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Summary. Variable selection plays an important role in high dimensional statistical modelling
which nowadays appears in many areas and is key to various scientific discoveries. For prob-
lems of large scale or dimensionality p, accuracy of estimation and computational cost are two
top concerns. Recently, Candes and Tao have proposed the Dantzig selector using L1-regular-
ization and showed that it achieves the ideal risk up to a logarithmic factor log.p/. Their innova-
tive procedure and remarkable result are challenged when the dimensionality is ultrahigh as the
factor log.p/ can be large and their uniform uncertainty principle can fail.Motivated by these con-
cerns, we introduce the concept of sure screening and propose a sure screening method that
is based on correlation learning, called sure independence screening, to reduce dimensionality
from high to a moderate scale that is below the sample size. In a fairly general asymptotic frame-
work, correlation learning is shown to have the sure screening property for even exponentially
growing dimensionality. As a methodological extension, iterative sure independence screening
is also proposed to enhance its finite sample performance. With dimension reduced accurately
from high to below sample size, variable selection can be improved on both speed and accuracy,
and can then be accomplished by a well-developed method such as smoothly clipped abso-
lute deviation, the Dantzig selector, lasso or adaptive lasso. The connections between these
penalized least squares methods are also elucidated.

Keywords: Adaptive lasso; Dantzig selector; Dimensionality reduction; Lasso; Oracle
estimator; Smoothly clipped absolute deviation; Sure independence screening; Sure
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1. Introduction

1.1. Background
Consider the problem of estimating a p-vector of parameters β from the linear model

y =Xβ+ε, .1/

where y= .Y1, . . . , Yn/T is an n-vector of responses, X= .x1, . . . , xn/T is an n×p random design
matrix with independent and identically distributed (IID) x1, . . . , xn, β = .β1, . . . , βp/T is a
p-vector of parameters and ε= ."1, . . . , "n/T is an n-vector of IID random errors. When dimen-
sion p is high, it is often assumed that only a small number of predictors among X1, . . . , Xp

contribute to the response, which amounts to assuming ideally that the parameter vector β is
sparse. With sparsity, variable selection can improve the accuracy of estimation by effectively
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identifying the subset of important predictors, and also enhance model interpretability with
parsimonious representation.

Sparsity comes frequently with high dimensional data, which is a growing feature in many
areas of contemporary statistics. The problems arise frequently in genomics such as gene
expression and proteomics studies, biomedical imaging, functional magnetic resonance imag-
ing, tomography, tumour classifications, signal processing, image analysis and finance, where
the number of variables or parameters p can be much larger than sample size n. For instance,
one may wish to classify tumours by using microarray gene expression or proteomics data or
one may wish to associate protein concentrations with expression of genes or to predict certain
clinical prognosis (e.g. injury scores or survival time) by using gene expression data. For this
kind of problems, the dimensionality can be much larger than the sample size, which calls for
new or extended statistical methodologies and theories. See, for example Donoho (2000) and
Fan and Li (2006) for overviews of statistical challenges with high dimensionality.

Back to the problem in model (1), it is challenging to find tens of important variables out
of thousands of predictors, with a number of observations usually in tens or hundreds. This
is similar to finding a couple of needles in a huge haystack. A new idea in Candes and Tao
(2007) is the notion of the uniform uncertainty principle on deterministic design matrices. They
proposed the Dantzig selector which is the solution to an l1-regularization problem and showed
that, under the uniform uncertainty principle, this minimum l1-estimator achieves the ideal risk,
i.e. the risk of the oracle estimator with the true model known ahead of time, up to a logarithmic
factor log.p/. Appealing features of the Dantzig selector include that

(a) it is easy to implement because the convex optimization that the Dantzig selector solves
can easily be recast as a linear program and

(b) it has the oracle property in the sense of Donoho and Johnstone (1994).

Despite their remarkable achievement, we still have four concerns when the Dantzig selector
is applied to high or ultrahigh dimensional problems. First, a potential hurdle is the computa-
tional cost for large or huge scale problems such as implementing linear programs in dimension
of tens or hundreds of thousands. Second, the factor log(p) can become large and may not be
negligible when dimension p grows rapidly with sample size n. Third, as dimensionality grows,
their uniform uncertainty principle condition may be difficult to satisfy, which will be illustrated
later by using a simulated example. Finally, there is no guarantee that the Dantzig selector picks
up the right model though it has the oracle property. These four concerns inspire our work.

1.2. Dimensionality reduction
Dimension reduction or feature selection is an effective strategy to deal with high dimensional-
ity. With dimensionality reduced from high to low, the computational burden can be reduced
drastically. Meanwhile, accurate estimation can be obtained by using some well-developed lower
dimensional method. Motivated by this along with those concerns on the Dantzig selector, we
have the following main goal in our paper:

reduce dimensionality p from a large or huge scale (say, exp{O.nξ/} for some ξ > 0/

to a relatively large scale d .e.g. o.n// by a fast and efficient method.

We achieve this by introducing the concept of sure screening and proposing a sure screening
method which is based on correlation learning which filters out the features that have weak
correlation with the response. Such correlation screening is called sure independence screening
(SIS). Here and below, by sure screening we mean a property that all the important variables
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survive after variable screening with probability tending to 1. This dramatically narrows down
the search for important predictors. In particular, applying the Dantzig selector to the much
smaller submodel relaxes our first concern on the computational cost. In fact, this not only
speeds up the Dantzig selector but also reduces the logarithmic factor in mimicking the ideal
risk from log.p/ to log.d/, which is smaller than log.n/ and hence relaxes our second concern
above.

Oracle properties in a stronger sense, say, mimicking the oracle in not only selecting the right
model, but also estimating the parameters efficiently, give a positive answer to our third and
fourth concerns above. Theories on oracle properties in this sense have been developed in the
literature. Fan and Li (2001) laid down groundwork on variable selection problems in the finite
parameter setting. They discussed a family of variable selection methods that adopt a penalized
likelihood approach, which includes well-established methods such as the Akaike information
criterion and Bayes information criterion, as well as more recent methods like the bridge regres-
sion in Frank and Friedman (1993), the lasso in Tibshirani (1996), and the smoothly clipped
absolute deviation (SCAD) method in Fan (1997) and Antoniadis and Fan (2001), and estab-
lished oracle properties for non-concave penalized likelihood estimators. Later on, Fan and
Peng (2004) extended the results to the setting of p=o.n1=3/ and showed that the oracle prop-
erties continue to hold. An effective algorithm for optimizing penalized likelihood, the local
quadratic approximation, was proposed in Fan and Li (2001) and well studied in Hunter and
Li (2005). Zou (2006) introduced an adaptive lasso in a finite parameter setting and showed
that the lasso does not have oracle properties as conjectured in Fan and Li (2001), whereas
the adaptive lasso does. Zou and Li (2008) propose a local linear approximation algorithm that
recasts the computation of non-concave penalized likelihood problems into a sequence of penal-
ized L1-likelihood problems. They also proposed and studied the one-step sparse estimators for
non-concave penalized likelihood models.

There is a huge literature on the problem of variable selection. To name a few in addition
to those mentioned above, Fan and Li (2002) studied variable selection for Cox’s proportional
hazards model and frailty model, Efron et al. (2004) proposed the least angle regression
algorithm LARS, Hunter and Li (2005) proposed a new class of algorithms, minorization–
maximization algorithms, for variable selection, Meinshausen and Bühlmann (2006) looked at
the problem of variable selection with the lasso for high dimensional graphs and Zhao and
Yu (2006) gave an almost necessary and sufficient condition on model selection consistency of
the lasso. Meier et al. (2008) proposed a fast implementation for the group lasso. More recent
studies include Huang et al. (2008), Paul et al. (2008), Zhang (2007) and Zhang and Huang
(2008), which signficantly advance the theory and methods of the penalized least squares (PLS)
approaches. It is worth mentioning that in variable selection there is a weaker concept than
consistency, called persistency, which was introduced by Greenshtein and Ritov (2004). Moti-
vation of this concept lies in the fact that, in machine learning such as tumour classification,
primary interest centres on the misclassification errors or more generally expected losses, not
the accuracy of estimated parameters. Greenshtein and Ritov (2004) studied the persistence of
lasso-type procedures in high dimensional linear predictor selection, and Greenshtein (2006)
extended the results to more general loss functions. Meinshausen (2007) considered a case with
finite non-sparsity and showed that, under quadratic loss, the lasso is persistent, but the rate of
persistency is slower than that of a relaxed lasso.

1.3. Some insight into high dimensionality
To gain some insight into challenges of high dimensionality in variable selection, let us look at a
situation where all the predictors X1, . . . , Xp are standardized and the distribution of z=Σ−1=2x
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Fig. 1. Distributions of the maximum absolute sample correlation coefficient when n D 60 and p D 1000
( ) and nD60 and p D5000 (- - - - -), based on 500 simulations

is spherically symmetric, where x = .X1, . . . , Xp/T and Σ= cov.x/. Clearly, the transformed
predictor vector z has covariance matrix Ip. Our way of study in this paper is to separate the
effects of the covariance matrixΣ and the distribution of z, which gives us a better understanding
of difficulties of high dimensionality in variable selection.

The real difficulty when dimension p is larger than sample size n comes from four facts. First,
the design matrix X is rectangular, having more columns than rows. In this case, the matrix XTX
is huge and singular. The maximum spurious correlation between a covariate and the response
can be large (see, for example, Fig. 1) because of the dimensionality and the fact that an unim-
portant predictor can be highly correlated with the response variable owing to the presence
of important predictors associated with the predictor. These make variable selection difficult.
Second, the population covariance matrix Σ may become ill conditioned as n grows, which adds
difficulty to variable selection. Third, the minimum non-zero absolute coefficient |βi| may decay
with n and fall close to the noise level, say, the order {log.p/=n}−1=2. Fourth, the distribution of
z may have heavy tails. Therefore, in general, it is challenging to estimate the sparse parameter
vector β accurately when p�n.

When dimension p is large, some of the intuition might not be accurate. This is exemplified
by the data piling problems in high dimensional space that were observed in Hall et al. (2005).
A challenge with high dimensionality is that important predictors can be highly correlated with
some unimportant ones, which usually increases with dimensionality. The maximum spurious
correlation also grows with dimensionality. We illustrate this by using a simple example. Suppose
that the predictors X1, . . . , Xp are independent and follow the standard normal distribution.
Then, the design matrix is an n×p random matrix, each entry an independent realization from
N .0, 1/. The maximum absolute sample correlation coefficient between predictors can be very
large. This is indeed against our intuition, as the predictors are independent. To show this, we
simulated 500 data sets with n= 60 and p= 1000 and p= 5000. Fig. 1 shows the distributions
of the maximum absolute sample correlation of predictors. The multiple canonical correlation
between two groups of predictors (e.g. 2 in one group and 3 in another) can even be much larger,
as there are already
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choices of the two groups in our example. Hence, sure screening when p is large is very chal-
lenging.

