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How does the brain represent visual information 
from the outside world? Here, we approach this 
question with a deep convolutional neural network 
that mimics neuronal circuitry and coding, and 
learns to solve computer vision tasks. Using this 
network as a computational model of the visual cor-
tex, we develop novel encoding and decoding mod-
els to describe the bi-directional relationships be-
tween visual input and cortical activity measured 
with functional magnetic resonance imaging. Test-
ing these models with imaging data from humans 
watching natural movies, we show that the encod-
ing model can predict cortical responses and re-
trieve visual representations at individual brain lo-
cations, and that the decoding model can decipher 
the measured cortical activity to reconstruct the 
visual and semantic experiences. Both the encod-
ing and decoding models utilize cortical representa-
tions of hierarchical, invariant, and nonlinear visual 
features. Being self-contained, efficient, and gener-
alizable, these models constitute a computational 
workbench for high-throughput investigation of all 
stages of visual processing. We also anticipate that 
the general strategy for neural encoding and decod-
ing via deep-learning models will be applicable to 
other sensory or cognitive experiences, e.g. 
speech, imagery, memories and dreams.  
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Significance Statement: this study brings major advances in 
encoding and decoding cortical activity that supports human 
natural vision. For encoding, we demonstrate the unique 
promise of using deep learning to model and visualize the 
functional representations at the level of single cortical loca-
tions along the entire visual pathway, and to create a compu-
tational workbench for high-throughput vision research. For 
decoding, we present a stand-alone, efficient, reliable, and 
generalizable strategy to decode cortical fMRI activity to 
directly reconstruct the visual and semantic experiences dur-
ing natural vision. These unique capabilities highlight a prom-
ising emerging direction of using the artificial brain to under-
stand the biological brain.  

Introduction 
For centuries philosophers and scientists have tried to 
speculate, observe, understand, and eventually decode 

the workings of the brain that enables the human natu-
ral vision. The central questions are how the brain rep-
resents visual information from the outside world, and 
whether one may decode brain activity to reconstruct 
what a person is seeing. These questions, generally 
known as neural encoding and decoding, have been 
mostly approached with overly simplified strategies that 
use artificial patterns or static pictures as visual stimuli. 
However, it remains largely unknown how dynamic and 
realistic visual experiences are represented along the 
entire visual pathway. What is needed is an alternative 
strategy that embraces the complexity of vision to fully 
uncover and decode the visual representations of dis-
tributed cortical activity.  

Despite its diversity and complexity, the visual world is 
composed of a finite number of hierarchical and invari-
ant visual features (Zeiler and Fergus, 2014; LeCun et 
al., 2015; Russ and Leopold, 2015), including those in 
the low-level visual space (e.g. orientation and color), 
the middle levels (e.g. shape and texture), and the high-
level semantic space (e.g. face and house). In the brain, 
these features emerge from cascaded stages of visual 
processing (Felleman and Van Essen, 1991; Dicarlo et 
al., 2012; Russakovsky et al., 2015) via complex neural 
circuits. To decipher natural vision, a more effective 
strategy is to identify and decode neural representations 
of visual features at all levels, rather than attempting to 
relate brain activity to infinite pixel combinations. In 
this regard, we model neural representations using visu-
al features extracted by brain-inspired deep learning 
(LeCun et al., 2015): a class of deep artificial neural 
networks trained to emulate or surpass human perfor-
mance in computer-vision tasks (Russakovsky et al., 
2015). Recent studies also show that such network 
models are well aligned to and predictive of cascaded 
cortical processes underlying visual perception (Kha-
ligh-Razavi and Kriegeskorte, 2014; Yamins et al., 
2014; Güçlü and van Gervan, 2015a,b; Cichy et al., 
2016). In addition, the model is fully observable and 
computable both forward and backward (Zeiler and 
Fergus, 2014), such that the extracted features can be 
transformed, either top-down or bottom-up, to visualize 
their internal representations, to reconstruct the visual 
input, as well as to deduce its semantic categorization. 



 

Here, we explore this new strategy for encoding and 
decoding natural vision. We acquired functional mag-
netic resonance imaging (fMRI) data from three healthy 
subjects watching natural movies with their eyes fixated 
at the screen center. The stimuli included two different 
sets of video clips: one for training the encoding and 
decoding models, and the other for testing them. Our 
goals were 1) to develop the encoding model to predict 
fMRI responses and retrieve visual representations at 
individual cortical locations, and 2) to develop the de-
coding model to reconstruct the visual and semantic 
experiences based on fMRI activity. Towards these 
goals, we used a deep convolutional neural network 
(CNN) (Krizhevsky et al., 2012) as a fully accessible 
model of the human visual cortex. For encoding, the 
CNN-extracted visual features were projected onto cor-
tical activity; for decoding, cortical activity was con-
verted to image and semantic feature representations. 
Fig. 1 illustrates our encoding and decoding strategy. 

Materials and Methods 
Experiments. Three healthy volunteers (female, age: 
22-25) watched natural color video clips (20.3o×20.3o) 
with a central fixation cross (0.8o×0.8o).  All subjects 

were healthy volunteers with normal vision. Informed 
written consent was obtained from every subject ac-
cording to the research protocol approved by the Insti-
tutional Review Board at Purdue University. In total 
276 video clips were included in a 2.4-hour training 
movie, randomly split into 18 8-min segments; 38 dif-
ferent video clips were included in an 8-min testing 
movie. Each subject watched the training movie twice 
and the testing movie ten times with their eyes fixated 
to a central cross. Experiments were done during sever-
al days in ~2 weeks; each day included multiple ses-
sions; in each session, an 8-min movie segment was 
presented as the visual stimulation. The order of the 
movie segments was random and counter-balanced 
across subjects.  

Visual stimuli were delivered through a goggle system 
(NordicNeuroLab NNL Visual System). The display 
resolution was 800×600. The stimulus presentation was 
controlled by using Psychophysics Toolbox 3 
(http://psychtoolbox.org). The movies were displayed 
on a black background and scaled to 600×600 pixel 
arrays.  

					 	
 
Figure. 1. Neural encoding and decoding through a deep learning model. When a person is seeing a film (a), information is 
processed through a cascade of cortical areas (b), generating fMRI activity patterns (c). A deep convolutional neural network is 
used here to model cortical visual processing (d). This model transforms every movie frame into multiple layers of features, 
ranging from orientations and colors in the visual space (the 1st layer) to object categories in the semantic space (the 8th layer). For 
encoding, this network serves to model the nonlinear relationship between the movie stimuli and the response at each cortical 
location. For decoding, cortical responses are combined across locations to estimate the feature outputs from the 1st and 8th layer. 
The former is deconvolved to reconstruct every movie frame, while the latter outputs the semantic descriptions.  
	



