity at the rate higher than
N1/3 (meaning that m > CN1/3+ρ for some C > 0 and ρ > 0) the limit-
ing distribution of statistic Fm ≡ FmN is χ2

(m−1)2 under the null hypothesis

m(yt−1, yt−2) = m1(yt−1)+m2(yt−2); this means that, the absolute difference
between the distribution function of FmN and χ2

(m−1)2 distribution function

goes to zero as N →∞ and m→∞ at the rate of at least m > CN1/3+ρ.

Remarks

1. Theorem (2.1) does not assume much more than what is needed for
the result of Chen, Liu and Tsay (1995) to hold. First, in addition to
strong mixing property of the process yt, we require that the mixing
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coefficients α(j) satisfy
∑∞

j=1 α(j)1−2/δ < ∞ for some δ > 2. That
assumption is slightly stronger than simply requiring convergence of
the series

∑∞
j=1 α(j) and, essentially, imposes some limitations on the

convergence rate of the coefficients α(j) → 0 as j → ∞. Second,
we require that the conditional variance function v(·, ·) be bounded
away from zero which is a standard technical assumption. Note that,
unlike Chen, Liu and Tsay (1995), we not only obtain the asymptotic
distribution of the proposed test statistic as the sample size N → ∞
and the number of intervals m → ∞ but also explicitly characterize
the lower bound of the rate at which m has to increase as a fraction
of N in order for the test statistic to converge to a non-degenerate
distribution under the null hypothesis.

2. The above Theorem suggests that we should reject H̃0 at a confidence
level of 100(1−α)% if Fm exceeds the upper α quantile of χ2

(m−1)2 for
sufficiently large values of N. However, note that in practice the devi-
ation from the asymptotic chi-square distribution of the test statistic
is substantial if some nij increase much slower then others as N →∞.
The number of observations in each cell nij depends on the window
size that is, in turn, controlled by the choice of m. It is possible that
nij is quite small in some cells even for large sample sizes if the cho-
sen m is too large; this happens because observations yt, t = 1, . . . , N
are not independent. If this happens, selecting large m may interfere
with the convergence of the test statistic to its asymptotic distribution
under the null hypothesis.

3. Choosing the number of intervals m is a difficult task. This is an
exciting topic for future research; for now, we suggest the following
simple algorithm that can provide a rough estimate. Note that the
test statistic Fm attempts, in effect, to estimate the magnitude of the
interactive term m1,2(yt−1, yt−2) to see if it has to be included in the
model or not. In order to do that, the ”main effects” representing
additive terms m1(yt−1) and m2(yt−2) have to be subtracted from the
cell means first. From the nonparametric function estimation view-
point, this is similar to estimating additive terms first, subtracting the
resulting estimates from observations to obtain the residuals and then
estimating interactive term based on these residuals. This suggests
the following simple algorithm:

(a) Estimate the optimal bandwidth for the local linear regression
fit of the additive term m1(yt−1) or m2(yt−2). The best approach
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here is, probably, the K- fold crossvalidation with a relatively
small K.

(b) Compute the range of observations yt

(c) Estimate the optimal number of intervals m as the (rounded to
get an integer) ratio of the data range ymax−ymin to the optimal
bandwidth defined in (3a)

(d) Repeat the previous three steps a certain number of times while
recording the resulting value of m every time. Choose a repre-
sentative value of m (such as the median) to be an approximate
estimate of the true m.

This algorithm effectively assumes that the same bandwidth is used
to fit both m1(yt−1) and m2(yt−2) which stems from using the same
m to classify both yt−1 and yt−2.

4. Continuing the discussion started in Remark (2), we conjecture that
it may be better to partition the reduced range into unequal windows
As noted earlier in the remark (3), a more comprehensive solution of
this problem may be splitting the reduced data range δ(ymax − ymin)
into unequal intervals whose length is inversely proportional to the
stationary density of the process yt. This will ensure that, in areas
where the data is sparse, longer intervals are selected and the number
of observations in all of the m2 cells stays approximately equal. Find-
ing a satisfactory procedure to select m is a very interesting topic for
future research.