The paper is organized as follows. In the next section we propose a sure screening method,
SIS, and discuss its rationale as well as its connection with other methods of dimensionality
reduction. In Section 3 we review several known techniques for model selection in the reduced
feature space and present two simulations and one real data example to study the performance
of SIS-based model selection methods. In Section 4 we discuss some extensions of SIS and,
in particular, an iterative SIS is proposed and illustrated by three simulated examples. Sec-
tion 5 is devoted to the asymptotic analysis of SIS and an iteratively thresholded ridge regres-
sion screener as well as two SIS-based model selection methods. Some concluding remarks are
given in Section 6. Technical details are provided in Appendix A.

2. Sure independence screening

2.1. A sure screening method: correlation learning
By sure screening we mean a property that all the important variables survive after applying a
variable screening procedure with probability tending to 1. A dimensionality reduction method
is desirable if it has the sure screening property. Below we introduce a simple sure screening
method using componentwise regression or equivalently correlation learning. Throughout the
paper we centre each input variable so that the observed mean is 0, and we scale each pre-
dictor so that the sample standard deviation is 1. Let MÅ = {1 � i � p : βi �= 0} be the true
sparse model with non-sparsity size s=|MÅ|. The other p− s variables can also be correlated
with the response variable via linkage to the predictors that are contained in the model. Let
ω= .ω1, . . . , ωp/T be a p-vector that is obtained by componentwise regression, i.e.

ω=XTy, .2/

where the n×p data matrix X is first standardized columnwise as mentioned before. Hence, ω
is really a vector of marginal correlations of predictors with the response variable, rescaled by
the standard deviation of the response.

For any given γ ∈ .0, 1/, we sort the p componentwise magnitudes of the vector ω in a decreas-
ing order and define a submodel

Mγ ={1� i�p : |ωi| is among the first [γn] largest of all}, .3/

where [γn] denotes the integer part of γn. This is a straightforward way to shrink the full model
{1, . . . , p} down to a submodel Mγ with size d = [γn] < n. Such correlation learning ranks the
importance of features according to their marginal correlation with the response variable and
filters out those that have weak marginal correlations with the response variable. We call this
correlation screening method SIS, since each feature is used independently as a predictor to
decide how useful it is for predicting the response variable. This concept is broader than cor-
relation screening and is applicable to generalized linear models, classification problems under
various loss functions and non-parametric learning under sparse additive models (Ravikumar
et al., 2007).

The computational cost of SIS or correlation learning is that of multiplying a p×n matrix
by an n-vector plus obtaining the largest d components of a p-vector, so SIS has computational
complexity O.np/.



854 J. Fan and J. Lv

It is worth mentioning that SIS uses only the order of componentwise magnitudes of ω, so
it is indeed invariant under scaling. Thus the idea of SIS is identical to selecting predictors by
using their correlations with the response. To implement SIS, we note that linear models with
more than n parameters are not identifiable with only n data points. Hence, we may choose
d = [γn] to be conservative, for instance, n − 1 or n= log.n/ depending on the order of sample
size n. Although SIS is proposed to reduce dimensionality p from high to below sample size n,
nothing can stop us applying it with final model size d �n, say γ �1. It is obvious that larger d
means larger probability of including the true model MÅ in the final model Mγ .

SIS is a hard-thresholding-type method. For orthogonal design matrices, it is well under-
stood. But, for general design matrices, there is no theoretical support for it, though this kind
of idea is frequently used in applications. It is important to identify the conditions under which
the sure screening property holds for SIS, i.e.

P.MÅ ⊂Mγ/→1 as n→∞ .4/

for some given γ. This question as well as how the sequence γ = γn → 0 should be chosen in
theory will be answered by theorem 1 in Section 5. We would like to point out that the sim-
ple thresholding algorithm (see, for example, Baron et al. (2005) and Gribonval et al. (2007))
that is used in sparse approximation or compressed sensing is a one-step greedy algorithm and
is related to SIS. In particular, our asymptotic analysis in Section 5 helps to understand the
performance of the simple thresholding algorithm.

2.2. Rationale of correlation learning
To understand better the rationale of correlation learning, we now introduce an iteratively
thresholded ridge regression screener (ITRRS), which is an extension of the dimensionality
reduction method SIS. But, for practical implementation, only correlation learning is needed.
The ITRRS also provides a very nice technical tool for our understanding of the sure screening
property of correlation screening and other methods.

When there are more predictors than observations, it is well known that the least squares
estimator β̂LS = .XTX/+XTy is noisy, where .XTX/+ denotes the Moore–Penrose general-
ized inverse of XTX. We therefore consider ridge regression, namely linear regression with l2-
regularization to reduce the variance. Let ωλ = .ωλ

1 , . . . , ωλ
p/T be a p-vector that is obtained by

ridge regression, i.e.

ωλ = .XTX +λIp/−1XTy, .5/

where λ> 0 is a regularization parameter. It is obvious that

ωλ → β̂LS as λ→0, .6/

and the scaled ridge regression estimator tends to the componentwise regression estimator:

λωλ →ω as λ→∞: .7/

In view of property (6) to make ωλ less noisy we should choose a large regularization parameter
λ to reduce the variance in the estimation. Note that the ranking of the absolute components of
ωλ is the same as that of λωλ. In light of property (7) the componentwise regression estimator
is a specific case of ridge regression with regularization parameter λ=∞, namely, it makes the
resulting estimator as little noisy as possible.

For any given δ ∈ .0, 1/, we sort the p componentwise magnitudes of the vector ωλ in a
descending order and define a submodel
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M1
δ,λ ={1� i�p : |ωλ

i | is among the first [δp] largest of all}: .8/

This procedure reduces the model size by a factor of 1− δ. The idea of the ITRRS to be intro-
duced below is to perform dimensionality reduction as above successively until the number of
remaining variables drops to below sample size n.

It will be shown in theorem 2 in Section 5 that, under some regularity conditions and when
the tuning parameters λ and δ are chosen appropriately, with overwhelming probability the
submodel M1

δ,λ will contain the true model MÅ and its size is of order nθ for some θ > 0 lower
than the original one p. This property stimulates us to propose the ITRRS as follows.

(a) First, carry out the procedure in submodel (8) to the full model {1, . . . , p} and obtain a
submodel M1

δ,λ with size [δp].
(b) Then, apply a similar procedure to the model M1

δ,λ and again obtain a submodel M2
δ,λ ⊂

M1
δ,λ with size [δ2p], and so on.

(c) Finally, obtain a submodel Mδ,λ =Mk
δ,λ with size d = [δkp] <n, where [δk−1p]�n.

We point out that this procedure is different from thresholded ridge regression, as the submodels
and estimated parameters change over the course of iterations. The only exception is the case
λ=∞, in which the rank of variables does not vary with iterations.

Now we are ready to see that the correlation learning which was introduced in Section 2.1 is a
specific case of the ITRRS since componentwise regression is a specific case of ridge regression
with an infinite regularization parameter. The ITRRS provides a very nice technical tool for
understanding how fast the dimension p can grow comparing with sample size n and how the
final model size d can be chosen while the sure screening property still holds for correlation
learning. The question of whether the ITRRS has the sure screening property as well as how
the tuning parameters γ and δ should be chosen will be answered by theorem 3 in Section 5.

The number of steps in the ITRRS depends on the choice of δ∈ .0, 1/. We shall see in theorem
3 that δ cannot be chosen too small, which means that there should not be too many iteration
steps in the ITRRS. This is due to the cumulation of the probability errors of missing some
important variables over the iterations. In particular, the backward stepwise deletion regression
which deletes one variable each time in the ITRRS until the number of remaining variables drops
to below the sample size might not work in general as it requires p−d iterations. When p is of
exponential order, even though the probability of deleting some important predictors in each
step of deletion is exponentially small, the cumulative error in exponential order of operations
may not be negligible.

2.3. Connections with other dimensionality reduction methods
As pointed out before, SIS uses the marginal information of correlation to perform dimension-
ality reduction. The idea of using marginal information to deal with high dimensionality has
also appeared independently in Huang et al. (2008) who proposed the use of marginal bridge
estimators to select variables for sparse high dimensional regression models. We now look at
SIS in the context of classification, in which the idea of independent screening appears natural
and has been widely used.

The problem of classification can be regarded as a specific case of the regression problem
with response variable taking discrete values such as ±1. For high dimensional problems like
tumour classification using gene expression or proteomics data, it is not wise to classify the
data by using the full feature space because of accumulation of noise and interpretability. This
is well demonstrated both theoretically and numerically in Fan and Fan (2008). In addition,
many of the features come into play through linkage to the important predictors (see, for
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example, Fig. 1). Therefore feature selection is important for high dimensional classification.
How to select important features effectively and how many of them to include are two tricky
questions to answer. Various feature selection procedures have been proposed in the litera-
ture to improve the classification power in the presence of high dimensionality. For example,
Tibshirani et al. (2002) introduced the nearest shrunken centroids method, and Fan and Fan
(2008) propose the features annealed independence rules procedure. Theoretical justifications
for these methods are given in Fan and Fan (2008).

SIS can readily be used to reduce the feature space. Now suppose that we have n1 samples
from class 1 and n2 samples from class −1. Then the componentwise regression estimator (2)
becomes

ω= ∑
Yi=1

xi −
∑

Yi=−1
xi: .9/

Written more explicitly, the jth component of the p-vector ω is

ωj = .n1X̄j,1 −n2X̄j,2/=(standard deviation of the jth feature),

by recalling that each covariate in equation (9) has been normalized marginally, where X̄j,1 is
the sample average of the jth feature with class label ‘1’ and X̄j,2 is the sample average of the jth
feature with class label ‘−1’. When n1 =n2, ωj is simply a version of the two-sample t-statistic
except for a scaling constant. In this case, feature selection using SIS is the same as that using
two-sample t-statistics. See Fan and Fan (2008) for a theoretical study of the sure screening
property in this context.