 

Data Acquisition and Preprocessing. T1 and T2-
weighted MRI and fMRI data were acquired in a 3 tesla 
MRI system (Signa HDx, General Electric, Milwaukee) 
with a 16-channel receive-only phase-array surface coil 
(NOVA Medical, Wilmington). The fMRI data were 
acquired at 3.5-mm isotropic spatial resolution and 2-s 
temporal resolution by using a single-shot, gradient-
recalled echo-planar imaging sequence (38 interleaved 
axial slices with 3.5 mm thickness and 3.5×3.5 mm2 in-
plane resolution, TR/TE=2000/35ms, flip angle=78°, 
field of view=22×22 cm2). All fMRI images were co-
registered, preprocessed, and transformed onto the cor-
tical surfaces by using the processing pipeline devel-
oped for the Human Connectome Project, as described 
in (Glasser et al., 2013). When training and testing the 
encoding and decoding models (as described later), the 
cortical fMRI signals were averaged over multiple repe-
titions of the same movie segment: two repetitions for 
the training movie and 10 repetitions for the testing 
movie. 

Convolutional Neural Network (CNN). We used a 
deep CNN (also known as the AlexNet) as a model of 
the visual cortex to extract hierarchical visual features 
from the movie stimuli. This model has been pre-
trained to achieve the best-performing object recogni-
tion in Large Scale Visual Recognition Challenge 2012 
(Krizhevsky et al., 2012). This CNN includes eight lay-
ers of artificial neurons stacked into a hierarchical ar-
chitecture: the first five are convolutional layers, and 
the last three layers are fully connected for object clas-
sification. In each convolutional layer, artificial neurons 
encode a number of features, each of which represents a 
kernel convolved over its inputs. Layer 1 through 5 
consists of 96, 256, 384, 384, and 256 kernels, respec-
tively. Each convolutional layer is composed of some 
or all of the following four stages: linear filtering, non-
linear transformation, max-pooling, and divisive nor-
malization. For classification, layer 6 and 7 are fully 
connected networks with a rectified linear threshold; 
layer 8 uses a softmax function to output a vector of 
probabilities by which the input image belongs to indi-
vidual categories. The numbers of artificial neurons in 
layer 6 to 8 are 4096, 4096, and 15.  

Unlike the original model, we reduced the number of 
neurons in the output layer from 1000 to 15. The modi-
fied categories were indoor, outdoor, people, face, bird, 
insect, water animal, land animal, flower, fruit, natural 
scene, car, airplane, ship, exercise. We retrained the last 
classification layer to have achieved a top-1 test error 
rate of 14.8%. The retraining images were a subset of 
ImageNet with ~22,500 training images and 3,000 test-
ing images within the 15 categories. The parameters 
were optimized using gradient descent with weight de-
cay to minimize the multinomial classification error.  

Passing a natural image into the CNN yields an activa-
tion value from each artificial neuron; the artificial neu-
rons with a same kernel collectively output a feature 
map. In this study, we extracted the time-varying fea-
ture maps by passing all movie segments frame by 
frame into the CNN. 

Mapping cortical activations with natural movie 
stimuli. Each segment of the training movie was pre-
sented twice to each subject. To find all cortical loca-
tions activated by such natural stimuli, for each voxel 
we computed the cross correlation between the fMRI 
voxel time series when each subject watched the same 
movie segment for the first vs. second time. The corre-
lation coefficient was converted to a z score by using 
the Fisher z-transformation. The voxel-wise z scores 
were averaged across all 18 segments and tested for 
significance by using one-sample t-test (p<0.01, 
DOF=17, Bonferroni correction for the total number of 
voxels). This average z-map reported the intra-subject 
reproducibility of fMRI activity during the training 
movie, reporting the movie-evoked cortical activation. 
Next, the intra-subject reproducibility maps were aver-
aged across the three subjects in this study. This result-
ed in an averaged activation map in response to the 
training movie. From this map, we created a cortical 
mask to include all significantly activated locations, 
where the significance was assessed with one-sample t-
test on all sessions and all subjects with p<0.01, 
DOF=17, Bonferroni correction for the total number of 
voxels. We slightly expanded it for broader applicabil-
ity to the general population and other natural visual 
stimuli. The cortical mask contained 10214 voxels in 
the visual cortex, covering 17.2% of the whole cortical 
surface.  

Preprocessing the CNN outputs. In this study, we 
compared and related the CNN outputs to cortical fMRI 
responses, and vice versa. To account for the statistical, 
timing, and sampling differences between them, we 
preprocessed the CNN outputs in the following ways. 
First, all activation time series were logarithmically 
transformed to match the statistical distribution of the 
fMRI signals. Second, the log-transformed activation 
time series were temporally convolved with a canonical 
hemodynamic response function (HRF) with a positive 
peak at 4s to account for the hemodynamic delay of the 
fMRI signal. Lastly, the activation time series was 
down-sampled to match the timing of fMRI.  

Retinotopic mapping. As artificial neurons at the first 
layer in CNN have well-defined receptive fields and 
encode local image features, we hypothesize that their 
activation time series are well aligned with the fMRI 
signals at early retinotopic visual areas. To test this 
hypothesis, we computed the cross correlation between 
the fMRI signal at each cortical location and the activa-



 

tion time series of every artificial neuron in the first 
CNN layer in response to the training movie. 

For a given cortical location, its cross correlations with 
the first layer in CNN formed a 3-D array: two dimen-
sions corresponding to the visual field, and the third 
dimension corresponding to different local image fea-
tures. This array represented the simultaneous tuning of 
the fMRI response by retinotopy, orientation, color, and 
contrast etc. We reduced the 3-D correlation array into 
a 2-D correlation matrix by taking the maximal correla-
tion across different visual features encoded by the first 
layer of CNN. The resulting correlation matrix depend-
ed only on retinotopy, and reported the population re-
ceptive field of the given cortical location. The recep-
tive-field center was determined by calculating the cen-
ter of the locations with the highest 20 correlation val-
ues. The polar angle and the eccentricity of the recep-
tive-field center were quantified for every location on 
the visual cortex. We compared this retinotopic repre-
sentation with the visual-field maps obtained with con-
ventional retinotopic mapping, as previously reported in 
elsewhere (Abdollahi et al., 2014). 

Hierarchical mapping. As visual information is pro-
cessed through multiple cascaded stages in both the 
CNN and the visual cortex, we hypothesize that differ-
ent layers in the CNN may be functionally aligned with 
different regions on the cortex. To test this hypothesis, 
we computed the cross correlations between the fMRI 
signal at each cortical location and the activation time 
series of every artificial neuron at each layer in the 
CNN. For a given cortical location, we calculated the 
maximal cross correlation between the fMRI signal and 
the activation time series from each layer in the CNN. 
This maximal cross correlation measured the functional 
alignment between the given cortical location and each 
CNN layer. Then we identified one layer with the best 
alignment (i.e. the highest maximal cross-correlation), 
and assigned its layer index to the given cortical loca-
tion. The assigned layer index indicated the feed-
forward processing stage in which the given cortical 
location was involved. The cortical distribution of the 
assigned layer index shows the putative hierarchical 
mapping of the human visual system.  

