STAT 516: Continuous random variables:

 probability density functions, cumulative density function, quantiles, and transformationsLecture 6: Expectation of functions and Moments. Cauchy density

Prof. Michael Levine

March 2, 2020

Definition of Expectation

- Let X be a continuous random variable with a pdf $f(x)$. Let also $\int_{-\infty}^{\infty}|x| f(x) d x<\infty$. We say, then, that the expected value (mean) of X exists and is

$$
E(X)=\mu=\int_{-\infty}^{\infty} x f(x) d x
$$

- Let X be a continuous random variable with pdf $f(x)$. Let $g(X)$ be a function of X. The expectation of $g(X)$ exists if and only if $\int_{-\infty}^{\infty}|g(x)| f(x) d x<\infty$ in which case it is

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Definition of Moments

- Let X be a continuous random variable with pdf $f(x)$. Then, the k th moment of X is defined as $E\left(X^{k}\right)$ for any $k \geq 1$. We say that the k th moment does not exist if $E\left(\left|X^{k}\right|\right)=\infty$.
- Let X be a continuous random variable with pdf $f(x)$. Suppose the expectation of X exists and let $\mu=E(X)$. Then, the variance of X is defined as $V(X)=\sigma^{2}=E\left[(X-\mu)^{2}\right]$. Also, we say that the variance of X does not exist if $E\left[(X-\mu)^{2}\right]=\infty$.

Variance property

- Suppose X is a continuous random variable with the pdf $f(x)$. Then its variance, provided it exists, is equal to

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=E\left(X^{2}\right)-[E(X)]^{2}
$$

- Suppose X has a symmetric distribution around some number a, i.e. $X-a$ and $a-X$ have the same distribution. Then, $E\left[(X-a)^{2 k+1}\right]=0$, for every $k \geq 0$, provided the expectation $E\left[(X-a)^{2 k+1}\right]$ exists.

Examples of moment calculation

- Let $X \sim \operatorname{Unif}[0,1]$. Check that

1. $E\left(X^{k}\right)=\frac{1}{k+1}$
2. $V(X)=E\left[\left(X-\frac{1}{2}\right)^{2}\right]=\frac{1}{12}$

Example

- A lion sets a circular territory for itself by choosing a radius at random that is exponentially distributed (a unit is a mile). What is the expected area of the lion's territory?
- The radius $X \sim \operatorname{Exp}(1)$; the area is πx^{2} and so

$$
E(\text { area })=\int_{0}^{\infty} \pi x^{2} e^{-x} x=\pi \int_{0}^{\infty} x^{2} e^{-x} d x=2 \pi
$$

Area of random triangle

- An equilateral triangle has the common side $X \sim \operatorname{Unif}[0,1]$. What is the mean and the variance of the area of this triangle?
- If the sides are a, b, c, the area is $\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$. If all sides are equal, area is $\frac{\sqrt{3}}{4} a^{2}$
- The mean is

$$
E Y=\frac{\sqrt{3}}{4} E X^{2}=\frac{1}{4 \sqrt{3}}
$$

- The variance is

$$
\operatorname{Var}(Y)=E Y^{2}-(E Y)^{2}=\frac{3}{16} E X^{4}-\frac{1}{48}=\frac{1}{60}
$$

Example

- In the "broken stick" ecological model, the proportion of the resource controlled by species 1 has the uniform distribution on $[0,1]$
- The species that controls the majority of this resource controls the amount

$$
h(X)=\max (X, 1-X)= \begin{cases}1-X & 0 \leq X \leq \frac{1}{2} \\ X & \frac{1}{2} \leq X \leq 1\end{cases}
$$

- The expected amount controlled by the species having majority control is

$$
E h(X)=\int_{0}^{1} \max (x, 1-x) * 1 d x=\frac{3}{4}
$$

Example

- Let a horizontal line segment of length 5 be split into two parts at random
- The length of the left-hand part X has the pdf

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{5} & 0<x<5 \\
0 & \text { elsewhere }
\end{array}\right.
$$