Two-sample t-statistics are commonly used in feature selection for high dimensional classifi-
cation problems such as in a significance analysis of gene selection in microarray data analysis
(see, for example, Storey and Tibshirani (2003) and Fan and Ren (2006)) as well as in the nearest
shrunken centroids method of Tibshirani et al. (2002). Therefore SIS is an insightful and natu-
ral extension of this widely used technique. Although not directly applicable, the sure screening
property of SIS in theorem 1 after some adaptation gives theoretical justification for the nearest
shrunken centroids method. See Fan and Fan (2008) for a sure screening property.

By using SIS we can single out the important features and thus reduce significantly the
feature space to a much lower dimensional space. From this point on, many methods such as
the linear discrimination rule or the naive Bayes rule can be applied to conduct the classifi-
cation in the reduced feature space. This idea will be illustrated on a leukaemia data set in
Section 3.3.3.

3. Sure independence screening based model selection techniques

3.1. Estimation and model selection in the reduced feature space
As shown later in theorem 1 in Section 5, with correlation learning, we can shrink the full
model {1, . . . , p} straightforwardly and accurately down to a submodel M = Mγ with size
d = [γn] = o.n/. Thus the original problem of estimating the sparse p-vector β in model (1)
reduces to estimating a sparse d-vector β= .β1, . . . , βd/T that is based on the now much smaller
submodel M, namely,

y =XMβ+ε, .10/

where XM = .x1, . . . , xn/T denotes an n × d submatrix of X that is obtained by extracting its
columns corresponding to the indices in M. Apparently SIS can speed up variable selection
dramatically when the original dimension p is ultrahigh.
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Now we briefly review several well-developed moderate dimensional techniques that can be
applied to estimate the d-vector β in equation (10) at the scale of d that is comparable with
n. These methods include the SCAD method in Fan and Li (2001) and Fan and Peng (2004),
the adaptive lasso in Zou (2006) and the Dantzig selector in Candes and Tao (2007), among
others.

3.1.1. Penalized least squares and smoothly clipped absolute deviation
Penalization is commonly used in variable selection. Fan and Li (2001, 2006) have given a
comprehensive overview of feature selection and a unified framework based on the penalized
likelihood approach to the problem of variable selection. They considered the PLS problem

l.β/= 1
2n

n∑
i=1

.Yi −xT
i β/2 +

d∑
j=1

pλj .|βj|/, .11/

where β= .β1, . . . , βd/T ∈Rd and pλj .·/ is a penalty function indexed by a regularization param-
eter λj. Variation of the regularization parameters across the predictors allows us to incorporate
some prior information. For example, we may want to keep certain important predictors in the
model and to choose not to penalize their coefficients. The regularization parameters λj can
be chosen, for instance, by cross-validation (see, for example, Breiman (1996) and Tibshirani
(1996)). A unified and effective algorithm for optimizing penalized likelihood, which is called the
local quadratic approximation, was proposed in Fan and Li (2001) and well studied in Hunter
and Li (2005). In particular, the local quadratic approximation can be employed to minimize
the above PLS problem. In our implementation, we choose λj =λ and select λ by the Bayesian
information criterion.

An alternative and effective algorithm to minimize the PLS problem (11) is the local linear
approximation that was proposed by Zou and Li (2008). With the local linear approximation,
problem (11) can be cast as a sequence of penalized L1 regression problems so that the LARS
(Efron et al., 2004) or other algorithms can be employed. More explicitly, given the estimate
{β̂

.k/

j , j =1, . . . , d} at the kth iteration, instead of minimizing probelm (11), we minimize

1
2n

n∑
i=1

.Yi −xT
i β/2 +

d∑
j=1

w.k/
j |βj|, .12/

which after adding the constant term Σd
j=1pλj .|β̂

.k/

j |/ is a local linear approximation to l.β/ in
problem (11), where w.k/

j =|p′
λj

.|β̂.k/

j |/|. Problem (12) is a convex problem and can be solved by
LARS and other algorithms such as those in Friedman et al. (2007) and Meier et al. (2008). In
this sense, the PLS problem (11) can be regarded as a family of iteratively reweighted penal-
ized L1-problems and the function p′

λ.·/ dictates the amount of penalty at each location. The
emphasis on non-concave penalty functions by Fan and Li (2001) is to ensure that the penalty
decreases to zero as |β̂.k/

j | becomes large. This reduces unnecessary biases of the penalized like-
lihood estimator, leading to the oracle property in Fan and Li (2001). Fig. 2 depicts how the
SCAD function is approximated locally by a linear or quadratic function and the derivative
functions p′

λ.·/ for some commonly used penalty functions. When the initial value β = 0, the
first-step estimator is indeed the lasso so the implementation of SCAD can be regulated as an
iteratively reweighted penalized penalized L1-estimator with the lasso as an initial estimator. An
advantage of the SCAD penalty is that zero is not an absorbing state. See Section 6 for further
discussion of the choice of initial values {β̂

.0/

j , j =1, . . . , d}.
The PLS problem (11) depends on the choice of penalty function pλj .·/. Commonly used

penalty functions include the lp-penalty, 0�p�2, the non-negative garrotte in Breiman (1995),
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the SCAD penalty in Fan (1997) and the minimax concave penalty in Zhang (2007) (see below
for a definition). In particular, l1-penalized least squares is called the lasso in Tibshirani (1996).
In seminal papers, Donoho and Huo (2001) and Donoho and Elad (2003) showed that the
penalized l0-solution can be found by the penalized l1-method when the problem is sufficiently
sparse, which implies that the best subset regression can be found by using penalized l1-regres-
sion. Antoniadis and Fan (2001) proposed PLS for wavelets denoising with irregular designs.
Fan and Li (2001) advocated penalty functions with three properties: sparsity, unbiasedness
and continuity. More details on characterization of these three properties can be found in Fan
and Li (2001) and Antoniadis and Fan (2001). For penalty functions, they showed that singu-
larity at the origin is a necessary condition to generate sparsity and folded concavity is required
to reduce the estimation bias. It is well known that the lp-penalty with 0�p<1 does not satisfy
the continuity condition, the lp-penalty with p > 1 does not satisfy the sparsity condition and
the l1-penalty (lasso) has sparsity and continuity but generates estimation bias, as demonstrated
in Fan and Li (2001), Zou (2006) and Meinshausen (2007).

Fan (1997) proposed a continuously differentiable penalty function called the SCAD penalty,
which is defined by

p′
λ.|β|/=λ

{
I.|β|�λ/+ .aλ−|β|/+

.a−1/λ
I.|β|>λ/

}
for some a> 2: .13/

Fan and Li (2001) suggested using a = 3:7. This function has similar features to the penalty
function λ|β|=.1+|β|/ that was advocated in Nikolova (2000). The minimum concave penalty
in Zhang (2007) translates the flat part of the derivative of the SCAD to the origin and is
given by

p′
λ.|β|/= .aλ−|β|/+=a,

which minimizes the maximum of the concavity. The SCAD penalty and minimum concave
penalty satisfy the above three conditions simultaneously. We shall show in theorem 5 in Section
5 that SIS followed by SCAD enjoys oracle properties.

3.1.2. Adaptive lasso
The lasso in Tibshirani (1996) has been widely used because of its convexity. It, however, gen-
erates estimation bias. This problem was pointed out in Fan and Li (2001) and formally shown
in Zou (2006) even in a finite parameter setting. To overcome this bias problem, Zou (2006)
proposed an adaptive lasso and Meinshausen (2007) proposed a relaxed lasso.

The idea in Zou (2006) is to use an adaptively weighted l1-penalty in the PLS problem (11).
Specifically, he introduced the penalization term

λ
d∑

j=1
ωj|βj|,

where λ� 0 is a regularization parameter and ω= .ω1, . . . , ωd/T is a known weight vector. He
further suggested the use of the weight vector ω̂ = 1=|β̂|γ , where γ � 0, the power is under-
stood componentwise and β̂ is a root n consistent estimator. Its connections with the family of
folded concavity PLS is apparent from problem (12) and Fig. 2. However, zero is an absorbing
state of the adaptive lasso.

The case γ = 1 is closely related to the non-negative garrotte in Breiman (1995). Zou (2006)
also showed that the adaptive lasso can be solved by the LARS algorithm, which was proposed in
Efron et al. (2004). Using the same finite parameter set-up as that in Knight and Fu (2000), Zou
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(2006) established that the adaptive lasso has oracle properties as long as the tuning parameter
is chosen in a way such that λ=n1=2 →0 and λn.γ−1/=2 →∞ as n→∞.

3.1.3. Dantzig selector
The Dantzig selector was proposed in Candes and Tao (2007) to recover a sparse high dimen-
sional parameter vector in the linear model. Adapted to the setting in equation (10), it is the
solution β̂DS to the l1-regularization problem

min
ζ∈Rd

.‖ζ‖1/ subject to ‖XT
Mr‖∞ �λdσ, .14/

where λd >0 is a tuning parameter, r=y−XMζ is an n-vector of the residuals and ‖·‖1 and ‖·‖∞
denote the l1- and l∞-norms respectively. They pointed out that the above convex optimization
problem can easily be recast as a linear program:

min
( d∑

i=1
ui

)
subject to −u �ζ �u and−λdσ1�XT

M.y −XMζ/�λdσ1,

where the optimization variables are u = .u1, . . . , ud/T and ζ ∈Rd , and 1 is a d-vector of 1s.
We shall show in theorem 4 in Section 5 that an application of SIS followed by the Dantzig

selector can achieve the ideal risk up to a factor of log.d/ with d < n, rather than the original
log.p/. In particular, if dimension p is growing exponentially fast, i.e. p= exp{O.nξ/} for some
ξ > 0, then a direct application of the Dantzig selector results in a loss of a factor O.nξ/ which
could be too large to be acceptable. In contrast, with the dimensionality first reduced by SIS the
loss is now merely of a factor log.d/, which is less than log.n/.

3.2. Sure independence screening based model selection methods
For the problem of ultrahigh dimensional variable selection, we propose first to apply a sure
screening method such as SIS to reduce the dimensionality from p to a relatively large scale
d , say, below sample size n. Then we use a lower dimensional model selection method such as
SCAD, the Dantzig selector, lasso, or adaptive lasso. We call SIS followed by SCAD and the
Dantzig selector SIS–SCAD and SIS–DS respectively for short in the paper. In some situations,
we may want to reduce further the model size down to d′ < d by using a method such as the
Dantzig selector along with hard thresholding or the lasso with suitable tuning, and finally to
choose a model with a more refined method such as SCAD or the adaptive lasso. In the paper
these two methods will be referred to as SIS–DS–SCAD and SIS–DS–AdaLasso respectively
for simplicity. Fig. 3 shows a schematic diagram of these approaches.