Mapping fusiform face areas. To explore the func-
tional alignment between the downstream areas and the 
object categories encoded by layer 8 in the CNN, we 
examined the cortical fMRI correlates to the “face”-
encoding neuron in the CNN. Because the fusiform face 
area (FFA) is well recognized for face recognition 

(Johnson, 2005), we hypothesize that the “face” neuron 
in the CNN is functionally aligned to the FFA. To test 
this hypothesis, we computed the cross correlation be-
tween the activation time series of the “face” neuron 
and the fMRI signal at every cortical location in re-

sponse to each segment of the training movie. The cor-
relation coefficients were transformed to z scores by 
Fisher z-transformation, and then averaged across all 
movie segments. One-sample t-test was used to evalu-
ate the statistical significance of the average cross cor-
relation against zero (p<0.01, DOF=17, Bonferroni 
correction for the number of voxels).  

Encoding: predicting cortical responses to natural 
visual stimuli. Here, we built voxel-wise encoding 
models to predict and understand cortical responses to 
natural visual stimuli. The encoding model included 
two parts: the first part was used to extract nonlinear 
stimulus features based on the CNN; the second part 
was a linear regression model to project the nonlinear 
feature representations to the fMRI voxel response. For 
each cortical location, we sought one layer in the CNN 
where the feature representations could best predict the 
fMRI response through a linear regression model. In the 
following, we elaborated the procedures to select and 
estimate the voxel-wise encoding model.  

Given a voxel 𝑣, we built a linear regression model to 
predict the voxel response 𝒙 based on the l-th layer in 
the CNN. To simplify the model, we defined the predic-
tors as the outputs from a subset of artificial neurons 
whose correlations with the given voxel exceeded the 
half of the maximal correlation within this layer. This 
model is described as Eq. (1). 

𝒙! = 𝐘!𝒘!
! + 𝝐             (1) 

Here, 𝐘! stands for the predictors from the l-th layer. It 
is an n-by-(p+1) matrix, where n is the number of time 
points, p is the number of selected artificial neurons; the 
last column of 𝐘! is a constant vector with all elements 
equal to 1. 𝒘!

!  stands for the regression coefficients. It 
is a (p+1)-by-1 vector with the last element represent-
ing the bias term. 𝝐 is the error term. For the model 
estimation, we used the least-squares estimation with 
L2 regularization. That is, to minimize the cost function 
in Eq. (2). 

𝑓 𝒘!
! = 𝒙! − 𝐘!𝒘!

!
!
! + 𝜆!! 𝒘!

!
!
!          (2) 

Here, the first term is the sum of squared errors, and the 
second term is the L2 regularizer imposed on the un-
known elements of 𝒘!

!  except the bias component. The 
regularization parameter 𝜆 and the layer index l were 
both optimized through a 3-fold cross-validation. Brief-
ly, the training data were equally split into three sub-
sets: two for the model estimation, one for the model 
validation. The validation was repeated three times in 
order for each subset to be used once for validation. 
The optimal parameters 𝜆 and l were determined as 
those that gave rise to the highest cross-validation accu-
racy. With the optimal 𝜆 and l, we refitted the model 



 

using the entire training samples to finalize the voxel-
wise encoding model.  

To test the encoding model, we evaluated the prediction 
accuracy given the testing movie as the stimuli. Here 
the accuracy was measured as the cross-correlation be-
tween the measured and predicted cortical activity. The 
significance of the cross correlation was assessed by 
calculating the p-value with the degree of freedom 
equal to the number of time points minus 2 (DOF=238, 
p<0.001, Bonferroni correction for the number of 
voxels). After evaluating the predictability for each 
subject, we also compared and averaged the results 
across subjects.  

Deconvolutional neural network (De-CNN). In addi-
tion to the CNN, we also used the De-CNN to project 
any feature representation onto the pixel space. As de-
scribed in details elsewhere (Zeiler and Fergus, 2014), 
the De-CNN reverses the operations done by CNN. 
Specifically, the activations of one or multiple neurons 
are successively unpooled, rectified, and filtered onto 
its lower layer, until reaching the input image space. 
The unpooling step is optional, only applicable to the 
layers that implement max-pooling. Rectification is 
conducted as point-wise rectified linear threshold at 0. 
The filtering step is done by applying the transposed 
version of the kernels in the CNN to the rectified acti-
vations from the immediate higher layer. Neither recti-
fication nor filtering is conditional upon the visual in-
put, whereas the unpooling step is conditional upon the 
input image. When a visual input is given, we can visu-
alize the internal feature presentation of any neuron of 
interest by following the deconvolution procedure start-
ing from the selected neuron, while setting the outputs 
of all other neurons to zeros. In this study, we imple-
mented the De-CNN using the Caffe Deep Learning 
framework (Jia et al., 2014).  

Encoding: visualizing cortical representations at 
individual voxels. Using the De-CNN as a top-down 
computational pathway, we visualized the functional 
representation of a single-voxel response according to 
the voxel’s encoding model. For a given cortical loca-
tion, the regression coefficients in its encoding model 
were used as the exponents, to the power of which the 
outputs of corresponding artificial neurons were raised, 
yielding an exponentially weighted distribution of non-
linear features. Using the De-CNN, such a weighted 
feature distribution was projected back to image pixels, 
giving rise to the visualization of the voxel response. 
Here, the exponential weighting was used to approxi-
mately reverse the linear combination of log-
transformed feature representations implemented 
through the voxel-specific encoding model.  

We further extended the visualization to visualize the 
general functional representation, unbiased by any par-

ticular input, for any given cortical location. For this 
purpose, we uniformly and randomly sampled 20,400 
images of 17 categories (face, cat, insect, indoor furni-
ture, device, bird, outdoor, food, artifact, plant, car, 
building, fungus, dog, natural scene, airplane, water-
animal) from ImageNet. All these images were different 
from the dataset that we used to train and test the CNN, 
and they were also different from any frame in the mov-
ies that we used to train or test the encoding models. To 
explore this visualization technique, we selected a voxel 
at the FFA, and predicted the voxel response to each of 
the sampled images. The resulting responses were visu-
alized individually, excluding the negative responses, 
and then averaged to yield a general visualization for 
the function at the selected voxel. We checked the top 
1000 images with the highest predicted voxel respons-
es. Among them, we calculated the percentage of hu-
man faces and assessed the significance by using a bi-
nomial test against the null hypothesis that the top 
1,000 images were uniformly random. 