5. Note that the asymptotic distribution of the test statistic does not
depend on the conditional variance function v(y1, y2); therefore, the
test has the level α regardless of how the conditional variance function
looks like. In particular, even if the conditional variance function is
the function of only one of the lags used to define conditional mean
(e.g. v ≡ v(yt−k) with k either 1 or 2), the test still retains its level α.
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3 A Simulation Study

For the purpose of Type I error study, we consider the following three addi-
tive models with nonconstant variance:

yt = 0.5yt−1 + sin(yt−2) + (1 + | sin(yt−1)|)
(

1 +
√
|yt−2|

)
εt (7)

yt = 0.5yt−1 +
(
0.5 +

[
0.5y+t−1 + 0.5y+t−2 + 0.5y−t−1 + 0.5y−t−2

])1/2
εt (8)

yt = 0.8yt−1 − 0.3yt−2 + (1 + | sin(yt−1)|)
(

1 +
√
|yt−2|

)
εt (9)

The first model is an additive AR-ARCH model with multiplicative condi-
tional variance structure. It is very similar to example (1) of Lu and Jiang
(2001) except that our model only uses the first two lags of Yt. The second
model is an example of so-called β− ARCH(p) model introduced in Guegan
and Diebolt (1994) with p = 2 and β = 0.5; we use notation Y + = max(Y, 0)
and Y − = max(−Y, 0). Note that the conditional mean function in this case
depends on Yt−1 only since the coefficient of Yt−2 is equal to zero. The
third model is a linear AR-ARCH model with a multiplicative conditional
variance structure that is the same as in (7).

It is well known that, when applying nonparametric methods to nonlinear
time series, the sample size has to be relatively large. We use the sample
size N = 2000 and apply the proposed test to 300 realizations of each model.
The errors εt are standard normal N(0, 1). In practice, as noted before, the
number of observations in cells along and close to the main diagonal is much
larger than that in the peripheral cells. Moreover, some cells close to the
periphery of the ANOVA table end up empty. The larger the number of
intervals m selected, the more obvious this phenomenon becomes. As noted
before in the Remark (2), this can impede convergence of the test statistic to
the asymptotic χ2

(m−1)2 distribution because the number of observations in
some peripheral cells nij may not go to infinity as the overall sample size n→
∞. In order to prevent this from happening and keep the number of degrees
of freedom correct, some small adjustments are needed. First, we remove
rows and/or columns that consist of empty cells only. Second, if there are
any cells remaining that have zero or a very small number of observations, we
treat all of these cells as empty and employ a simple imputation procedure.
Specifically, sample means/sample standard deviations in those cells are
presumed to be average sample means/sample standard deviations across
the entire ANOVA table (”grand” mean/standard deviation). For purposes
of this study we treat cells containing less than 40 observations (2% of the
sample size) as ”empty”.
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Table 1: Percentiles of asymptotic p-values of the proposed test under the
null hypothesis

Model (7) Model (8) Model (9)

Probability m = 5 m = 7 m = 5 m = 7 m = 5 m = 7

0.01 0.003 0.016 0.022 0.013 0.021 0.007

0.05 0.048 0.080 0.049 0.076 0.068 0.048

0.10 0.106 0.130 0.083 0.131 0.133 0.125

0.25 0.343 0.340 0.308 0.311 0.327 0.330

0.50 0.623 0.628 0.645 0.628 0.605 0.581

0.75 0.825 0.868 0.871 0.852 0.831 0.818

0.90 0.923 0.955 0.958 0.961 0.952 0.954

0.95 0.967 0.981 0.981 0.979 0.967 0.978

0.99 0.994 0.999 0.994 0.999 0.995 0.998

Another interesting topic is the choice of the parameter δ. Of course, one
tries to remove as little data as possible in practice while at the same time
avoiding boundary problems common to all nonparametric procedures. The
following observation may help in making this decision. Let the range be
denoted R = ymax − ymin. Then the reduced range is δR and it is split into
m intervals of equal length δR

m . It is reasonable to assume that equal length
intervals are removed at both ends of the data range; denote that length x.
Therefore, we have δR + 2x = R and, consequently, x = R(1−δ)