The idea of SIS makes it feasible to do model selection with ultrahigh dimensionality and
speeds up variable selection drastically. It also makes the model selection problem efficient and
modular. SIS can be used in conjunction with any model selection technique including Bayesian
methods (see, for example, George and McCulloch (1997)) and the lasso. We did not include

d’ d p

SIS

SCAD
DS

DS
SCAD

AdaLasso

Fig. 3. Methods of model selection with ultrahigh dimensionality
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an SIS–lasso method for numerical studies because of the approximate equivalence between the
Dantzig selector and the lasso (Bickel et al., 2008; Meinshausen et al., 2007).

3.3. Numerical studies
To study the performance of the SIS-based model selection methods that were proposed above,
we now present two simulations and one real data example.

3.3.1. Simulation I: ‘independent features’
For the first simulation, we used the linear model (1) with IID standard Gaussian predictors
and Gaussian noise with standard deviation σ = 1:5. We considered two such models with
.n, p/ = .200, 1000/ and .n, p/ = .800, 20000/. The sizes s of the true models, i.e. the numbers
of non-zero coefficients, were chosen to be 8 and 18, and the non-zero components of the
p-vectors β were randomly chosen as follows. We set a=4 log.n/=n1=2 and 5 log.n/=n1=2 respec-
tively and picked non-zero coefficients of the form .−1/u.a+|z|/ for each model, where u was
drawn from a Bernoulli distribution with parameter 0:4 and z was drawn from the standard
Gaussian distribution. In particular, the l2-norms ‖β‖ of the two simulated models are 6.795
and 8.908. For each model we simulated 200 data sets. Even with IID standard Gaussian pre-
dictors, these settings are non-trivial since there is non-negligible sample correlation between
the predictors, which reflects the difficulty of high dimensional variable selection. As evidence,
we report in Fig. 4 the distributions of the maximum absolute sample correlation when n=200
and p=1000 and p=5000. It reveals significant sample correlation between the predictors. The
multiple canonical correlation between two groups of predictors can be much larger.

To estimate the sparse p-vectors β, we employed six methods: the Dantzig selector using
a primal dual algorithm, the lasso using the LARS algorithm and the SIS–SCAD, SIS–DS,
SIS–DS–SCAD and SIS–DS–AdaLasso methods (see Fig. 3). For the SIS–SCAD and SIS–
DS methods, we chose d = [n= log.n/] and, for the last two methods, we chose d = n − 1 and
d′ = [n= log.n/] and in the middle step the Dantzig selector was used to reduce the model size
further from d to d′ by choosing variables with the d′ largest componentwise magnitudes of the
estimated d-vector (see Fig. 3).
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Fig. 4. Distributions of the maximum absolute sample correlation when nD200 and p D1000 ( ) and
nD200 and p D5000 (- - - - -)
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Fig. 5. Distribution of the minimum number of selected variables that is required to include the true model
by using SIS when (a) nD200 and p D1000 and (b) nD800 and p D20000 in simulation I

Table 1. Results of simulation I: medians of the selected model sizes and estimation errors (in
parentheses)

p Results for the following methods:

Dantzig Lasso SIS–SCAD SIS–DS SIS–DS– SIS–DS–
selector SCAD AdaLasso

1000 103 62.5 15 37 27 34
(1.381) (0.895) (0.374) (0.795) (0.614) (1.269)

20000 — — 37 119 60.5 99
— — (0.288) (0.732) (0.372) (1.014)

The simulation results are summarized in Fig. 5 and Table 1. Fig. 5, which was produced
on the basis of 500 simulations, depicts the distribution of the minimum number of selected
variables, i.e. the selected model size, that is required for sure screening by using SIS. It shows
clearly that in both settings it is safe to shrink the full model down to a submodel of size
[n= log.n/] with SIS, which is consistent with the sure screening property of SIS that is shown in
theorem 1 in Section 5. For example, for the case n=200 and p=1000, reducing the model size
to 50 includes the variables in the true model with high probability and, for the case n=800 and
p=20000, it is safe to reduce the dimension to about 500. For each of the above six methods, we
report in Table 1 the median of the selected model sizes and the median of the estimation errors
‖β̂−β‖ in l2-norm. Four entries of Table 1 are missing owing to the limited computing power
and software that were used. In comparison, SIS reduces the computational burden significantly.

From Table 1 we see that the Dantzig selector gives non-sparse solutions and the lasso using
cross-validation for selecting its tuning parameter produces large models. This can be because
the biases in the lasso require a small bandwidth in cross-validation, whereas a small bandwidth
results in lack of ‘sparsistency’ in the terminology of Ravikumar et al. (2007). This has also
been observed and demonstrated in work by Lam and Fan (2007) in the context of estimating
sparse covariance or precision matrices. We should point out here that a variation of the Dant-
zig selector, the Gauss–Dantzig selector in Candes and Tao (2007), should yield much smaller
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models, but for simplicity we did not include it in our simulation. Of all the methods, SIS–SCAD
performs the best and generates much smaller and more accurate models. It is clear to see that
SCAD gives more accurate estimates than the adaptive lasso in view of the estimation errors.
Also, SIS followed by the Dantzig selector improves the accuracy of estimation over using the
Dantzig selector alone, which is in line with our theoretical result.

3.3.2. Simulation II: ‘dependent’ features
For the second simulation, we used similar models to those in simulation I except that the
predictors are now correlated with each other. We considered three models with .n, p, s/ =
.200, 1000, 5/, (200, 1000, 8) and (800, 20000, 14), where s denotes the size of the true model,
i.e. the number of non-zero coefficients. The three p-vectors β were generated in the same way
as in simulation I. We set .σ, a/ = .1, 2 log.n/=n1=2/, .1:5, 4 log.n/=n1=2/, .2, 4 log.n/=n1=2/. In
particular, the l2-norms ‖β‖ of the three simulated models are 3.304, 6.795 and 7.257. To intro-
duce correlation between predictors, we first used MATLAB function sprandsym to generate
randomly an s× s symmetric positive definite matrix A with condition number n1=2= log.n/ and
drew samples of s predictors X1, . . . , Xs from N .0, A/. Then we took Zs+1, . . . , Zp ∼N .0, Ip−s/

and defined the remaining predictors as Xi =Zi +rXi−s, i=s+1, . . . , 2s, and Xi =Zi + .1−r/X1,
i=2s+1, . . . , p, with r =1−4 log.n/=p, 1−5 log.n/=p and 1−5 log.n/=p. For each model we
simulated 200 data sets.

We applied the same six methods as those in simulation I to estimate the sparse p-vec-
tors β. For the SIS–SCAD and SIS–DS methods, we chose d = [ 3

2 n= log.n/], [ 3
2 n= log.n/] and

[n= log.n/], and, for the last two methods, we chose d =n−1 and d′ = [ 3
2 n= log.n/], [ 3

2 n= log.n/]
and [n= log.n/]. The simulation results are similarly summarized in Fig. 6 (which is based on
500 simulations) and Table 2. Similar conclusions to those from simulation I can be drawn. As
in simulation I, for simplicity we did not include the Gauss–Dantzig selector. It is interesting to
observe that, in the first setting here, the lasso gives large models and its estimation errors are
noticeable compared with the norm of the true coefficient vector β.

3.3.3. Leukaemia data analysis
We also applied SIS to select features for the classification of a leukaemia data set. The leukae-
mia data from high density Affymetrix oligonucleotide arrays have previously been analysed
in Golub et al. (1999) and are available from http://www.broad.mit.edu/cgi-bin/
cancer/datasets.cgi. There are 7129 genes and 72 samples from two classes: 47 in class
ALL (acute lymphocytic leukaemia) and 25 in class AML (acute mylogenous leukaemia).
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Fig. 6. Distribution of the minimum number of selected variables that is required to include the true model
by using SIS when (a) n D 200, p D 1000 and s D 5, (b) n D 200, p D 1000 and s D 8 and (c) n D 800, p D
20000 and s D8 in simulation II
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Table 2. Results of simulation II: medians of the selected model sizes and estimation errors (in
parentheses)

p Results for the following methods:

Dantzig Lasso SIS–SCAD SIS–DS SIS–DS– SIS–DS–
selector SCAD AdaLasso

1000 103 91 21 56 27 52
(s=5) (1.256) (1.257) (0.331) (0.727) (0.476) (1.204)
(s=8) 103 74 18 56 31.5 51

(1.465) (1.257) (0.458) (1.014) (0.787) (1.824)
20000 — — 36 119 54 86

— — (0.367) (0.986) (0.743) (1.762)

Table 3. Classification errors in the leukaemia data
set

Method Training Test Number
error error of genes

SIS–SCAD–LD 0/38 1/34 16
SIS–SCAD–NB 4/38 1/34 16
Nearest shrunken 1/38 2/34 21

centroids

Among those 72 samples, 38 (27 in class ALL and 11 in class AML) of them were set as
the training sample and the remaining 34 (20 in class ALL and 14 in class AML) of them were
set to be the test sample.

We used the two methods SIS–SCAD–LD and SIS–SCAD–NB that will be introduced below
to carry out the classification. For each method, we first applied SIS to select d = [2n= log.n/]
genes with n=38 the training sample size that was chosen above and then used SCAD to obtain
a family of models indexed by the regularization parameter λ. Here, we should point out that
our classification results are not very sensitive to the choice of d as long as it is not too small.
There are certainly many ways to tune the regularization parameter λ. For simplicity, we chose
a λ that produces a model with size equal to the optimal number of features that was deter-
mined by the features annealed independence rules procedure in Fan and Fan (2008). 16 genes
were picked up by their approach. Now we selected 16 genes and obtained a linear model with
size 16 by using the SIS–SCAD method. Finally, the SIS–SCAD–LD method directly used the
above linear discrimination rule to do classification, and the SIS–SCAD–NB method applied
the naive Bayes rule to the resulting 16-dimensional feature space.

The classification results of the SIS–SCAD–LD, SIS–SCAD–NB and nearest shrunken cen-
troids method in Tibshirani et al. (2002) are shown in Table 3. The results of the nearest shrunken
centroids method were extracted from Tibshirani et al. (2002). The SIS–SCAD–LD and SIS–
SCAD–NB methods both chose 16 genes and made one test error with training errors 0 and 4
respectively, whereas the nearest shrunken centroids method picked up 21 genes and made one
training error and two test errors.
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4. Extensions of sure independence screening

Like model building in linear regression, there are many variations of the implementation
of correlation learning. This section discusses some extensions of SIS to enhance its methodo-
logical power. In particular, iterative SIS (ISIS) is proposed to overcome some weak points of
SIS. The methodological power of ISIS is illustrated by three simulated examples.

