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Quantification of genotype-to-phenotype associations is central

to many scientific investigations, yet the ability to obtain

consistent results may be thwarted without appropriate

statistical analyses. Models for association can consider

confounding effects in the materials and complex genetic

interactions. Selecting optimal models enables accurate

evaluation of associations between marker loci and numerous

phenotypes including gene expression. Significant

improvements in QTL discovery via association mapping and

acceleration of breeding cycles through genomic selection are

two successful applications of models using genome-wide

markers. Given recent advances in genotyping and phenotyping

technologies, further refinement of these approaches is needed

to model genetic architecture more accurately and run analyses

in a computationally efficient manner, all while accounting for

false positives and maximizing statistical power.

Addresses
1 University of Illinois, Department of Crop Sciences, Urbana, IL 61801,

USA
2 Michigan State University, Department of Biochemistry and Molecular

Biology, East Lansing, MI 48824, USA
3 Cornell University, Plant Breeding and Genetics Section, School of

Integrative Plant Science, Ithaca, NY 14853, USA
4 Iowa State University, Department of Agronomy, Ames, IA 50011, USA
5 University of Illinois, High Performance Biological Computing Group

and the Carver Biotechnology Center, Urbana, IL 61801, USA
6 United States Department of Agriculture (USDA) – Agricultural

Research Service (ARS), Robert W. Holley Center for Agriculture and

Health, Ithaca, NY 14853, USA

Corresponding author: Lipka, Alexander E (alipka@illinois.edu)

Current Opinion in Plant Biology 2015, 24:110–118

This review comes from a themed issue on Genome studies and

molecular genetics

Edited by Insuk Lee and Todd C Mockler

For a complete overview see the Issue and the Editorial

Available online 17th March 2015

http://dx.doi.org/10.1016/j.pbi.2015.02.010

1369-5266/# 2015 Elsevier Ltd. All rights reserved.

Introduction
The ability to understand the genetic basis of biological

phenomena requires the development and refinement of
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statistical approaches that identify associations between

genetic markers and phenotypes. As genotypic data be-

come easier to obtain, a more complete and complex

landscape of genetic diversity is revealed, requiring more

comprehensive statistical models that have the capacity

to distinguish true biological associations from false posi-

tives arising from population structure and linkage dis-

equilibrium (LD). Applications for the association of

genetic markers with phenotypes have also expanded.

In particular, the development of models predicting

phenotypic values with genome-wide data sets can sig-

nificantly accelerate plant breeding cycles. Although

computationally efficient approaches have been devel-

oped to fit these models, the full potential of such

analytical approaches has yet to be realized.

Genotyping technologies built on next-generation se-

quencing (NGS) have made it possible to obtain an un-

precedented number of genetic markers and have enabled

accurate quantification of gene expression at low cost.

However, NGS has introduced new statistical challenges

that need to be addressed, including consideration of rare

alleles, the increase in computational time, and appropriate

treatment of the multiple testing problem. In this review,

we provide guidelines and suggestions for conducting an

optimal statistical analysis that addresses these issues.

Additionally, we highlight the most promising statistical

approaches that should become more widespread in the

plant genetics research community.

Genome-wide association study (GWAS):
current practices and future perspectives
The two most widely used data sets for studying genetic

variability are those derived from biparental crosses (e.g.

F2 populations or recombinant inbred lines [RILs],

Figure 1a) and those that consist of individuals assembled

with complex relatedness or geographical origin (e.g.