2 . Since it
makes no sense to remove the area (at either end) that is longer than any of

the m intervals, we assume that x = R(1−δ)
2 < δR

m or 1−δ
δ < 2

m . The function
1−δ
δ is monotonically decreasing in δ; therefore, one selects δ no smaller than

the solution of the equation 1−δ
δ = 2

m . That solution is δ∗(m) = m
m+2 and it

can be viewed as the lower bound on δ.
In this study, we use δ = 0.8 and two possible choices of m : m = 5 and

m = 7. For m = 5, δ∗(5) ≈ 0.7143 and for m = 7 δ∗(7) ≈ 0.7778; since 0.8
is clearly above both of these lower bounds we believe we haven’t lost data
unnecessarily. For each realization, we compute the value of our statistic and
the corresponding p-value with respect to the asymptotic distribution under
the null hypothesis of no interactive term present. The Table (1) shows the
percentiles of asymptotic p- values for each of the three models. The results
are comparable for both choices of m and seem to be relatively good. None
of the models demonstrates results considerably worse than others.
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Table 2: Percentages of rejection by our test under various alternative hy-
potheses and window sizes

Model (10) Model (11) Model (12)

Significance level m = 5 m = 7 m = 5 m = 7 m = 5 m = 7

0.10 0.663 0.810 0.670 0.710 0.650 0.770

0.05 0.597 0.757 0.600 0.647 0.590 0.683

0.01 0.473 0.667 0.447 0.557 0.463 0.600

The second simulation considers the following three models:

yt = 0.9yt−1 sin(yt−2) + (1 + | sin(yt−1)|)
(

1 +
√
|yt−2|

)
εt (10)

yt = (0.5yt−1 − 0.4yt−2)I(yt−1 < 0) + (0.5yt−1 + 0.3yt−2)I(yt−1 ≥ 0)

+ (1 + | sin(yt−1)|)
(

1 +
√
|yt−2|

)
εt (11)

yt = 2 exp(−0.1y2t−1)yt−1 − exp(−0.1y2t−1)yt−2 + (0.05 + 0.5y2t−1 + 0.5y2t−2)εt
(12)

These models are used to study the power properties of the proposed test.
Model (10) is a functional coefficient AR(2) model with a multiplicative
ARCH(2) term. A similar model with constant conditional variance had
been used before in Chen and Tsay (1993) and Chen, Liu and Tsay (1995).
The model (11) is a threshold autoregressive model (TAR) with the dis-
continuous conditional mean function. It has been chosen, in part, to see
if discontinuities in conditional mean impact the performance of the test
to any considerable extent. It has the same multiplicative ARCH(2) con-
ditional variance structure as the previous model (10). The model (12) is
an exponential autoregressive model with an additive conditional variance
structure. The homoscedastic versions of the last two models were used in
Chen, Liu and Tsay (1995). The Table (2) shows percentages of rejection
by our test under different significance levels for models (10)-(12).

It can be clearly seen that the test has fairly high power for the choices of
m used. Chen, Liu and Tsay (1995) note that the power of their conditional
mean test seems to rise with the increase in m (i.e. decrease in the ”window”
size) except when the mean function is discontinuous. We do not observe this
effect in our test; even in the case of model (11) the power of test is higher
for m = 7 then for m = 5. One must note, however, that the magnitude of
that power increase seems to be less for (11) then for either (10) or (12).

We also tried to use the simple method described in (3) to obtain sug-
gested number of intervals m. We chose K = 5 for the K-fold crossvalida-
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Table 3: Percentages of rejection by the test of Chen, Liu and Tsay (1995)
for models (10)-(12)

Significance level Model (10) Model (11) Model (12)

0.10 0.093 0.097 0.120

0.05 0.047 0.033 0.083

0.01 0.007 0.007 0.023

tion that is used in the algorithm. After rounding, the values obtained were
m1 = 4 for the model (10), m2 = 5 for the model (11) and m3 = 3 for
the model (12). While the first two values seem fairly reasonable, the last
one is somewhat off the mark. It is possible that the reason for that is the
strongly nonlinear nature of the conditional mean in the model (12); it is
the feature that makes the choice of K for the K-fold crossvalidation more
difficult than usual. The problem of selecting optimal m requires extensive
future research.