4.1. Some extensions of correlation learning
The key idea of SIS is to apply a single componentwise regression. Three potential issues,
however, might arise with this approach. First, some unimportant predictors that are highly
correlated with the important predictors can have higher priority for being selected by SIS than
other important predictors that are relatively weakly related to the response. Second, an impor-
tant predictor that is marginally uncorrelated but jointly correlated with the response cannot
be picked by SIS and thus will not enter the estimated model. Third, the issue of collinearity
between predictors adds difficulty to the problem of variable selection. These three issues will be
addressed in the extensions of SIS below, which allow us to use more fully the joint information
of the covariates rather than just the marginal information in variable selection.

4.1.1. Iterative sure independence screening: iterative correlation learning
It will be shown that when the model assumptions are satisfied, which excludes basically the
three aforementioned problems, SIS can accurately reduce the dimensionality from ultrahigh to
a moderate scale, say, below the sample size. But, when those assumptions fail, it could happen
that SIS would miss some important predictors. To overcome this problem, we propose below
ISIS to enhance the methodological power. It is an iterative application of the SIS approach to
variable selection. The essence is to apply iteratively a large-scale variable screening followed by
a moderate-scale careful variable selection.

ISIS works as follows. In the first step, we select a subset of k1 variables A1 ={Xi1 , . . . , Xik1
}

using an SIS-based model selection method such as the SIS–SCAD or SIS–lasso methods.
These variables were selected, using SCAD or the lasso, on the basis of the joint information of
[n= log.n/] variables that survive after correlation screening. Then we have an n-vector of resid-
uals from regressing the response Y over Xi1 , . . . , Xik1

. In the next step, we treat those residuals
as the new responses and apply the same method as in the previous step to the remaining p−k1
variables, which results in a subset of k2 variables A2 ={Xj1 , . . . , Xjk2

}. We remark that fitting
the residuals from the previous step on {X1, . . . , Xp}\A1 can significantly weaken the priority
of those unimportant variables that are highly correlated with the response through their asso-
ciations with Xi1 , . . . , Xik1

, since the residuals are uncorrelated with those selected variables in
A1. This helps to solve the first issue. It also makes those important predictors that are missed
in the previous step possible to survive, which addresses the second issue above. In fact, after
variables in A1 enter the model, those that are marginally weakly correlated with Y purely due
to the presence of variables in A1 should now be correlated with the residuals. We can keep on
doing this until we obtain l disjoint subsets A1, . . . , Al whose union A=∪l

i=1 Ai has a size d ,
which is less than n. In practical implementation, we can choose, for example, the largest l such
that |A|< n. From the selected features in A, we can choose the features by using a moderate
scale method such as SCAD, the lasso or the Dantzig selector.

For the problem of ultrahigh dimensional variable selection, we now have ISIS-based model
selection methods which are extensions of SIS-based model selection methods. Applying a mod-
erate dimensional method such as SCAD, the Dantzig selector, lasso or adaptive lasso to A will
produce a model that is very close to the true sparse model MÅ. The idea of ISIS is somewhat
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related to the boosting algorithm (Freund and Schapire, 1997). In particular, if SIS is used to
select only one variable at each iteration, i.e. |Ai|=1, ISIS is equivalent to a form of matching
pursuit or a greedy algorithm for variable selection (Barron et al., 2008).

4.1.2. Grouping and transformation of the input variables
Grouping the input variables is often used in various problems. For instance, we can divide the
pool of p variables into disjoint groups each with five variables. The idea of variable screening
via SIS can be applied to select a small number of groups. In this way there is less chance of miss-
ing the important variables by taking advantage of the joint information among the predictors.
Therefore a more reliable model can be constructed.

A notorious difficulty of variable selection lies in the collinearity between the covariates. Effec-
tive ways to rule out those unimportant variables that are highly correlated with the important
variables are being sought after. A good idea is to transform the input variables. Two possible
ways stand out in this regard. One is subject-related transformation and the other is statistical
transformation.

Subject-related transformation is a useful tool. In some cases, a simple linear transformation
of the input variables can help to weaken correlation between the covariates. For example, in
somatotype studies common sense tells us that predictors such as the weights w1, w2 and w3
at 2, 9 and 18 years are positively correlated. We could directly use w1, w2 and w3 as the input
variables in a linear regression model, but a better way of model selection in this case is to
use less correlated predictors such as .w1, w2 −w1, w3 −w2/T, which is a linear transformation
of .w1, w2, w3/T that specifies the changes of the weights instead of the weights themselves.
Another important example is financial time series such as the prices of the stocks or interest
rates. Differencing can significantly weaken the correlation between those variables.

Methods of statistical transformation include an application of a clustering algorithm such
as the hierarchical clustering or k-means algorithm using the correlation metrics first to group
variables into highly correlated groups and then apply sparse principal components analysis
to construct weakly correlated predictors. Now those weakly correlated predictors from each
group can be regarded as the new covariates and an SIS-based model selection method can be
employed to select them.

The statistical techniques that we introduced above can help to identify the important fea-
tures and thus to improve the effectiveness of the SIS-based model selection strategy. Intro-
duction of non-linear terms and transformation of variables can also be used to reduce the
modelling biases of linear models. Ravikumar et al. (2007) introduced sparse additive models
to deal with non-linear feature selection.

4.2. Numerical evidence
To study the performance of the ISIS method that was proposed above, we now present three
simulated examples. The aim is to examine the extent to which ISIS can improve SIS in the
situation where the conditions of SIS fail. We evaluate the methods by counting the frequencies
that the selected models include all the variables in the true model, namely the ability of correctly
screening unimportant variables.

4.2.1. Simulated example I
For the first simulated example, we used a linear model

Y =5X1 +5X2 +5X3 + ",
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Table 4. Results of simulated example I: accuracy of SIS, the lasso and
ISIS in including the true model {X1, X2, X3}

p n Method Results for the following values of ρ:

ρ=0 ρ=0.1 ρ=0.5 ρ=0.9

100 20 SIS 0.755 0.855 0.690 0.670
Lasso 0.970 0.990 0.985 0.870
ISIS 1 1 1 1

50 SIS 1 1 1 1
Lasso 1 1 1 1
ISIS 1 1 1 1

1000 20 SIS 0.205 0.255 0.145 0.085
Lasso 0.340 0.555 0.556 0.220
ISIS 1 1 1 1

50 SIS 0.990 0.960 0.870 0.860
Lasso 1 1 1 1
ISIS 1 1 1 1

70 SIS 1 0.995 0.97 0.97
Lasso 1 1 1 1
ISIS 1 1 1 1

where X1, . . . , Xp are p predictors and "∼N.0, 1/ is noise that is independent of the predictors.
In the simulation, a sample of .X1, . . . , Xp/ with size n was drawn from a multivariate nor-
mal distribution N.0, Σ/ whose covariance matrix Σ= .σij/p×p has entries σii = 1, i= 1, . . . , p

and σij =ρ, i �= j. We considered 20 such models characterized by .p, n, ρ/ with p=100, 1000,
n=20, 50, 70 and ρ=0, 0.1, 0.5, 0.9, and for each model we simulated 200 data sets.

For each model, we applied SIS and ISIS to select n variables and tested their accuracy in
including the true model {X1, X2, X3}. For ISIS, the SIS–SCAD method with d = [n= log.n/]
was used at each step and we kept on collecting variables in those disjoint Ajs until we obtained
n variables (if there were more variables than needed in the final step, we included only those
with the largest absolute coefficients). In Table 4, we report the percentages of SIS, lasso and
ISIS that include the true model. All these three methods select n − 1 variables, to make fair
comparisons. It is clear that the collinearity (large value of ρ) and high dimensionality deterio-
rate the performance of SIS and the lasso, and the lasso outperforms SIS somewhat. However,
when the sample size is 50 or more, the difference in performance is very small, but SIS has much
less computational cost. In contrast, ISIS improves dramatically the performance of this simple
SIS and lasso. Indeed, in this simulation, ISIS always picks all true variables. It can even have
less computational cost than the lasso when the lasso is used in the implementation of ISIS.

4.2.2. Simulated example II
For the second simulated example, we used the same set-up as in example I except that ρ was
fixed to be 0.5 for simplicity. In addition, we added a fourth variable X4 to the model and the
linear model is now

Y =5X1 +5X2 +5X3 −15ρ1=2X4 + ",

where X4 ∼N.0, 1/ and has correlation ρ1=2 with all the other p−1 variables. The way that X4
was introduced is to make it uncorrelated with the response Y. Therefore, SIS cannot pick up
the true model except by chance.
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Table 5. Results of simulated example II: accuracy
of SIS, the lasso and ISIS in including the true model
{X1, X2, X3, X4}†

p Method Results for the following values of n:

n=20 n=50 n=70

100 SIS 0.025 0.490 0.740
Lasso 0.000 0.360 0.915
ISIS 1 1 1

1000 SIS 0.000 0.000 0.000
Lasso 0.000 0.000 0.000
ISIS 1 1 1

†ρ=0:5.

Again we simulated 200 data sets for each model. In Table 5, we report the percentages of
SIS, lasso and ISIS that include the true model of four variables. In this simulation example,
SIS performs somewhat better than the lasso in variable screening, and ISIS outperforms sig-
nificantly the simple SIS and lasso. In this simulation it always picks all true variables. This
demonstrates that ISIS can effectively handle the second problem that was mentioned at the
beginning of Section 4.1.

4.2.3. Simulated example III
For the third simulated example, we used the same set-up as in example II except that we added
a fifth variable X5 to the model and the linear model is now

Y =5X1 +5X2 +5X3 −15ρ1=2X4 +X5 + ",

where X5 ∼ N.0, 1/ and is uncorrelated with all the other p − 1 variables. Again X4 is uncor-
related with the response Y. The way that X5 was introduced was to make it have a very small
correlation with the response and in fact the variable X5 has the same proportion of contribu-
tion to the response as the noise " does. For this particular example, X5 has weaker marginal
correlation with Y than X6, . . . , Xp and hence has a lower priority of being selected by SIS.

For each model we simulated 200 data sets. In Table 6, we report the accuracy in percentage
of SIS, lasso and ISIS in including the true model. It is clear to see that ISIS can improve signifi-
cantly over the simple SIS and lasso and always picks all true variables. This shows again that
ISIS can pick up two difficult variables X4 and X5, which addresses simultaneously the second
and third problem at the beginning of Section 4.