diversity populations, Figure 1b). These two data sets

differ with respect to the number of recombination events

they capture (reviewed in [1��]). While biparental crosses

only exploit recent recombination events that occurred

during the establishment of the population, diversity

populations (also called diversity panels) have captured

all historical recombination events occurring during the

evolution of the sampled individuals. Diversity popula-

tions are typically obtained by collecting as many infor-

mative samples as possible, with the intention that they
www.sciencedirect.com
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Figure 1
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Linkage disequilibrium (LD) plots of squared correlations of allele frequencies (r2, y-axis) against physical distance between SNP sites along maize

chromosome 6 (x-axis) in three populations. Differing in crossing scheme, the populations include: (a) the intermated B73 � Mo17 (IBM)

population, a biparental population designed to increase the frequency of recombinants for improved genetic resolution by successively random

mating the F2 population before selfing to derive intermated recombinant inbred lines (IRILs); (b) a maize diversity population, assembled to

include a broad representation of allelic diversity and historical recombination events; (c) the nested association mapping (NAM) population, a set

of RIL families derived from the common B73 parent and one of 25 different, diverse founder inbred lines, which combines recent and historical
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are representative of the population under study (e.g. [2–
4]). High-density genetic markers are then used to geno-

type the diversity population and to identify significant

associations between marker genotypes and a phenotype

of interest. Because it can be expected that sequences

physically close to the markers are likely to be in LD with

them, the markers need to cover the LD structure of the

genome. In particular, they need to be in strong LD with

the causative variants. For this reason, the design of both

the optimal population and the marker distribution are

both species-specific and population-specific.

It is also possible to create experimental crosses that

utilize both historical and recent recombination events,

for example the nested association mapping (NAM) de-

sign pioneered in maize [5�,6�] (Figure 1c). The NAM

design involves crossing multiple diverse inbred lines to a

common parent, usually a reference with a fully se-

quenced genome (e.g. B73 in maize), that ultimately

yields multiple RIL families which share a common

parent for joint linkage-association mapping of complex

trait variation. This type of mapping population provides

a common metric (i.e. the common parent) against which

alleles from all non-common parents can be compared,

and increases the statistical power for genetic mapping.

On the basis of experience with the US maize NAM

population [5�,7], it is recommended that NAM designs

should allocate resources such that the number of diverse

parents is higher than that in the original design. A larger

number of parents enable the population to capture a

greater number of historical recombination events, result-

ing in a community resource that should achieve a balance

between diversity among parents and adequate sampling

within each cross, thus allowing higher precision and

power in mapping.

It is possible to consider the statistical analyses conducted

in biparental crosses, diversity populations, and NAM

designs as one fundamental approach, namely quantifica-

tion of the associations between genetic markers and a

phenotype. However, while biparental populations have a

clearly defined population makeup defined by the cross-

ing scheme, population structure and relatedness in di-

versity populations (Figure 2a and b) can be important

sources of false signals. For this reason, the basic statisti-

cal model used in a QTL analysis is typically expanded in

a GWAS with covariates for structure and kinship

(reviewed in [8]). There are several approaches that

use genetic markers to quantify the population structure

present in a diversity population, some common ones

being STRUCTURE (a Bayesian clustering approach)
( Figure 1 Legend Continued ) recombination events to maximize statistica

of allelic diversity. Using non-imputed SNP markers from the July 2012 All Z

as r2 between pairs of SNP sites based on 50-site windows along chromos

of r2 (i.e. the LD decay) over two contrasting physical distances, specifically

show that LD decays with increasing physical distance, and with the increa
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[9], principal component analysis (PCA) [10], and a dis-

criminant analysis of principal components (DAPC) [11].

Commonly, covariates from STRUCTURE and principal

components (PCs) from the PCA are included as fixed

effects in the GWAS model to account for population

structure (DAPC is promising but relatively untried for

plant GWAS). Because STRUCTURE and PCA covari-

ates perform roughly equally, we recommend using PCs

to generate covariates as the computational resources

needed for a PCA are much less than for STRUCTURE,

which can be prohibitive for large marker data sets. If the

definition of subpopulations provided by STRUCTURE

is needed but high-performance computing is not avail-

able, DAPC provides a more efficient way to cluster the

individuals. For each tested trait, we recommend con-

ducting a model selection approach (e.g. BIC model

selection available in [12]) to determine the optimal

number of fixed effect covariates needed in the GWAS

model [8].