Note that the test we propose is, indeed, necessary because the older ad-
ditivity test of Chen, Liu and Tsay (1995) cannot handle the heteroscedastic
processes adequately. To illustrate that, we again consider a set of models
(10)-(12) and apply the test of Chen, Liu and Tsay (1995) to these models.
This is equivalent to ignoring conditional heteroscedasticity and using the
test designed for conditionally homoscedastic processes. We use m = 5 and
δ = 0.8 again. The number of simulations is 300 and the sample size is 2000.
The results are collected in the Table (3). It is quite clear that the earlier
test cannot handle conditionally homoscedastic processes - percentages of
rejection of (incorrect) null hypothesis are very small.

Finally, we also want to test for possible loss of efficiency when the
true conditional variance of the process yt is constant. To this end, we use
the models (10)-(12) with the conditional variance now being set to 1. The
same testing procedure is again used; the value of statistic (5) is computed
for each realization and the p-value with respect to the asymptotic χ2

(m−1)2
distribution is computed. The results are collected in the Table (4). The
differences in the power of the test under the two scenarios seem to be very
small. It is inconsistent for the three models shown: for the first model a
small loss of efficiency is observed, while for the other two homoscedasticity
seems to result in a slightly higher test power. Since magnitudes of these
differences are very small, the loss of efficiency does not seem to be of major
practical concern.
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Table 4: Percentages of rejection by our test when the process is homoscedas-
tic

Model (10) Model (11) Model (12)

Significance level m = 5 m = 7 m = 5 m = 7 m = 5 m = 7

0.10 0.633 0.720 0.640 0.800 0.700 0.773

0.05 0.567 0.663 0.567 0.763 0.607 0.717

0.01 0.417 0.600 0.457 0.667 0.473 0.623
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5 Appendix

Proof: If the support of p is not a closed interval, there exists an interval
[a, b] such that for any y ∈ [a, b] p(y) > 0 and p([a, b]) is bounded away from
zero. We denote N∗ the number of observations (yt−1, yt−2) ∈ [a, b]× [a, b].
Due to the positivity condition, N∗ = O(N) as n → ∞. This allows us to
assume that, for all practical purposes, the stationary density is supported
on a closed interval; to simplify notation, we will use N throughout the proof
regardless of the true support of the stationary density p(·). Denote cij a
small square with vertices (ai−1, aj−1), (ai, aj−1), (ai−1, aj) and (ai, aj); also,
let ci = (ai−1, ai) and cj = (aj−1, aj). This square will play the role of the
ANOVA cell in the following analysis. The model (2) can be represented
as Xijk = fijk + νijk if (yt−1, yt−2) ∈ cij where Xijk ≡ yt and the index
k is used to distinguish the observations falling in the same cell cij . Let
nij be the number of observations falling in cij . Under the null hypothesis,
fijk = c+m1(yt−1) +m2(yt−2). Note that Xijk can be decomposed as

Xijk = {fijk − fij.}+ {fij. + νijk} = {fijk − fij.}+ xijk (13)

where fij. = E
[
Icij{c+m1(Yt−1) +m2(Yt−2)}

]
is the true cell mean, and

xijk ≡ fij. + νijk. Following the decomposition (13), we obtain the following
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expressions for various weighted means:

X̃ij. =

nij∑
k=1

WijkXijk =

nij∑
k=1

Wijkxijk +

nij∑
k=1

Wijk(fijk − fij.) = x̃ij. + f̃ij.

X̃i.. =
1

m

m∑
j=1

X̃ij. =
1

m

m∑
j=1

x̃ij. +
1

m

m∑
j=1

f̃ij. = x̃i.. + f̃i..

X̃.j. =
1

m

m∑
i=1

X̃ij. =
1

m

m∑
i=1

x̃ij. +
1

m

m∑
i=1

f̃ij. = x̃.j. + f̃.j.