4.2.4. Simulations I and II in Section 3.3 revisited
Now let us go back to the two simulation studies that were presented in Section 3.3. For each of
them, we applied the technique of ISIS with SCAD and d = [n= log.n/] to select q= [n= log.n/]
variables. After that, we estimated the q-vector β by using SCAD. This method is referred to as
ISIS–SCAD. We report in Table 7 the median of the model sizes selected and the median of the
estimation errors ‖β̂ −β‖ in l2-norm. We can see clearly that ISIS improves over simple SIS.
The improvements are more drastic for simulation II in which covariates are more correlated
and the variable selections are more challenging.
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Table 6. Results of simulated example III: accuracy
of SIS, the lasso and ISIS in including the true model
{X1, X2, X3, X4, X5}†

p Method Results for the following values of n:

n=20 n=50 n=70

100 SIS 0.000 0.285 0.645
Lasso 0.000 0.310 0.890
ISIS 1 1 1

1000 SIS 0.000 0.000 0.000
Lasso 0.000 0.000 0.000
ISIS 1 1 1

†ρ=0:5.

Table 7. Simulations I and II in Section 3.3 revisited:
medians of the model sizes selected and the estimation
errors (in parentheses) for the ISIS–SCAD method

p Results for Results for
simulation I simulation II

1000 13 .s=5/ 11
(0.329) (0.223)

.s=8/ 13.5
(0.366)

20000 31 27
(0.246) (0.315)

5. Asymptotic analysis

We introduce an asymptotic framework below and present the sure screening property for both
SIS and ITRRS as well as the consistency of the SIS-based model selection methods SIS–DS
and SIS–SCAD.

5.1. Assumptions
Recall from model (1) that Y =Σp

i=1 βiXi + ". Throughout the paper we let MÅ = {1 � i � p :
βi �=0} be the true sparse model with non-sparsity size s=|MÅ| and define

z =Σ−1=2x,

Z=XΣ−1=2,
.15/

where x = .X1, . . . , Xp/T and Σ= cov.x/. Clearly, the n rows of the transformed design matrix
Z are IID copies of z which now has covariance matrix Ip. For simplicity, all the predictors
X1, . . . , Xp are assumed to be standardized to have mean 0 and standard deviation 1. Note that
the design matrix X can be factored into ZΣ1=2. Below we shall make assumptions on Z and Σ
separately.
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We denote by λmax.·/ and λmin.·/ the largest and smallest eigenvalues of a matrix respec-
tively. For Z, we are concerned with a concentration property of its extreme singular values as
follows.

The random matrix Z is said to have the concentration property if there are some c, c1 > 1
and C1 > 0 such that the deviation inequality

P{λmax.p̃−1Z̃Z̃
T

/>c1 or λmin.p̃−1Z̃Z̃
T

/< 1=c1}� exp.−C1n/ .16/

holds for any n × p̃ submatrix Z̃ of Z with cn < p̃ � p. We shall call it property C for short.
Property C amounts to a distributional constraint on z. Intuitively, it means that with large
probability the n non-zero singular values of the n× p̃ matrix Z̃ are of the same order, which
is reasonable since p̃−1Z̃Z̃T will approach In as p̃ → ∞: the larger the p̃, the closer to In. It
relies on random-matrix theory to derive the deviation inequality (16). In particular, property
C holds when x has a p-variate Gaussian distribution (see Appendix A.7). We conjecture that
it should be shared by a wide class of spherically symmetric distributions. For studies on the
extreme eigenvalues and limiting spectral distributions, see, for example, Silverstein (1985), Bai
and Yin (1993), Bai (1999), Johnstone (2001) and Ledoux (2001, 2005).

Some of the assumptions below are purely technical and serve only to provide theoretical
understanding of the newly proposed methodology. We have no intent to make our assump-
tions the weakest possible.

Condition 1. p > n and log.p/=O.nξ/ for some ξ ∈ .0, 1−2κ/, where κ is given by condition
3.

Condition 2. z has a spherically symmetric distribution and property C. Also, "∼N .0, σ2/ for
some σ > 0.

Condition 3. var.Y/=O.1/ and, for some κ�0 and c2, c3 > 0,

min
i∈MÅ

|βi|� c2

nκ
and min

i∈MÅ

|cov.β−1
i Y , Xi/|� c3:

As seen later, κ controls the rate of probability error in recovering the true sparse model.
Although b=mini∈MÅ

|cov.β−1
i Y , Xi/| is assumed here to be bounded away from 0, our asymp-

totic study applies as well to the case where b→0 as n→∞. In particular, when the variables
in MÅ are uncorrelated, b = 1. This condition rules out the situation in which an important
variable is marginally uncorrelated with Y , but jointly correlated with Y.

Condition 4. There are some τ �0 and c4 > 0 such that

λmax.Σ/� c4nτ :

This condition rules out the case of strong collinearity.
The largest eigenvalue of the population covariance matrix Σ is allowed to diverge as n grows.

When there are many predictors, often their covariance matrix is block diagonal or nearly block
diagonal under a suitable permutation of the variables. Therefore λmax.Σ/ usually does not
grow too fast with n. In addition, condition 4 holds for the covariance matrix of a stationary
time series (see Bickel and Levina (2004, 2008)). See also Grenander and Szegö (1984) for more
details on the characterization of extreme eigenvalues of the covariance matrix of a stationary
process in terms of its spectral density.
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5.2. Sure screening property
Analysing the p-vector ω in equation (2) when p > n is essentially difficult. The approach that
we took is first to study the specific case with Σ= Ip and then to relate the general case to the
specific case.

Theorem 1 (accuracy of SIS). Under conditions 1–4, if 2κ + τ < 1 then there is some θ <

1−2κ− τ such that, when γ ∼ cn−θ with c> 0, we have, for some C> 0,

P.MÅ ⊂Mγ/=1−O[exp{−Cn1−2κ= log.n/}]:

We should point out here that s� [γn] is implied by our assumptions as demonstrated in the
technical proof. Theorem 1 shows that SIS has the sure screening property and can reduce from
exponentially growing dimension p down to a relatively large scale d = [γn] = O.n1−θ/ < n for
some θ > 0, where the reduced model M=Mγ still contains all the variables in the true model
with an overwhelming probability. In particular, we can choose the submodel size d to be n−1
or n= log.n/ for SIS if conditions 1–4 are satisfied.

Another interpretation of theorem 1 is that it requires the model size d = [γn] = nθÅ
with

θÅ > 2κ+ τ in order to have the sure screening property. The weaker the signal, the larger the κ
and hence the larger the required model size is. Similarly, the more severe the collinearity, the
larger the τ and the larger the required model size is. In this sense, the restriction that 2κ+τ <1
is not needed, but κ< 1

2 is needed since we cannot detect signals that are of smaller order than
root n consistent. In the former case, there is no guarantee that θÅ can be taken to be smaller
than 1.

The proof of theorem 1 depends on the iterative application of the following theorem, which
demonstrates the accuracy of each step of ITRRS. We first describe the result of the first step
of ITRRS. It shows that, as long as the ridge parameter λ is sufficiently large and the percent-
age of remaining variables δ is sufficiently large, the sure screening property is ensured with
overwhelming probability.

Theorem 2 (asymptotic sure screening). Under conditions 1–4, if 2κ+τ <1, λ.p3=2n/−1 →∞,
and δn1−2κ−τ →∞ as n→∞, then we have, for some C> 0,

P.MÅ ⊂M1
δ,λ/=1−O[exp{−Cn1−2κ= log.n/}]:

Theorem 2 reveals that, when the tuning parameters are chosen appropriately, with an over-
whelming probability the submodel M1

δ,λ will contain the true model MÅ and its size is an
order nθ (for some θ > 0) lower than the original one. This property stimulated us to propose
ITRRS.

Theorem 3 (accuracy of ITRRS). Let the assumptions of theorem 2 be satisfied. If δnθ →∞
as n→∞ for some θ < 1 − 2κ− τ , then successive applications of procedure (8) for k times
results in a submodel Mδ,λ with size d = [δkp] <n such that, for some C> 0,

P.MÅ ⊂Mδ,λ/=1−O[exp{−Cn1−2κ= log.n/}]:

Theorem 3 follows from iterative application of theorem 2 k times, where k is the first integer
such that [δkp] < n. This implies that k = O{log.p/= log.n/} = O.nξ/. Therefore, the accumu-
lated error probability, from the union bound, is still exponentially small with a possibility of a
different constant C.

ITRRS has now been shown to have the sure screening property. As mentioned before, SIS
is a specific case of ITRRS with an infinite regularization parameter and hence enjoys also the
sure screening property.
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Note that the number of steps in ITRRS depends on the choice of δ ∈ .0, 1/. In particular,
δ cannot be too small or, equivalently, the number of iteration steps in ITRRS cannot be too
large, owing to the accumulation of the probability errors of missing some important variables
over the iterations. In particular, the stepwise deletion method which deletes one variable each
time in ITRRS might not work since it requires p−d steps of iterations, which may exceed the
error bound in theorem 2.

5.3. Consistency of methods SIS–DS and SIS–SCAD
To study the property of the Dantzig selector, Candes and Tao (2007) introduced the notion of
the uniform uncertainty principle on deterministic design matrices which essentially states that
the design matrix obeys a ‘restricted isometry hypothesis’. Specifically, let A be an n×d deter-
ministic design matrix and for any subset T ⊂{1, . . . , d}. Denote by AT the n×|T | submatrix of
A that is obtained by extracting its columns corresponding to the indices in T. For any positive
integer S � d, the S-restricted isometry constant δS = δS.A/ of A is defined to be the smallest
quantity such that

.1− δS/‖v‖2 �‖AT v‖2 � .1+ δS/‖v‖2

holds for all subsets T with |T |�S and v ∈R|T |. For any pair of positive integers S and S′ with
S +S′ �d, the .S, S′/-restricted orthogonality constant θS,S′ =θS,S′.A/ of A is defined to be the
smallest quantity such that

| 〈AT v, AT ′v′〉 |�θS,S′ ‖v‖‖v′‖
holds for all disjoint subsets T and T ′ of cardinalities |T |�S and |T ′|�S′, v∈R|T | and v′ ∈R|T ′|.

The following theorem is obtained by the sure screening property of SIS in theorem 1 along
with theorem 1.1 in Candes and Tao (2007), where ε∼N .0, σ2I/ for some σ > 0. To avoid the
selection bias in the screening step, we can split the sample into two halves: the first half is used
to screen variables and the second half is used to construct the Dantzig estimator. The same
technique applies to SCAD, but we avoid this step to facilitate the presentation.