Decoding: reconstruct natural movie stimuli. With 
the training movie, we estimated multivariate regres-
sion models to predict time-varying feature maps of the 
1st CNN layer based on distributed cortical fMRI sig-
nals. Separate models were trained to estimate the fea-
ture maps extracted with different kernels encoded in 
the 1st layer. For each kernel, a linear model was de-
fined to link the distributed fMRI signals to the output 
time series of artificial neurons in the CNN, expressed 
as Eq. (3).  

𝐘 = 𝐗𝐖 + 𝝐     (3) 

Here, 𝐗 stands for the observed fMRI signals within the 
visual cortex. It is an n-by-(m+1) matrix, where n is the 
number of time points, m is the number of voxels; the 
last column of 𝐗 is a constant vector with all elements 
equal to 1. 𝐘 stands for time-varying feature maps. It 
was an n-by-p matrix, where n is the number of time 
points, and p is the number of artificial neurons that 
encode the given kernel. 𝐖 is the unknown weighting 
matrix in the model. It is an (m+1)-by-p matrix with the 
last row representing the bias component. 𝛜 is the error 
term.  

To estimate the model, we set out to optimize 𝐖 to 
minimize the objective function, as Eq. (4). 

𝑓 𝐖 = 𝐘 − 𝐗𝐖 !
! + 𝜆 𝐖 !

!       (4) 

Here, the first term is the sum of squares of the estima-
tion errors; the second term represents L1 regularizer 
imposed on the unknown elements of 𝐖 except the bias 
component; 𝜆 is the hyperparameter balancing these 
two terms.  

The model estimation was based on the data collected 
with the training movie. 𝜆 was determined by 20-fold 



 

cross-validation, similar to the procedures used for 
training the encoding models. For training, we used 
stochastic gradient descent optimization with the batch 
size of 100 samples, i.e. only 100 fMRI volumes were 
utilized in each iteration of training. To address overfit-
ting problem, dropout technique was used by randomly 
dropping 30% of voxels in every iteration, i.e. setting 
the dropped voxels to zeros. After we estimated the 
model for every kernel encoded in the first layer of 
CNN, the model was directly applied to the fMRI re-
sponses to the testing movie to predict the feature maps 
of every testing-movie frame, according to Eq. (3) 
without the error term. The predicted feature maps were 
further exponentially transformed to reverse the loga-
rithmic transformation.  

To initially evaluate the performance of the trained de-
coding models, we conducted 20-fold cross-validation 
within the training data. The estimation accuracy of the 
feature map with each kernel was quantified as the 
cross correlation between the feature maps extracted 
from CNN and the feature maps estimated from the 
fMRI signals. The validation accuracy of a kernel was 
then calculated by averaging the accuracy across re-
peated validations. Those kernels with low cross-
validation accuracy (r < 0.24) were excluded in subse-
quent analyses. 45 kernels were kept for decoding. 
Those excluded kernels encoded the ‘noisy’ features 
and color features. 

For the 45 kernels selected from cross-validation, we 
predicted the feature maps of the testing movie based 
on cortical fMRI responses. For each kernel, the predic-
tion accuracy was quantified as the cross correlation 
between the fMRI-predicted feature map and that ex-
tracted by CNN. The prediction accuracy was averaged 
across the 45 kernels. To test the statistical significance 
of the average prediction accuracy, we performed a 
permutation test. From the fMRI-estimated feature 
maps, a large set of permuted feature maps were created 
by randomly and temporally shuffling the estimated 
feature maps for 10000 times. The cross correlations 
between the permuted feature maps and the true feature 
maps were calculated and transformed to z scores by 
using the Fisher’s r-to-z transformation. This gave rise 
to a permutation distribution, against which the z-
transformed prediction accuracy was compared for sig-
nificance (p<0.01).  

To reconstruct the testing movie frame by frame, the 
estimated feature maps were deconvolved from the fea-
ture space to the pixel space. In the deconvolution step, 
the transposed version of a kernel in the first layer was 
used to convolute its corresponding feature map, result-
ing a deconvolved image. Such deconvolved images 
from all kernels were then summed up to generate the 
reconstructed movie frame. Note that such deconvolu-

tion procedure starting from layer 1 to image pixel 
space only involved in rectification and filtering steps 
(without unpooling), which was not conditional on the 
visual stimuli. Therefore, such reconstruction yielded 
an unbiased reconstruction of the unknown visual expe-
riences. 

Decoding: semantic categorization. We built and 
trained a decoding model to categorize each frame of 
the testing movie based on cortical fMRI responses. 
The model was a softmax regression model that esti-
mated the probabilities of 15 object categories from the 
observed fMRI responses as shown in Eq. (5). 

𝑝! =
!"# 𝒘!𝒙!!!
!"# 𝒘!𝒙!!!!

!!!
       (5) 

Here, 𝒙 is a vector of cortical fMRI responses 
(𝒙 = 𝑥!,… , 𝑥! !, 𝑚 is the number of cortical loca-
tions). 𝑝! is the probability of the j-th category. 𝒘! is a 
vector of weights used to combine cortical fMRI re-
sponses towards predicting 𝑝!; 𝑏! is the corresponding 
bias term; 𝑐 is the total number of categories (i.e. c=15). 

To train this model, we used CNN to categorize every 
frame of the training movie, yielding a sample of the 
true probability of each j-th category, denoted as 𝑞!. 
The decoding model in Eq. (5) was optimized to max-
imize the mutual information between the probabilities 
extracted from CNN and the probabilities predicted 
from fMRI. That is, to minimize the objective function 
expressed as Eq. (6). 

𝐽 𝒘!,⋯,! , 𝑏!,⋯,! = − 𝑞!𝑙𝑜𝑔
!"# 𝒘!𝒙!!!
!"# 𝒘!𝒙!!!!

!!!

!
!!! + 𝜆 𝒘!!

!!!       
(6) 

Here, the second term of the objective function was the 
L1 regularization, and the hyperparameter 𝜆 was deter-
mined by 20-fold cross-validation.  

After we estimated the model with the training data, we 
applied the model to cortical fMRI responses to the 
testing movie. This gave rise to the probability of each 
testing-movie frame belonging to each of the 15 object 
categories. The top 5 categories with the highest proba-
bilities were identified, and their labels were used as the 
frame-by-frame semantic descriptions of the recon-
structed testing movie, to facilitate its interpretation.  