Particularly in crop systems, germplasm accessions can

often share recent common ancestry, which if not taken

into account can also lead to spurious association signals

(Figure 2b). For this reason, the inclusion of a kinship

matrix into the GWAS model is often more important and

powerful than the inclusion of fixed-effect population

structure covariates for reducing false positives. There

are several approaches available to calculate a kinship

matrix that use marker information to estimate familial

relatedness among the individuals in a diversity popula-

tion. Of these, the approach from [13] is preferred be-

cause it has a biologically relevant interpretation, namely

it uses identity-by-state to estimate identity-by-descent.

Although correction for population structure and kinship

removes a substantial amount of spurious signals in a

GWAS, it must be noted that false positives arising from

population structure may not always be completely con-

trolled, particularly when the genetic divergence between

subpopulations is extensive (e.g. [14]), and that there is

a tremendous loss of statistical power for adaptive traits

that are highly correlated with population structure.

The underlying mixed linear model used to detect

statistical associations in a plant GWAS has remained

unchanged since [15��]. However, many approaches have

been developed since then to reduce the computational

burden of testing the hundreds of thousands of markers in

a typical GWAS (e.g. [16,17]), mainly through efficiently

estimating variance components. Of these, the most

widely used approaches in plant GWAS include

efficient mixed-model association (EMMA) [18], EMMA
l power and mapping resolution while capturing moderate levels

ea GBS Final Build publicly available on Panzea.org, LD is estimated

ome 6. Loess curves (black dotted line) approximate the decrease

 over 1 million bp (main figure) and over 1 thousand bp (inset). Plots

sed number of recombination events.
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Figure 2
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(a) Common sources of association between traits and non-causal alleles in an uncorrected genome-wide association study (GWAS). A diversity

population of wild accessions from two imaginary geographically isolated islands, Abelia and Batania, is used for GWAS on drought tolerance.

Abelia has a dry, arid climate and Batania has a humid climate where fungi are common pathogens. A cartoon subset of this imaginary diversity

population is shown. One allele in the population, A, confers drought tolerance, the cognate allele a does not. At a second, unlinked locus, the

allele B confers fungus resistance, b does not. In the uncorrected GWAS, a false association between the B/b locus and drought tolerance is

observed because of the population structure. The alleles are fixed in both subpopulations, thus association appears as two separate peaks of

comparable significance on the Manhattan plot. Such structure can arise as a result of diversifying selection as well as geographic isolation, and

fixation of the alleles is an extreme case. (b) Imaginary worldwide farmers and breeders have historically cultivated the same species as in (a), and

a germplasm collection of crop varieties from other locations is genotyped. The germplasm collection is used as a diversity population for the

same drought trait. In this case the population is not geographically or otherwise isolated, but many cultivar accessions in the panel are related.

The green box represents a cartoon subset of the panel, and the yellow box a set of related accessions descended from two accessions from

Batania, both with the aB haplotype. Since the progeny of the cross are still fixed at the two loci, and the experimenters do not correct for

kinship, a false association is again seen for allele B/b in the Manhattan plot of the uncorrected GWAS for drought tolerance. (c) A well-mixed

population contains two different loci, C/c (causal) and D/d (non-causal), which are in strong linkage disequilibrium (LD). Consequently, a strong

association between the trait and a broad peak spanning the causal polymorphism at the C/c locus and the linked but non-causal D/d locus is

observed. Because in this case we understand that the peak is attributable to the C/c locus only, the width of the peak suggests that the

resolution of the GWAS is limited by LD. Thus regions or genomes with high LD can both limit resolution and allow discovery of associations using

smaller numbers of markers.