Theorem 4 (consistency of method SIS–DS). Assume, with large probability, that δ2s.XM/+
θs,2s.XM/� t<1 and choose λd ={2 log.d/}1=2 in problem (14). Then, with large probability,
we have

‖β̂DS −β‖2 �C {log.d/}1=2 sσ2,

where C =32=.1− t/2 and s is the number of non-zero components of β.

Theorem 4 shows that method SIS–DS, i.e. SIS followed by the Dantzig selector, can now
achieve the ideal risk up to a factor of log.d/ with d<n, rather than the original log.p/.

Now let us look at method SIS–SCAD, i.e. SIS followed by SCAD. For simplicity, a common
regularization parameter λ is used for the SCAD penalty function. Let β̂SCAD = .β̂1, . . . , β̂d/T

be a minimizer of the SCAD–PLS method in problem (11). The following theorem is obtained
by the sure screening property of SIS in theorem 1 along with theorems 1 and 2 in Fan and Peng
(2004).

Theorem 5 (oracle properties of method SIS–SCAD). If d = o.n1=3/ and the assumptions
of theorem 2 in Fan and Peng (2004) are satisfied, then, with probability tending to 1, the
SCAD–PLS estimator β̂SCAD satisfies

(a) β̂i =0 for any i =∈MÅ and
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(b) the components of β̂SCAD in MÅ perform as well as if the true model MÅ were known.

The SIS–SCAD method has been shown to enjoy oracle properties.

6. Concluding remarks

This paper studies the problem of high dimensional variable selection for the linear model. The
concept of sure screening is introduced and a sure screening method which is based on correla-
tion learning that we call SIS is proposed. SIS has been shown to be capable of reducing from
exponentially growing dimensionality to below sample size accurately. It speeds up variable
selection dramatically and can also improve the accuracy of estimation when dimensionality
is ultrahigh. SIS combined with well-developed variable selection techniques including SCAD,
the Dantzig selector, lasso and adaptive lasso provides a powerful tool for high dimensional
variable selection. The tuning parameter d can be taken as d = [n= log.n/] or d =n−1, depending
on which model selector is used in the second stage. For non-concave PLS problem (12), when
we directly apply the local linear approximation algorithm to the original problem with d =p,
we need initial values that are not available. SIS provides a method that makes this feasible
by screening many variables and furnishing the corresponding coefficients with 0s. The initial
value in problem (12) can be taken as the ordinary least squares estimate if d = [n= log.n/] and
0 (corresponding to w.0/

j ≡p′
λ.0+// when d =n−1. The latter corresponds to the lasso.

Some extensions of SIS have also been discussed. In particular, ISIS was proposed to en-
hance the finite sample performance of SIS, particularly in the situations where the technical
conditions fail. This raises a challenging question: to what extent does ISIS relax the conditions
for SIS to have the sure screening property? An ITRRS has been introduced to understand better
the rationale of SIS and serves as a technical device for proving the sure screening property. As
a by-product, it is demonstrated that the stepwise deletion method may have no sure screening
property when the dimensionality is of an exponential order. This raises another interesting
question whether the sure screening property holds for a greedy algorithm such as the stepwise
addition or matching pursuit and how large the selected model must be if it does.

The paper leaves open the problem of extending the SIS and ISIS methods that were intro-
duced for the linear models to the family of generalized linear models and other general loss
functions such as the hinge loss and the loss that is associated with the support vector machine.
Questions including how to define associated residuals to extend ISIS and whether the sure
screening property continues to hold naturally arise. The paper focuses only on random designs
which commonly appear in statistical problems, whereas for many problems in fields such as
image analysis and signal processing the design matrices are often deterministic. It remains open
how to impose a set of conditions that ensure the sure screening property. It also remains open
whether the sure screening property can be extended to the sparse additive model in non-para-
metric learning as studied by Ravikumar et al. (2007). These questions are beyond the scope of
the current paper and are interesting topics for future research.
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Appendix A

Hereafter we use both C and c to denote generic positive constants for notational convenience.

A.1. Proof of theorem 1
Motivated by the results in theorems 2 and 3, the idea is to apply successively dimensionality reduction in
a way that is described in expression (17) below. To enhance readability, we split the whole proof into two
main steps and multiple substeps.

Step 1: let δ ∈ .0, 1/. Similarly to expression (8), we define a submodel

M̃1
δ ={1� i�p : |ωi| is among the first [δp] largest of all}: .17/

We aim to show that, if δ →0 in such a way that δn1−2κ−τ →∞ as n→∞, we have, for some C> 0,

P.MÅ ⊂M̃1
δ/=1−O[exp{−Cn1−2κ= log.n/}]: .18/

The main idea is to relate the general case to the specific case with Σ= Ip, which is separately studied in
Appendices A.4–A.6 below. A key ingredient is the representation (19) below of the p×p random matrix
XTX. Throughout, let S= .ZTZ/+ZTZ and ei = .0, . . . , 1, . . . , 0/T be a unit vector in Rp with the ith entry
1 and 0 elsewhere, i=1, . . . , p.

Since X =ZΣ1=2, it follows from equation (45) in Appendix A.4 that

XTX =pΣ1=2ŨT diag.μ1, . . . , μn/ŨΣ1=2, .19/

where μ1, . . . , μn are n eigenvalues of p−1ZZT, Ũ = .In, 0/n×pU, and U is uniformly distributed on the
orthogonal group O.p/. By expressions (1) and (2), we have

ω=XTXβ+XTε
∧=ξ+η: .20/

We shall study the above two random vectors ξ and η separately.

Step 1.1: first, we consider term ξ= .ξ1, . . . , ξp/T =XTXβ.

Step 1.1.1 (bounding ‖ξ‖ from above): it is obvious that

diag.μ2
1, . . . , μ2

n/�λmax.p−1ZZT/2In

and ŨΣŨ
T �λmax.Σ/In. These and equation (19) lead to

‖ξ‖2 �p2 λmax.Σ/ λmax.p−1ZZT/2βTΣ1=2Ũ
T

ŨΣ1=2β: .21/

Let Q∈O.p/ such that Σ1=2β=‖Σ1=2β‖Qe1. Then, it follows from lemma 1 that

βTΣ1=2Ũ
T

ŨΣ1=2β=‖Σ1=2β‖2〈QTSQe1, e1〉 .d/= ‖Σ1=2β‖2〈Se1, e1〉,
where we use the symbol

.d/= to denote being identical in distribution for brevity. By condition 3,‖Σ1=2β‖2 =
βTΣβ�var.Y/=O.1/ and thus, by lemma 4, we have, for some C> 0,

P

{
βTΣ1=2Ũ

T
ŨΣ1=2β >O

(
n

p

)}
�O{exp.−Cn/}: .22/

Since λmax.Σ/=O.nτ / and P{λmax.p−1ZZT/>c1}�exp.−C1n/ by conditions 2 and 4, (21) and (22) along
with Bonferroni’s inequality yield

P{‖ξ‖2 >O.n1+τ p/}�O{exp.−Cn/}: .23/

Step 1.1.2 (bounding |ξi|, i ∈ MÅ, from below): this needs a delicate analysis. Now fix an arbitrary
i∈MÅ. By equation (19), we have

ξi =peT
i Σ

1=2Ũ
T

diag.μ1, . . . , μn/ŨΣ1=2β:

Note that ‖Σ1=2ei‖=var.Xi/
1=2 =1 and ‖Σ1=2β‖=O.1/. By condition 3, there is some c> 0 such that
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|〈Σ1=2β, Σ1=2ei〉|= |βi||cov.β−1
i Y , Xi/|� c=nκ: .24/

Thus, there is a Q∈O.p/ such that Σ1=2ei =Qe1 and

Σ1=2β=〈Σ1=2β, Σ1=2ei〉Qe1 +O.1/Qe2:

Since .μ1, . . . , μn/T is independent of Ũ by lemma 1 and the uniform distribution on the orthogonal group
O.p/ is invariant under itself, it follows that

ξi
.d/= p〈Σ1=2β, Σ1=2ei〉R1 +O.p/R2

∧= ξi,1 + ξi,2, .25/

where R = .R1, R2, . . . , Rp/T = ŨT diag.μ1, . . . , μn/Ũe1. We shall examine the above two terms ξi,1 and ξi,2
separately. Clearly,

R1 � eT
1 ŨTλmin.p−1ZZT/InŨe1 =λmin.p−1ZZT/〈Se1, e1〉,

and thus, by condition 2, lemma 4 in Appendix A.5 and Bonferroni’s inequality, we have, for some c > 0
and C> 0,

P.R1 <cn=p/�O{exp.−Cn/}:

This, along with expression (24), gives, for some c> 0,

P.|ξi,1|<cn1−κ/�O{exp.−Cn/}: .26/

Similarly to step 1.1.1, it can be shown that

P{‖R‖2 >O.n=p/}�O{exp.−Cn/}: .27/

Since .μ1, . . . , μn/T is independent of Ũ by lemma 1, the argument in the proof of lemma 5 in Appendix A.6
applies to show that the distribution of R̃= .R2, . . . , Rp/T is invariant under the orthogonal group O.p−1/.
Then, it follows that R̃ =.d/‖R̃‖ W=‖W‖, where W = .W1, . . . , Wp−1/

T ∼N .0, Ip−1/, independent of ‖R̃‖.
Thus, we have

R2
.d/= ‖R̃‖W1=‖W‖: .28/

In view of expressions (27), (28) and ξi,2 =O.pR2/, applying the argument in the proof of lemma 5 gives,
for some c> 0,

P.|ξi,2|>cn1=2|W |/�O{exp.−Cn/}, .29/

where W is an N .0, 1/-distributed random variable.
Let xn = c

√
.2C/n1−κ=

√
log.n/. Then, by the classical Gaussian tail bound, we have

P.cn1=2|W |>xn/�√
.2=π/

exp{−Cn1−2κ= log.n/}√
.2C/n1=2−κ=

√
log.n/

=O[exp{−Cn1−2κ= log.n/}],

which, along with inequality (29) and Bonferroni’s inequality, shows that

P.|ξi,2|>xn/�O[exp{−Cn1−2κ= log.n/}]: .30/

Therefore, by Bonferroni’s inequality, combining expressions (25), (26) and (30) gives, for some c> 0,

P.|ξi|<cn1−κ/�O[exp{−Cn1−2κ= log.n/}], i∈MÅ: .31/

Step 1.2: then, we examine term η= .η1, . . . , ηp/T =XTε.