To evaluate the fMRI-based visual categorization, we 
used top-1 through top-3 prediction accuracy. Specifi-
cally, for each given movie frame, we ranked the object 
categories in a descending order of the predicted proba-
bilities. If the true object category was the top 1 of the 
ranked categories, it was considered to be top-1 accu-
rate. If the true object category was the top 2 of the 
ranked categories, it was considered to be top-2 accu-
rate; so on and so forth. The percentage of top-1/top-
2/top-3 accurate frames was used to quantify the predic-



 

tion accuracy. The significance of the prediction accu-
racy was assessed by one-tail binomial test against the 
hypothesis that the prediction accuracy was an accuracy 
of random guesses according to the frequencies of ob-
ject categories in the training data, while the chance 
performance was the expected accuracy of random 
guesses.   

Cross-subject encoding & decoding. To demonstrate 
the feasibility of developing encoders and decoders 
general to different subjects, we first evaluated the in-
ter-subject reproducibility of the fMRI responses to the 
same natural movie stimuli across individuals. For each 
movie segment, we calculated the voxel-wise cross 
correlation of the fMRI signals between every pair of 
subjects. The cross-subject reproducibility was obtained 
by averaging the z-transformed cross correlations 
across all movie segments. To further obtain the overall 
reproducibility, we averaged the cross correlation 
across all pairs of subjects. The statistical significance 
of the reproducibility against zeros was assessed by 
using one-sample t-test with the degree of freedom as 

the total number of segments minus 1 (DOF=17, Bon-
ferroni correction for the number of voxels, and 
p<0.01). The cross-subject reproducible cortical loca-
tions were very consistent with the defined visual cor-
tex, occupying 82% of the locations within visual cor-
tex (p<0.01, t-test, Bonferroni correction).  

For cross-subject encoding, we evaluated the inter-
subject predictability of the fMRI responses to a novel 
natural movie stimulus across individuals. Specifically, 
we used the encoding models optimized for one subject 
to predict the cortical fMRI responses for other subjects 
respectively, and summarized individual cross-subject 
predictability maps. The prediction accuracy was quan-
tified as the cross correlation between predicted fMRI 
response and the measured fMRI response.  The signif-
icance of the cross correlation was assessed by calculat-
ing the p-value with the degree of freedom equal to the 
number of time points minus 2 (DOF=238 with Bonfer-
roni correction to account for the number of voxels and 
p<0.001). Then we averaged all the individual maps to 
produce a general cross-subject predictability map. 

	

 
Figure. 2. Functional alignment between the 
visual cortex and the CNN during natural 
vision (a) Cortical activation. The maps show 
the cross correlations between the fMRI signals 
obtained during two repetitions of the identical 
movie stimuli. (b) Retinotopic mapping. Corti-
cal representations of the polar angle (left) and 
eccentricity (right), quantified for the receptive-
field center of every cortical location, are shown 
on the flattened cortical surfaces. The bottom 
insets show the receptive fields of two example 
locations from V1 (right) and V3 (left). The 
V1/V2/V3 borders defined from conventional 
retinotopic mapping are overlaid for compari-
son. (c) Hierarchical mapping. The map 
shows the index to the CNN layer most corre-
lated with every cortical location. For three ex-
ample locations (𝛼, 𝛽, 𝛾), their correlations with 
different CNN layers are displayed in the bottom 
plots. (d) Co-activation of FFA and the 
“Face” neuron. The maps on the right show 
the cross correlations between cortical activity 
and the output time series of the “Face” neuron 
in the 8th layer of CNN. On the left, the fMRI 
signal at a single voxel within the FFA is shown 
in comparison with the activation time series of 
the “Face” neuron. Movie frames are displayed 
at five peaks co-occurring in both time series. 

	



 

For cross-subject decoding, we used the decoders 
trained from one subject’s data to decode another sub-
ject’s fMRI data for reconstructing and categorizing the 
testing movie. The performance of cross-decoding was 
evaluated in the same way as for within-subject decod-
ing (i.e. training and testing a decoder with data from 
the same subject). 

Results 
Functional alignment between CNN and visual 
cortex 
In the training phase, we passed the training movie 
through the CNN to extract hierarchical features from 
every movie frame. The output of every artificial neu-
ron in the CNN constituted multiple levels of feature 
maps, representing increasingly complex and abstract 
visual information. We asked whether individual corti-
cal locations were selectively aligned to different sets of 
artificial neurons in the CNN. To address this question, 
we first mapped the cortical activation with natural vi-
sion by evaluating the intra-subject reproducibility of 
fMRI activity when the subjects watched the training 
movie for the first vs. second time (Fig. 2.a). The result-
ing cortical activation was widespread, covering the 
entire visual cortex and consistent across subjects. We 
computed the cross correlation between the fMRI signal 

at every activated cortical location and the output time 
series of every artificial neuron in the CNN. Since neu-
rons in the first CNN layer received inputs from image 
patches with a fixed size but at a variable location, their 
correlations with a given cortical voxel revealed the 
population receptive field of that voxel (see two exam-
ples in the bottom insets in Fig. 2.b). We further charac-

terized the receptive field in terms of the polar angle 
and eccentricity for every cortical voxel, and mapped 
the retinotopic representation (Fig. 2.b). This map ob-
tained with natural vision shows a similar cortical pat-
tern as the visual-field maps obtained with conventional 
retinotopic mapping (Wandell et al., 2007). It suggests 
that every cortical location in early visual areas is func-
tionally aligned to a distinct subset of artificial neurons 
in the first CNN layer that collectively respond to visual 
inputs from the receptive field of that location.  

Beyond early visual areas, different cortical regions 
were found to be selectively correlated with distinct 
layers in the CNN (Fig. 2.c). The lower to higher-level 
features encoded by the 1st through 8th layers were 
gradually mapped onto areas from the striate to ex-
trastriate cortex along both ventral and dorsal streams 
(Fig. 2.c). In agreement with previous findings (Yamins 
et al., 2014; Güçlü and van Gervan, 2015a,b), this result 

	
 
Figure. 3. Neural encoding models predict cortical responses and visualize functional representations at individual corti-
cal locations. (a) Cortical predictability for a single subject. Color bar shows the prediction accuracy, i.e. the cross correlation 
between the measured and predicted responses during the testing movie. The measured (black) and predicted (red) response time 
series are also shown in comparison for four locations at V1, LOC, MT, and FFA. (b) Visualizations of the four (numbered) peak 
responses at each of the four locations shown in (a). The presented movie frames are shown in the top; the corresponding visuali-
zations are shown in the bottom. (c) The top 1000 (out of 20,400) pictures that predicted the greatest responses at the FFA voxel 
are shown in the descending order of the predicted responses.   
	