www.sciencedirect.com Current Opinion in Plant Biology 2015, 24:110–118
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eXpedited (EMMAX) [19], population parameters previ-

ously determined (P3D) [20], and the compressed mixed

linear model [20,21]. One predominant factor leading to

the popularity of these approaches is that they are freely

available in easy-to-use software packages including Trait

Analysis by aSSociation, Evolution and Linkage (TAS-

SEL) [22] and Genome Association and Prediction Inte-

grated Tool (GAPIT) [12]. Although there are more

advanced approaches, they are not as widely used in

the plant research community. Of these, the genome-

wide efficient mixed-model association (GEMMA) ap-

proach [23] should become more widely adopted because

it efficiently refits the mixed model at every marker,

resulting in exact estimates of marker effects (rather than

approximate estimates in EMMAX or P3D).

Linkage disequilibrium is fundamentally important to

the use of any GWAS method where the genotyping

does not cover every sequence variant in the genome

(Figure 2c). Nonetheless, LD can hinder the ability to

identify causal variants [24��]. This is also exemplified in

a phenomenon called synthetic associations [25�,26�],
when multiple low-frequency causative variants (i.e. al-

lelic heterogeneity) spanning large distances are associ-

ated with a common variant that is detected in a GWAS.

Unlike other sources of false positives, there is no known

solution to synthetic associations. Moreover, the impact of

synthetic associations is not improved by higher density

marker genotyping methods, and is potentially exacer-

bated in newly developed augmented approaches [27,28]

that simultaneously account for the multiple association

signals underlying a trait. One example of these augment-

ed approaches is the multi-locus mixed model (MLMM)

[27], which conducts stepwise regression to identify mul-

tiple association signals while retaining the fixed and

random effects from the model of [15��] to account for

false positives. Although these models can simultaneous-

ly account for the effects of multiple loci, it is increasingly

thought that epistasis can account for a substantial

amount of ‘missing heritability’ [29], a phenomenon that

is still often cited to show the challenge in dissecting

complex traits [4]. Several new algorithms [30–32] are

making it possible to utilize high-performance computing

to test for two-way epistasis between all pairs of loci. In

the absence of such computational resources, it is possible

to narrow the search down to an a priori set of loci. For

example, it is reasonable to test for two-way epistasis

between all markers in the final model from the MLMM

approach. Finally, the use of multivariate approaches [33]

such as the multivariate linear mixed models (mvLMMs)

[34] and the multi-trait mixed model (MTMM) [35] that

associate genetic markers with several correlated traits

will become crucial as high-throughput phenotyping

approaches (e.g. [36,37]) become more widespread.

Given that a GWAS with optimized statistical power

consists of hundreds to thousands of individual genotypes
Current Opinion in Plant Biology 2015, 24:110–118 
at tens of thousands to several millions of SNP markers, it

should maximize the amount of information gained by

also measuring as many phenotypes as possible. In addi-

tion to standard quantitative traits, gene expression levels

may also be analyzed as phenotypes. The spread of

microarray technology in the early 2000s led to ‘eQTL’

studies looking for associations between thousands of

markers and thousands of gene expression levels

[38��,39]. Thorough reviews of eQTL issues and pitfalls

can be found elsewhere [40–44]. The technology of

choice has changed to direct sequencing of mRNA (i.e.

RNA-Seq) due to known problems with the hybridization

method of arrays [45,46] and the decrease in cost of RNA-

Seq. Nevertheless the total cost of sequencing mRNA

from hundreds to thousands of individuals may still be

prohibitive for most agricultural studies and the thou-

sands of genes tested can make it difficult to find true

associations among all the false positives [47]. Instead,

expression measurements of a targeted subset of genes,

perhaps defined using a pilot RNA-Seq study, are possi-

bly a more accessible option with medium-throughput

qPCR (e.g. Fluidigm). However, regardless of whether

the gene expression measurements come from microar-

rays, RNA-Seq or qPCR, they are no different from any

other phenotype. Thus a GWAS for gene expression

should use the standard statistical models employed in

a typical GWAS (e.g. [15��]) instead of those available in

computational tools designed for an eQTL analysis, many

of which do not account for population structure and

relatedness [48,49].