X̃... =
1

m2

m∑
i=1

m∑
j=1

X̃ij. =
1

m2

m∑
i=1

m∑
j=1

x̃ij. +
1

m2

m∑
i=1

m∑
j=1

f̃ij. = x̃... + f̃...

The test statistic Fm, first introduced in (5), can then be split into three
parts:

Fm =

m∑
i,j=1

(
X̃ij. − X̃i.. − X̃.j. + X̃...

Smax/
√
nij

)2

=
m∑

i,j=1

(
x̃ij. − x̃i.. − x̃.j. + x̃...

Smax/
√
nij

)2

(14)

+

m∑
i,j=1

(
f̃ij. − f̃i.. − f̃.j. + f̃...

Smax/
√
nij

)2

(15)

+

m∑
i,j=1

(
x̃ij. − x̃i.. − x̃.j. + x̃...

Smax/
√
nij

)(
f̃ij. − f̃i.. − f̃.j. + f̃...

Smax/
√
nij

)
(16)

Recall the weighted average X̃ij. =
∑nij

k=1WijkXijk. Conditional on knowing
sample variances S2

ij , one obtains that, approximately up to the higher order
term,

X̃ij. ∼ N

(
µ+ αi + βj + αβij , σ

2
ij

nij∑
k=1

W 2
ijk

)
due to the central limit theorem (CLT) for strictly stationary strongly mixing
processes. This CLT is given in, among other sources, Fan and Yao (2003),
p. 75; it can be used here due to the strong mixing condition in the statement
of the Theorem. That statement can also be reformulated to say that

tij =
X̃ij. − (µ+ αi + βj + αβij)√

S2
ij

∑nij

k=1W
2
ijk
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is conditionally approximately normally distributed with mean zero and

variance
σ2
ij

S2
ij
. Now we are interested in the unconditional distribution of tij .

It can be shown that the joint distribution of tij for all i, j = 1, . . . ,m is,
up to the higher order term, a product of m2 density functions of random
variables where each has tnij−2 density function; therefore, tij , i = 1, . . . ,m,
j = 1, . . . ,m are approximately independently distributed as tnij−2. The
proof of that fact is almost a verbatim repetition of the analogous proof by
Bishop and Dudewicz (1978) and is omitted here for brevity. Note also that
each tij can be represented as

tij =
Xijk − (µ+ αi + βj + αβij)

Smax/
√
nij

since S2
ij

∑nij

k=1W
2
ijk = S2

max
nij

. Let us denote weighted averages of tij ti. =
√
nij

m

∑m
j=1

tij√
nij
, t.j =

√
nij

m

∑m
i=1

tij√
nij
, and t.. =

√
nij

m2

∑m
i,j=1

tij√
nij
. Conse-

quently, the first term in the expansion of the test statistic Fm (14) can be
represented as

m∑
i,j=1

(
tij − ti. − t.j + t.. +

αβij
Smax

)2

.

Under the null hypothesis H0, it becomes

Tm =
m∑

i,j=1

(tij − ti. − t.j + t..)
2

It can be shown that the difference between the distribution function of TmN

and the χ2
(m−1)2 distribution function goes to zero as the cell size nij →∞;

for details, see Bishop and Dudewicz (1978). In practice this means, of
course, that Tm can be approximated (when sample sizes nij are large) by
χ2
(m−1)2 .

In the remainder of our argument, we intend to show the negligibility of
both (15) and (16) as nij →∞ and m→∞. Let Ic be the indicator function
of an arbitrary set c and let Li = supx{|m′i(x)|}. Denote p0 = sup

S
p(x) where

S is the (compact) support of the stationary density p(·). Since yt, yt−1 and
yt−2 all have the same marginal stationary distribution p(·),

vij(f) = var
[
Icij{c+m1(Yt−1) +m2(Yt−2)}

]
≤ maxi,j

[
var{m1(Yt)Ici}+ var{m2(Yt)Icj}

]
≤ 2p0(L

2
1 + L2

2)/m
3
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where variance is taken with respect to the stationary density p(·). Hence,
under H0, we have

1

nij

nij∑
k=1

(fijk − fij.)2 = Op{vij(f)} = Op(1/m
3) (17)

By using Cauchy-Schwarz inequality, it is easy to show that

f̃2ij. =

( nij∑
k=1

Wijk(fijk − fij.)