	



 

supports the claim that the brain and the CNN use simi-
lar hierarchical representations of visual information. 
Furthermore, an investigation of the categorical features 
coded in the CNN revealed a close relationship with the 
known properties of some visual areas. For example, a 
‘face’ neuron in the CNN was significantly correlated 
with the fusiform face area (FFA) (r=0.25±0.057, 
p<0.01, corrected) (Fig. 2.d, right). The fMRI response 
at the FFA and the output time series of the ‘face’ neu-
ron both showed notable peaks coinciding with movie 
frames that included human faces (Fig. 2.d, left). To-
gether, these results strongly suggest that the hierar-
chical layers in the CNN were functionally aligned with 
cascaded cortical areas along the brain’s visual path-
way, including those higher-order areas with semanti-
cally specific and perceptually invariant representa-
tions.    

Neural encoding 
Given the functional alignment between the brain and 
the CNN as demonstrated above, we continued to build 
and train neural encoding models to predict cortical 
fMRI responses based on the outputs of the artificial 
neurons in the CNN. For each cortical location, we se-
lected neurons from a single CNN layer that were most 
correlated with that location, and combined the log-
transformed outputs of the selected neurons to predict 
the fMRI signal through linear regression. After select-
ing and estimating the encoding models with the train-
ing movie, we tested the prediction accuracy with the 
testing movie (not included for training the models). As 
shown in Fig. 3.a, the encoding models could be used to 
predict the cortical responses to the novel testing movie 
with high accuracies for nearly the entire visual cortex 
(r=0.51±0.09). Taking as examples four voxels from 

      

Figure 4. Visualization of the hierarchical visual processing. For six cortical locations from the left and right hemispheres, 
the visualizations of their responses to multiple movie frames are displayed for comparison.  
	



 

the primary visual cortex (V1), lateral occipital com-
plex (LOC), middle temporal (MT), and FFA, their 
individual responses were best predicted from the out-
puts of artificial neurons in layer 1, 4, 5, and 7 in the 
CNN, respectively (Fig. 3.a), suggesting their involve-
ment in progressively later stages of feed-forward visu-
al processing.  

Based on its ability to predict cortical responses, the 
voxel-wise encoding models allowed us to retrieve the 
visual representations at individual voxels given any 
natural visual stimulus. That is, to map a single-voxel 
response in the pixel space to visualize the specific vis-
ual-input pattern that causes the response. Briefly, we 
represented the voxel response as an exponentially 
weighted distribution of nonlinear features in the CNN 
(as modeled by the encoding model), and then convert-
ed the weighted feature representations back to image 
pixels by using a top-down projection with the De-
CNN. Again, taking the four voxels in V1, LOC, MT, 
and FFA as examples, we visualized their peak re-
sponses given the testing movie to gain intuition about 
their distinct functions. As shown in Fig. 3.b, the visual 
representations of the V1 voxel were all confined to a 
fixed part of the visual field, and showed pixel patterns 
with local details but lack of any object-defining feature 
(e.g. shapes). In contrast, the visualizations for the LOC 
voxel covered a much broader field and delineated 
some key features indicative of object identity. The MT 
voxel showed peak responses when the presented mov-
ie frames included or implied motion or action; the vis-
ualizations of these responses covered the entire visual 
field, and highlighted the moving parts as opposed to 
the static surroundings. The FFA voxel showed peak 
responses only when human faces were presented, and 
the visualizations were most prominent on face fea-
tures. In a similar format, we visualized how the same 
visual inputs were differently represented by six sepa-
rate cortical voxels from low-, mid-, and high-order 
areas. Results showed that visual representations were 
progressively larger and more complex at cortical loca-
tions running downstream along the visual pathway 
(Fig. 4). 

While the above visualizations were all conditional 
upon the testing movie used in our experiments, we 
further generalized this visualization technique to a 
much larger set of natural pictures, including 20,400 
images randomly and uniformly sampled from 17 cate-
gories in ImageNet (Deng et al., 2009; Russakovsky et 
al., 2015). With this large sample set, we attempt to 
visualize and understand the general representation at 
the single-voxel level. As a proof of concept, we fo-
cused on the voxel in FFA. The top 1000 pictures that 
predicted the greatest responses at this voxel were dom-
inantly (90.4%, p<10-5) human faces (Fig. 3.c), while 
the top 370 pictures were all human faces. To visualize 

the general representation of this voxel, we averaged 
the visualized representations across all 20,400 pictures, 
regardless of faces or not. Strikingly, the average visu-
alization showed a blurred but discernable picture of a 
human face (Fig. 3.c, middle). For the first time, this 
result provides the direct visualization of the highly 
face-selective functional representation at FFA.  

	
	
Figure 5. fMRI-based estimation of the first-layer feature 
maps (FM). (a) For each movie frame, the feature maps ex-
tracted from the kernels in the first CNN layer were estimated 
from cortical fMRI data through decoders trained with the 
training movie. For an example movie frame (flying eagle) in 
the testing movie, its feature map extracted with an orienta-
tion-coded kernel revealed the image edges. In comparison, 
the feature map estimated from fMRI was similar, but blurrier. 
(b) The estimation accuracy for all 96 kernels, given cross-
validation within the training data. The accuracies were 
ranked and plotted from the highest to lowest. Those kernels 
with high accuracies (r > 0.24) were selected and used for 
reconstructing novel natural movies in the testing phase. (c) 
96 kernels in the first layer are ordered in a descending man-
ner according to their cross-validation accuracy. 
	



 

Neural decoding 
While the encoding models serve to describe the func-
tional representations of single voxels, the visual and 
semantic experiences result from distributed patterns of 
cortical activity that combine various visual features. 
To account for the distributed neural coding, we seek to 
build decoding models that combine individual voxel 
responses in a way to reconstruct visual and semantic 
experiences. Unlike previous decoding studies (Haxby 
et al., 2001; Carlson et al., 2002; Thirion et al., 2006; 
Kay et al., 2008; Nishimoto et al., 2011), our strategy 
was to establish a computational path to directly trans-
form cortical activity patterns into the visual input and 
its semantic category in a frame by frame basis. To re-
construct the movie stimuli, we trained a set of multi-
variate regression models to optimally combine fMRI 

signals across cortical voxels in order to estimate every 
feature map in the first CNN layer. By 20-fold cross-
validation within the training data, we could reliably 
estimate the feature maps of 45 out of 96 features that 
encoded orientations and edges, but the estimation was 
less reliable for most color features (Fig. 5). In the test-
ing phase, the trained models were used to convert dis-
tributed cortical responses generated by the testing 
movie to the 45 1st-layer feature maps. The predicted 
feature maps were similar to the actual feature maps 
extracted by the CNN (r=0.30±0.04). By using the De-
CNN, every predicted feature map was further trans-
formed back to the pixel space, where they were com-
bined to reconstruct each frame of the testing movie. 
Fig. 6 shows sample movie frames reconstructed from 
fMRI vs. the actual frames presented to the subjects. 