The ability of a GWAS to identify loci associated with a

phenotype will depend on the sample size and marker

density. However even with sufficient marker density, it

may not be possible to tag all possible sources of genetic

variation present in a species using only SNPs. Thus, one

major challenge with a GWAS is the marker technology

itself; markers capable of tagging copy number variation,

epigenetic variation, and transposons need to become

further developed and more widely incorporated into

the GWAS model. Although the inclusion of such markers

could result in the identification of more loci, it may be

nearly impossible to locate causal polymorphisms proxi-

mal to centromeres or other regions of recombination

suppression or greater than expected LD. Another major

issue limiting the ability of a GWAS to identify loci is the

stringent correction of the multiple testing problem,

which arises because of the number of markers that are

tested [50]. To address this issue, some studies have

augmented their GWAS with a targeted approach that

tests only markers located within genomic regions proxi-

mal to an a priori set of candidate genes with subtle

effects likely to control variation for studied phenotypes

[51]. It is possible to obtain this set using either QTL

from previous studies (e.g. [52,53]) or through grouping

genes together using a function or network analysis (e.g.

[54,55]). In addition to the marker data, an important
www.sciencedirect.com
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factor contributing to the detection of loci in a GWAS is

the ability to reduce variation in phenotypic data attrib-

utable to non-genetic components. The inclusion of more

replications, more environments, and the use of optimal

laboratory techniques typically result in the reduction of

this source of variation. Finally, it is important to recog-

nize that the models used in a GWAS have assumptions

that need to be met. If they are not, alternate statistical

models (e.g. negative binomial regression model) or al-

ternate approaches to identify genomic regions associated

with a trait (e.g. a meta analysis) may be considered.

While some statistical barriers may have existing, straight-

forward solutions, collaboration with biostatisticians dur-

ing the entire course of the study may ensure that the

most appropriate statistical analysis is being conducted.

Genomic selection to improve plant breeding
practices
One of the most exciting new approaches is genomic

selection (GS) [56�,57�], which uses statistical models to

predict which individuals will have optimal phenotypes

based on marker data. This approach holds great promise

for plant breeding efforts because it can theoretically

achieve multiple cycles of selection in the amount of

time required to complete one cycle using phenotype-

based selection approaches [58�,59�]. In contrast to the

statistical models typically used in a GWAS, GS models

include all genome-wide markers that pass quality control

standards. Thus GS models use both large-effect and

small-effect loci to predict genomic estimated breeding

values. Given the number of markers ( p) and sample size

(n) in a typical diversity population, GS models usually

have more predictors than the sample size (a p � n
model), resulting in an infinite number of possible marker

effect estimates [60�]. To address this, a multitude of

frequentist and Bayesian penalized regression approaches

have been evaluated for GS. Two recent reviews com-

prehensively summarize most of the statistical models

that have been assessed for GS, the general guidelines for

reporting results, and how to accurately quantify predic-

tion accuracies [61��,62��]. In practice, most statistical

models in GS produce prediction accuracies that are

relatively indistinguishable from one another [63�].
Therefore we recommend using the RR-BLUP model

[56�,64] because it is one of the most computationally

efficient approaches and is implemented in an R package,

rrBLUP [65]. Some practical considerations for GS breed-

ing programs include the selection of an optimal training

population for fitting the initial GS model and the need to

refit the GS model after several generations of selection to

account for changes in allele frequencies, LD, and popu-

lation structure [59�,66�]. Ultimately, GS has the poten-

tial to complement phenotypic selection by allowing

breeders to select for traits that are difficult to phenotype

and to accomplish selection cycles in non-adaptive

environments such as winter nurseries.
www.sciencedirect.com 
Maximizing genomic information from latest
sequencing technologies
The advent of NGS has made it possible to affordably