)2

≤

( nij∑
k=1

W 2
ijk

)( nij∑
k=1

(fijk − fij.)2
)

= Op

(
1

nij

)( nij∑
k=1

(fijk − fij.)2
)

= Op

(
1

m3

)
;

consequently,

m∑
i,j=1

(
f̃ij.

Smax/
√
nij

)2

= Op

(
N

m3

)
. (18)

Similar algebra shows that the other three squared terms as well as the cross-
product terms in (15) are all Op

(
N
m3

)
. Thus, (15) is negligible as N → ∞

and there exist C > 0 and ρ > 0 such that m > CN1/3+ρ.
As a final step, consider an arbitrary cross product from (16), say, the

first one. Let us denote ν̃ij. =
∑nij

k=1Wijkνijk. Clearly, x̃ij. = fij.+ ν̃ij.. Then,
the first crossproduct becomes

m∑
i,j=1

x̃ij.
Smax/

√
nij

f̃ij.
Smax/

√
nij

=
m∑

i,j=1

fij.f̃ij.
S2
max/nij

+
ν̃ij.f̃ij.
S2
max/nij

It is easy to show that this term is of the order Op

((
N

m3/2

))
and the same is

true for the rest of the crossproduct terms. As a consequence, it is possible
to say that, based on (14)-(16), the test statistic Fm ≡ FmN has the limiting
χ2
(m−1)2 distribution; in other words, the absolute difference between the

distribution function of FmN and the χ2
(m−1)2 distribution function goes to

zero as long as N → ∞ and m → ∞; moreover, m has to increase at the
rate less then N but m > CN1/3+ρ for some C > 0 and ρ > 0.
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Bürmann expansion and test for additivity,” Biometrika, 90, 1, 209-
222

[4] Chen, S. and Chen, H. (1998) “Single-stage analysis of variance un-
der heteroscedasticity,” Communications in Statistics - Simulation and
Computation 27, 3, 641-666.

[5] Chen, R., Liu J. and Tsay, R. (1995) “Additive tests for nonlinear
autoregression,” Biometrika 82, 2, 369-383.

[6] Chen, R. and Tsay, R.S. (1993) “ Nonlinear additive ARX models,” J.
Am. Statist. Assoc. 88, 955-67

[7] Hwang, S.Y. and Woo, M.-J. (2001) “Threshold ARCH(1) processes:
asymptotic inference”, Statistics and Probability Letters, 53, 11-20

[8] Jones, D.A. (1978) ”Nonlinear autoregressive process,” Proc. R. Soc.
Lond. A 360, 71-95

[9] Lanne, M. and Saikkonen, P. (2005) “Nonlinear GARCH models for
highly persistent volatility”, Econometrics, 8, 251-276

[10] Li, W.C. and Li, W.K. (1996) “ On a double threshold autoregressive
heteroscedastic time series model,” J. Appl. Econometrics 11, 253-274

[11] Liu, J., Li, W.K. and Li, C.W. (1997) ” On a threshold autoregression
with conditional heteroscedastic variance,” J. Statist. Plann. Inference
62, 279-300

[12] Ling, S. (1999) “On the probabilistic properties of a double threshold
ARMA conditional heteroskedastic model”, Journal of Applied Proba-
bility, 36, 688-705

18



[13] Lingjaerde et al. (2001), “Exploring non- linearities in the stage-specific
density - dependent structure of experimental blowfly population using
non-parametric additive modelling”, Ecology 82, 2645-58

[14] Lu, Z. (1998) “On the geometric ergodicity of a non-linear autore-
gressive model with an autoregressive conditional heteroscedastic error
term,” Statist. Sinica 8, 1205-1217

[15] Lu, Z. and Jiang, Z. (2001) “L1 geometric ergodicity of a multivariate
nonlinear AR model with an ARCH term”, Statistics and Probability
Letters, 51, 121-130

[16] Robinson, P.M. (1983) “Non-parametric estimation for time series mod-
els,” J. Time Ser. Anal. 4, 185-208
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