 

Figure. 6. Reconstruction of a dynamic visual experience. For each row, the top shows the example movie frames seen 
by one subject; the bottom shows the reconstruction of those frames based on the subject’s cortical fMRI responses to the 
movie.  See Movie 1 for the reconstructed movie. 
	



 

The reconstruction clearly captured the location, shape, 
and movement of salient objects, despite missing color. 
Note that perceptually less salient objects and the back-
ground were poorly reproduced in the reconstructed 
images. The predominance of foreground elements is 
likely attributed to their importance in the representa-
tion of visual information as measured by fMRI. Thus, 
the decoding process does not simply reconstruct the 
original image, but tends to regenerate those image 
parts that are relevant to visual perception.  

To identify object categories from fMRI activity, we 
defined and optimized a softmax regression model to 
estimate the vector of normalized probabilities by 
which each movie frame belonged to 15 categories de-
scribed with textual labels. In the testing phase, the cor-
tical fMRI activity generated by the testing movie was 
mapped onto the CNN’s output that predicted categori-

zation probabilities. For selected examples of movie 
frames, Fig. 7 shows the top five decoded categories, 
ordered by their probabilities, in comparison with the 
true categories shown in red. On average, the top-1 and 
top-3 accuracies were about 49% and 72%, significant-
ly better than chance levels (6.9% and 22.3%) (Table 
1). As every category was textually labeled, the decod-
ed categorical information provided frame-by-frame 
semantic descriptions for the reconstructed movie to 
facilitate its interpretation. As an example, a flying bird 
shown in the movie was reconstructed as a bird-like 
image that was further specifically described as a word 
“bird” (see the first frame in Fig. 6 & 7). These results 
suggest that cortical fMRI activity contains rich cate-
gorical representations that can be reliably decoded to 
reconstruct semantic experiences.  

 
Figure. 7. Semantic categorization of natural movie stimuli. For each movie frame, the top five categories determined from 
cortical fMRI activity are shown in the order of descending probabilities from the top to the bottom. The probability is also color 
coded in the gray scale with the darker gray indicative of higher probability. For comparison, the true category is shown in red. 
See Movie 1 for the semantic categorization. 
	



 

Cross-subject encoding and decoding 
Finally, we asked whether it would be feasible to pre-
dict and interpret one subject’s fMRI activity with the 
encoding and decoding models trained by data from 
another subject. In support of this feasibility, we found 
that different subjects showed similar cortical responses 
to the same movie (Fig. 8.a), in line with previous find-
ings (Hasson et al., 2004). Encouragingly, the encoding 
models trained with one subject could predict cortical 
fMRI responses from another subject with significant, 
yet reduced, prediction accuracies for most of the visual 
cortex (Fig. 8.b). For decoding, we found that features 
in the visual space could be estimated by cross-subject 
decoding, with reasonable accuracies only slightly low-
er than when training and testing a decoder within the 
same subject (Fig. 8.c). In the semantic space, the top-1 
through top-3 accuracies for the predicted categories 
were 22.8%, 35.6% and 46.3% for cross-subject decod-
ing, significantly higher than the chance levels (6.9%, 
14.4% and 22.3%), but notably lower than those for 
within-subject decoding (49.0%, 64.3%, 71.5%) (Fig. 
8.d and Table 1). Together, these results provided com-
pelling evidence for the feasibility of establishing neu-
ral encoding and decoding models for a general popula-
tion, while also setting up the baseline for potentially 
examining the disrupted coding mechanism in patho-
logical conditions.   

 

Figure. 8. Encoding and decoding 
within vs. across subjects. (a) Average 
inter-subject reproducibility of fMRI 
activity during natural stimuli. (b) Cortical 
response predictability with encoding 
models trained and tested for the same 
subject (i.e. within-subject encoding) or 
for different subjects (i.e. cross-subject 
encoding). (c) Accuracy of visual 
reconstruction by within-subject (blue) 
vs. cross-subject (red) decoding. The y 
axis indicates the spatial cross 
correlation between the fMRI-predicted 
and CNN-extracted feature maps for the 
1st layer in the CNN. The x axis shows 
multiple pairs of subjects (numbered 1, 
2, and 3). The first number indicates the 
subject from whom the decoder was 
trained; the second number indicates the 
subject for whom the decoder was 
tested. (d) Accuracy of categorization by 
within-subject (blue) vs. cross-subject 
(red) decoding. The top-1, top-2 and top-
3 accuracy indicates the percentage by 
which the true category is within the 1st, 
2nd, and 3rd most probable categories 
predicted from fMRI, respectively. For 
both (c) and (d), the bar height indicates 
the average prediction accuracy; the 
error bar indicates the standard error of 
the mean; the dashed lines are chance 
levels. (*p<10-4, **p<10-10, ***p<10-50). 
See Movie 2 for the reconstructed movie 
on the basis of cross-subject decoding. 
 

	
Prediction accuracy for the semantic descriptions of a 

novel movie 

 train \ test subject 1 subject 2 subject 3 

 
top 1 

subject 1 49.2% 28.8% 13.8% 

subject 2 21.7% 49.6% 23.8% 

subject 3 28.8% 19.6% 48.3% 

 
top 2 

subject 1 63.8% 39.2% 27.5% 

subject 2 31.7% 64.6% 36.3% 

subject 3 40.8% 37.9% 64.6% 

 
top 3 

subject 1 69.2% 49.2% 41.3% 

subject 2 42.1% 72.9% 46.7% 

subject 3 50.8% 47.5% 72.5% 

Table 1. Three subtables show the top-1, top-2 and top-3 
accuracies of categorizing individual movie frames by using 
decoders trained with data from the same (within-subject) or 
different (cross-subject) subject. Each row shows the predic-
tion accuracy with the decoder trained with a specific sub-
ject’s training data; each column shows the predicting accura-
cy with a specific subject’s testing data and different subjects’ 
decoders. The accuracy was quantified as the percentage by 
which individual movie frames were successfully categorized 
as one of the top-1, top-2, or top-3 categories.	



 

Discussion 
This study brings major advances in both neural encod-
ing and decoding for understanding the basis of natural 
vision. For encoding, we demonstrate the unique prom-
ise of using deep learning to model and visualize the 
functional representations at the single-voxel level 
along the entire visual pathway, and to create a compu-
tational workbench for high-throughput visual neuro-
science research. For decoding, we present a stand-
alone, efficient, reliable, and generalizable strategy to 
decode cortical fMRI activity to reconstruct the visual 
and semantic experiences during natural vision.  