obtain markers with genome-wide coverage using tech-

niques as appropriate including genotyping-by-sequenc-

ing (GBS) [67�], restriction site associated DNA

sequencing (RAD-seq) [68], target region resequencing

or whole-genome resequencing from any species. Previ-

ously, markers for a GWAS were obtained through high-

density SNP arrays such as diversity array technology

(DArT) [69], Illumina Infinium or Affymetrix, which still

dominate human studies but are being replaced by NGS

for most plant studies. Given an appropriate experimental

design, it is reasonable to assume that a GWAS will detect

genetic signals associated with a heritable trait controlled

by several large-effect loci. The number of genetic mar-

kers needed to achieve this goal depends on many spe-

cies-specific and experiment-specific factors, the most

important being genome size, rate of LD decay, and

magnitude of the QTL effect. An ideal data set in the

perfect world would include every polymorphism in the

genome as a marker and include enough individuals to

enable identification of causal mutations of every gene

responsible for the variation of a given trait. While marker

coverage is a major experimental consideration, the short-

comings of available sequencing technologies providing

marker data points is an equally important concern. In

general, NGS-based approaches yield more markers

than DArT or SNP arrays; however, NGS-derived

markers tend to have higher missing rates, especially

for technologies such as GBS or RAD-seq. Array-based

techniques such as DArT and Illumina use only a subset

of the individuals, often not those being studied, to obtain

polymorphisms fixed on the array and can thus be subject

to severe ascertainment bias. Such bias results in overes-

timation of the divergence between individuals that are

genetically similar to those used to obtain the markers.

Another important factor is the availability of reference

genomes in the species under study. A single reference

genome also results in ascertainment bias in the markers,

with lines most related to the reference genome typically

having the lowest missing rate. A reference genome is

required for imputation approaches for which marker

order must be known (e.g. Beagle4 [70] and fast inbred

line library imputation [FILLIN] [71]). Challenges

remain with imputation techniques, for example distin-

guishing between missing data for biological reasons

(e.g. presence/absence variation) and those arising from

sampling variation.

One crucial aspect that needs to be studied more thor-

oughly is the contribution of rare alleles to complex trait

variation [72]. All markers below a certain minor allele

frequency (MAF) threshold are typically removed

because most of the approaches used in a GWAS are

not appropriate for analyzing them. As such, it becomes

nearly impossible to assess the contribution of rare
Current Opinion in Plant Biology 2015, 24:110–118
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variants to phenotypic variation using traditional

approaches outside of creating a biparental cross that

segregates for the rare variant (thus rendering it common

in the population under study). However, improvements

in genotyping technologies and decreases in sequencing

costs have resulted in diversity populations with excep-

tionally large sample sizes, providing the ability to

include markers with lower MAFs in statistical analysis.

Coupled with new statistical approaches specifically

designed to study rare alleles [72], it is anticipated that

future association studies could further elucidate the

effects of rare variants on phenotypic variation.

Concluding remarks
The current statistical approaches that associate genetic

markers to phenotypes are sufficient to identify genomic

signals of moderate to large effect and predict phenotypic

values accurately enough for GS to make significant

genetic gains in plant breeding programs. However,

current studies usually lack the statistical power and

mapping resolution to detect causative variants control-

ling a trait and could be prone to false positives. It is

therefore important to understand the shortcomings of

these approaches and to identify potential sources of

limitations, especially with respect to NGS technologies.

Continued improvement of these statistical approaches

will enable the modeling of biological phenomena to

be more accurate and will result in implementations that

are more computationally efficient and available in

software that produces easily interpretable results. The

technology for genotype and phenotype data collection is

also progressing extremely fast, and statistical approaches

must constantly be developed and adapted to use the

latest technologies. To ensure that these goals are real-

ized, it is critical that researchers working in our field

continue to work together in an interdisciplinary envi-

ronment.
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