- The expected length of X is $\mathbb{E} X=\frac{5}{2}$ and $\mathbb{E}(5-X)=\frac{5}{2}$
- Note that

$$
\mathbb{E}\left[(X(5-X)]=\mathbb{E}\left(5 X-X^{2}\right)=\frac{25}{6} \neq\left(\frac{5}{2}\right)^{2}\right.
$$

Gamma function

- The gamma function is defined as

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-x} x^{\alpha-1} d x
$$

for any $\alpha>0$

- Properties:

1. $\Gamma(n)=(n-1)$! for any positive integer n
2. $\Gamma(\alpha+1)=\alpha \Gamma(\alpha) \forall \alpha>0$
3. $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Moments of the exponential distribution

- Let $X \sim \operatorname{Exp}(1)$
- Check that $E\left(X^{n}\right)=\Gamma(n+1)=n$! for any n...e.g. $E X=1$ and $E X^{2}=2, \operatorname{Var}(X)=1$

Absolute value of a standard normal

- Let $X \sim N(0,1)$; find $E(|X|)$
- By definition,

$$
\begin{aligned}
& E(|X|)=\int_{-\infty}^{\infty}|x| \phi(x) d x=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{-x^{2} / 2} d x \\
& =\sqrt{\frac{2}{\pi}}
\end{aligned}
$$

Cauchy distribution

- Suppose a person holds a flashlight in his hand and stands one foot away from an infinitely long wall
- He points a beam of light in a random direction, i.e. the point where ray lands makes an angle X with an individual
- The individual is viewed as a straight line one foot long and $X \sim \operatorname{Unif}[-\pi / 2, \pi / 2]$.
- Let Y be the horizontal distance from the person of the point at which the light lands
- Y is negative if the light lands on the person's left and positive if on the right

Cauchy distribution

- Clearly,

$$
\tan (X)=\frac{Y}{1}
$$

and so $Y=\tan (X)$

- Note that $g(X)=\tan (X)$ is a strictly monotone function of X and $g^{-1}(y)=\arctan (y),-\infty<y<\infty$,
- Finally, $g^{\prime}(x)=1+x^{2}$ and so

$$
f_{Y}(y)=\frac{\frac{1}{\pi}}{1+[\tan (\arctan (y))]^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}
$$

for $-\infty<y<\infty$

- Thus, Y has a standard Cauchy distribution

No finite expectation for Cauchy distribution!

- Let X be Cauchy distributed with $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ $-\infty<x<\infty$
- Note that

$$
\begin{aligned}
& E(|X|)=\int_{-\infty}^{\infty}|x| f(x) d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|x|}{1+x^{2}} d x \\
& \geq \frac{1}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} d x \geq \frac{1}{\pi} \int_{0}^{M} \frac{x}{1+x^{2}} d x
\end{aligned}
$$

for some $M>0$

- Thus,

$$
E(|X|) \geq \frac{1}{2 \pi} \log \left(1+M^{2}\right)
$$

- Letting $M \rightarrow \infty$ we find that $E(|X|)=\infty$

Moments of the normal distribution

- First, take $k=2 n+1$ for $n \geq 0$. Then,

$$
E\left(X^{k}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{2 n+1} e^{-x^{2} / 2} d x=0
$$

- Now, take $k=2 n$ for $n \geq 1$. Then,

$$
\begin{aligned}
& E\left(X^{k}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2} / 2} d x=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} x^{2 n} e^{-x^{2} / 2} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} z^{n-1} e^{-z / 2} d x
\end{aligned}
$$

with the substitution $z=x^{2}$.

Moments of the normal distribution

- Make another substitution: $u=z / 2$. Then,

$$
E\left(X^{2 n}\right)=\frac{2^{n}}{\sqrt{\pi}} \int_{0}^{\infty} u^{n-1 / 2} e^{-u} d u
$$

and so

$$
E\left(X^{2 n}\right)=\frac{2^{n} \Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi}}
$$

- Using Gamma duplication formula $\Gamma\left(n+\frac{1}{2}\right)=\sqrt{\pi} 2^{1-2 n} \frac{(2 n-1)!}{(n-1)!}$ we have

$$
E\left(X^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}
$$