The human brain segregates and integrates visual input 
through cascaded stages of processing. The neural code 
that describes the relationship between the visual input 
and the neural response bears a large variety of nonlin-
earity and complexity (Huth et al., 2016; Yamins and 
DiCarlo, 2016). It is thus impossible to hand-engineer a 
general class of models to describe the neural code for 
every neuron or cortical location, especially for those 
involved in the middle- or high-level visual processing. 
In contrast, the CNN entails a large set of nonlinear 
feature models, as coded by individual artificial neurons 
through network computation. These feature models 
provide a family of basis functions, which can be used 
to define various complex and nonlinear encoding 
models. Note that each encoding model was separately 
optimized for each voxel, by specifically selecting an 
optimal subset of nonlinear features to best match the 
voxel response with a linear projection. Results suggest 
that the neural predictability attained with the CNN-
based encoding models cover nearly the entire visual 
cortex, whereas those based on Gabor filters (Daugman, 
1985) can only predict responses within the primary 
visual cortex (Kay et al., 2008). Although our encoding 
models were used to predict cortical fMRI responses in 
this study, similar encoding methods would also explain 
other neural data, such as electrophysiological activity 
(Yamins et al., 2014). As such, it is expected to offer a 
general strategy to uncover the complex neural code in 
various spatial and temporal scales for all levels of vis-
ual processing.   

It is worth noting that nonlinear features coded in the 
CNN were not isolated functions, but connected 
through hierarchical networks that are fully computable 
either bottom-up or top-down. Thus, a CNN-based en-
coding model is not only able to predict the response at 
any given cortical location, but also provides a compu-
tational pathway that links the visual input to the local-
ized response, and vice versa. This brings an important 
advantage in that it allows us to visualize the functional 
representation at the level of single voxels. Leveraging 
this advantage, we visualized the progressively larger 
and more complex representations along the visual 

pathway (Fig. 4), showed evidence for distinct func-
tions of multiple cortical areas (Fig. 3.b), and demon-
strated the highly selective responses of FFA to human 
faces (Fig. 3.c). This ability of visualizing the localized 
functional representation is anticipated to be even more 
valuable for understanding the responses of single neu-
rons or neuronal ensembles. It would offer a putative 
computational network basis, in place of the biological 
circuitry, to account for single-unit or multi-unit activi-
ty, despite the usually localized nature of neuronal re-
cordings.  

Importantly, we show that the CNN-based encoding 
models established with natural movie stimuli can be 
generalized to novel visual stimuli. With this generali-
zability, one may use the encoding models to predict 
and analyze cortical responses to a massive amount of 
natural pictures or videos, much beyond what is practi-
cally doable with experimental approaches. In this 
sense, the encoding models constitute a powerful com-
putational workbench for high-throughput visual neuro-
science research. As a proof of concept, here we pre-
dicted and characterized the cortical responses to 
20,400 natural pictures throughout the entire visual 
pathway. An in-depth analysis of the responses within 
FFA revealed its functional selectivity and general rep-
resentation. Results provide convincing evidence that 
FFA is exclusively specialized for face perception and 
its general representation is visualized, for the first time 
as a human face (Fig. 3.c). Other than FFA, the same 
computational platform (or its variations) is readily 
usable to explore cortical representations of other object 
categories, or to yield novel hypotheses for further ex-
perimental investigations.    

For the decoding purpose, the CNN enables direct re-
construction of natural movies without using any statis-
tical comparison of activity patterns generated by indi-
vidual pictures (e.g. classification), which is the com-
mon basis of all existing decoding methods, e.g. multi-
variate pattern analysis (Kamitani and Tong, 2005; 
Haynes and Rees, 2006; Norman et al., 2006; Miyawaki 
et al., 2008) and encoding-model-based decoding (Hax-
by et al., 2001; Kay et al., 2008; Naselaris et al., 2009). 
Nishimoto et al. (2011) published the first, and perhaps 
the only, attempt to reconstruct natural movies by 
searching a huge prior set of videos for the most likely 
stimuli that would predict the measured cortical activity 
(Kay et al., 2008). However, this approach is unlikely 
to scale up because natural visual experiences are too 
diverse to be fully included in any prior set. The identi-
fication or reconstruction accuracy is dependent on and 
biased by the samples in the prior set. The need for a 
huge prior set is also computationally expensive, limit-
ing the decoding efficiency.  



 

Bypassing these limitations, we demonstrate that it is 
possible to directly reconstruct and categorize any natu-
ral movie by using a self-contained and well-
determined decoder that combine various features 
across cortical locations. The decoder allowed us to 
transform fMRI signals onto feature representations at 
two extreme levels of complexity during early and late 
visual processing. Through network computation, it 
also allowed us to transform the decoded feature repre-
sentations directly onto the pixel space for reconstruc-
tion, and onto the semantic space for categorization. By 
demonstrating this unprecedented decoding ability, we 
further emphasize the importance of using deep learn-
ing for understanding the brain’s sensory systems.   

In future studies, it is highly desirable to model the vis-
ual system with more biologically plausible deep learn-
ing models that incorporate feedback (Stollenga et al., 
2014) and recurrent (Donahue et al., 2015) connections. 
The encoding and decoding performance may also 
serve to evaluate and refine the deep learning models 
and algorithms towards truly brain-inspired artificial 
intelligence. In addition, the general strategy described 
here will benefit from the data acquisition with much 
more natural images or videos. The diversity and com-
plexity of visual stimuli are expected to improve the 
reliability and generalizability of the resulting encoding 
and decoding models. What would also be desirable is 
the use of neural imaging or recording with higher reso-
lution and sensitivity. For example, the reconstructed 
dynamic visual experiences missed visual details in 
texture and color (Fig. 6), mostly because such infor-
mation is coded in spatiotemporal activity patterns that 
are difficult to resolve or distinguish with fMRI at the 
present resolution. 

The deep-learning-enabled brain decoding described 
here as a means to recreate dynamic visual experience 
has significant potential for reading and reconstructing 
other sensory or cognitive experiences as well. Since 
deep-learning models are already available for speech 
recognitions (Hinton et al., 2012) and language pro-
cessing (Collobert and Weston, 2008), decoding of 
brain measures in response to natural hearing, speech, 
and language are realistically attainable goals (Huth et 
al., 2016). Likewise, since we know that sensory imag-
es, memories and dreams involve neural substrates that 
overlap with those for real sensation (Kosslyn et al., 
1997 ; Horikawa et al., 2013), it is foreseeable that 
deep-learning models would also be potentially suc-
cessful in decoding the internal images of the human 
mind. In addition, deep-learning-based decoding holds 
the potential to externalize the internal moving images 
of the mind created through imagination, memory, and 
dreaming. As the decoding approach expands to other 
sensory or cognitive systems, we speculate that the abil-
ity to decode the internal world of the human mind 

through brain decoding will also enable a new form of 
communication for patients with brain trauma, or neu-
rodegenerative disease. 
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