Step 1.2.1 (bounding ‖η‖ from above): clearly, we have

XXT =ZΣZT �Z λmax.Σ/IpZT =p λmax.Σ/ λmax.p−1ZZT/In:

Then, it follows that

‖η‖2 =εTXXTε�p λmax.Σ/ λmax.p−1ZZT/‖ε‖2: .32/

From condition 2, we know that "2
1=σ

2, . . . , "2
n=σ2 are IID χ2

1-distributed random variables. Thus, by
inequality (47) in lemma 3 in Appendix A.5, there are some c> 0 and C> 0 such that
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P.‖ε‖2 >cnσ2/� exp.−Cn/,

which along with inequality (32), conditions 2 and 4, and Bonferroni’s inequality yield

P{‖η‖2 >O.n1+τ p/}�O{exp.−Cn/}: .33/

Step 1.2.2 (bounding |ηi| from above): given that X = X, η = XTε ∼ N .0, σ2XTX/. Hence, .ηi|X =
X/∼N{0, var.ηi|X =X/} with

var.ηi|X =X/=σ2eT
i XTXei: .34/

Let E be the event {var.ηi|X/� cn} for some c > 0. Then, using the same argument as that in step 1.1.1,
we can easily show that, for some C> 0,

P.Ec/�O{exp.−Cn/}: .35/

On the event E , we have

P.|ηi|>x|X/�P{√
.cn/|W |>x} for any x> 0, .36/

where W is an N .0, 1/-distributed random variable. Thus, it follows from inequalities (35) and (36) that

P.|ηi|>x/�O{exp.−Cn/}+P{√
.cn/|W |>x}: .37/

Let x′
n =√

.2cC/n1−κ=
√

log.n/. Then, invoking the classical Gaussian tail bound again, we have

P{√
.cn/|W |>x′

n}=O[exp{−Cn1−2κ= log.n/}],

which, along with inequality (37) and condition 1, shows that

P{max
i

|ηi|>o.n1−κ/}�O[p exp{−Cn1−2κ= log.n/}]=O[exp{−Cn1−2κ= log.n/}]: .38/

Step 1.3: finally, we combine the results that were obtained in steps 1.1 and 1.2. By Bonferroni’s inequal-
ity, it follows from expressions (20), (23), (31), (33) and (38) that, for some constants c1, c2, C> 0,

P. min
i∈MÆ

|ωi|<c1n
1−κ or ‖ω‖2 >c2n

1+τ p/�O[s exp{−Cn1−2κ= log.n/}]: .39/

This shows that, with overwhelming probability 1 − O[s exp{−Cn1−2κ= log.n/}], the magnitudes of ωi,
i∈MÅ, are uniformly at least of order n1−κ and more importantly, for some c> 0,

#{1�k �p : |ωk|� min
i∈MÅ

|ωi|}� c
n1+τ p

.n1−κ/
2 = cp

n1−2κ−τ
, .40/

where #{·} denotes the number of elements in a set.
Now, we are ready to see from inequality (40) that, if δ satisfies δn1−2κ−τ →∞ as n→∞, then equation

(18) holds for some constant C> 0 that is larger than that in inequality (39).

Step 2: fix an arbitrary r∈ .0, 1/ and choose a shrinking factor δ of the form .n=p/1=.κ−r/, for some integer
k �1. We successively perform dimensionality reduction until the number of remaining variables drops
to below sample size n.

(a) First, carry out procedure (17) to the full model M̃0
δ

∧={1, . . . , p} and obtain a submodel M̃1
δ

with size [δp].
(b) Then, apply a similar procedure to the model M̃1

δ and again obtain a submodel M̃2
δ ⊂M̃1

δ with
size [δ2p], and so on.

(c) Finally, obtain a submodel M̃δ
∧=M̃k

δ with size d = [δkp]= [δrn] <n, where [δk−1p]= [δr−1n] >n.

It is obvious that M̃δ =Mγ , where γ = δr < 1.
Now fix an arbitrary θ1 ∈ .0, 1−2κ−τ / and pick some r<1 very close to 1 such that θ0 =θ1=r<1−2κ−τ .

We choose a sequence of integers k �1 in a way such that

δn1−2κ−τ →∞ and δnθ0 →0 as n→∞, .41/

where δ = .n=p/1=.k−r/. Then, applying the above scheme of dimensionality reduction results in a submodel
M̃δ =Mγ , where γ = δr satisfies

γnr.1−2κ−τ / →∞ and γnθ1 →0 as n→∞: .42/
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Before going further, let us make two important observations. First, for any principal submatrix Σ0 of
Σ corresponding to a subset of variables, condition 4 ensures that

λmax.Σ0/�λmax.Σ/� c4nτ :

Second, by definition, property (16) holds for any n× p̃ submatrix Z̃ of Z with cn<p̃�p, where c>1 is
some constant. Thus, the probability bound in equation (18) is uniform over dimension p̃∈ .cn, p]. There-
fore, for some C>0, by expressions (41) and (18) we have, in each step 1� i�k of the above dimensionality
reduction,

P.MÅ ⊂M̃i

δ|MÅ ⊂M̃i−1
δ /=1−O[exp{−Cn1−2κ= log.n/}],

which along with Bonferroni’s inequality gives

P.MÅ ⊂Mγ/=1−O[k exp{−Cn1−2κ= log.n/}]: .43/

It follows from expression (41) that k = O{log.p/= log.n/}, which is of order O{nξ= log.n/} by condi-
tion 1. Thus, a suitable increase of the constant C> 0 in equation (43) yields

P.MÅ ⊂Mγ/=1−O[exp{−Cn1−2κ= log.n/}]:

Finally, in view of expression (42), the above probability bound holds for any γ ∼cn−θ, with θ <1−2κ−τ
and c> 0. This completes the proof.

A.2. Proof of theorem 2
We observe that expression (8) uses only the order of componentwise magnitudes of ωλ, so it is invariant
under scaling. Therefore, in view of expression (7) we see from step 1 of the proof of theorem 1 that
theorem 2 holds for sufficiently large regularization parameter λ.

It remains to specify a lower bound on λ. Now we rewrite the p-vector λωλ as

λωλ =ω−{Ip − .Ip +λ−1XTX/−1}ω:

Let ζ = .ζ1, . . . , ζp/T ={Ip − .Ip +λ−1XTX/−1}ω. It follows easily from XTX =Σ1=2ZTZΣ1=2 that

λmax.XTX/�p λmax.p−1ZZT/ λmax.Σ/,

and thus

‖ζ‖2 �λmax{Ip − .Ip +λ−1XTX/−1}2‖ω‖2

�λmax.λ−1XTX/2‖ω‖2

�λ−2p2 λmax.p−1ZZT/2 λmax.Σ/2‖ω‖2,

which along with inequality (39), conditions 2 and 4, and Bonferroni’s inequality show that

P{‖ζ‖>O.λ−1n.1+3τ /=2p3=2/}�O[s exp{−Cn1−2κ= log.n/}]:

Again, by Bonferroni’s inequality and inequality (39), any λ satisfying λ−1n.1+3τ /=2p3=2 = o.n1−κ/ can be
used. Note that κ+τ=2< 1

2 by assumption. So in particular, we can choose any λ satisfying λ.p3=2n/−1 →∞
as n→∞.

A.3. Proof of theorem 3
Theorem 3 is a straightforward corollary to theorem 2 by the argument in step 2 of the proof of theorem 1.

Throughout Appendices A.4–A.6 below, we assume that p > n and the distribution of z is continuous
and spherically symmetric, i.e. invariant under the orthogonal group O.p/. For brevity, we use L.·/ to
denote the probability law or distribution of the random variable indicated. Let Sq−1.r/={x∈Rq :‖x‖= r}
be the centred sphere with radius r in q-dimensional Euclidean space Rq. In particular, Sq−1 is referred to
as the unit sphere in Rq.

A.4. The distribution of SD ( ZTZ)CZTZ
It is a classical fact that the orthogonal group O.p/ is compact and admits a probability measure that is
invariant under the action of itself, say,
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Q ·g ∧=Qg, g ∈O.p/, Q∈O.p/:

This invariant distribution is referred to as the uniform distribution on the orthogonal group O.p/. We
often encounter projection matrices in multivariate statistical analysis. In fact, the set of all p×p projec-
tion matrices of rank n can equivalently be regarded as the Grassmann manifold Gp,n of all n-dimensional
subspaces of the Euclidean space Rp; throughout, we do not distinguish them and write

Gp,n ={UT diag.In, 0/U : U ∈O.p/}:

It is well known that the Grassmann manifold Gp,n is compact and there is a natural O.p/ action on it,
say,

Q ·g ∧=QTgQ, g ∈Gp,n, Q∈O.p/:

Clearly, this group action is transitive, i.e., for any g1, g2 ∈Gp,n, there is some Q∈O.p/ such that Q · g1 =
g2. Moreover, Gp,n admits a probability measure that is invariant under the O.p/ action that was defined
above. This invariant distribution is referred to as the uniform distribution on the Grassmann manifold
Gp,n. For more on group action and invariant measures on special manifolds, see Eaton (1989) and Chikuse
(2003).

The uniform distribution on the Grassmann manifold is not easy to deal with directly. A useful fact is
that the uniform distribution on Gp,n is the image measure of the uniform distribution on O.p/ under the
mapping

ϕ :O.p/→Gp,n, ϕ.U/=UT diag.In, 0/U, U ∈O.p/:

By the assumption that z has a continuous distribution, we can easily see that, with probability 1, the
n×p matrix Z has full rank n. Let μ

1=2
1 , . . . , μ1=2

n be its n singular values. Then, Z admits a singular value
decomposition

Z=VD1U, .44/

where V ∈O.n/, U ∈O.p/ and D1 is an n×p diagonal matrix whose diagonal elements are μ
1=2
1 , . . . , μ1=2

n .
Thus,

ZTZ=UT diag.μ1, . . . , μn, 0, . . . , 0/U .45/

and its Moore–Penrose generalized inverse is

.ZTZ/+ =
n∑

i=1

1
μi

uiuT
i ,

where UT = .u1, . . . , up/. Therefore, we have the decomposition

S= .ZTZ/+ZTZ=UT diag.In, 0/U, U ∈O.p/: .46/

From equation (44), we know that Z=V diag.μ
1=2
1 , . . . , μ1=2

n /.In, 0/n×pU, and thus

.In, 0/n×pU =diag.1=μ
1=2
1 , . . . , 1=μ1=2

n /VTZ:

By the assumption that L.z/ is invariant under the orthogonal group O.p/, the distribution of Z is also
invariant under O.p/, i.e.

ZQ
.d/= Z for any Q∈O.p/:

Thus, conditional on V and .μ1, . . . , μn/T, the conditional distribution of .In, 0/n×pU is invariant under
O.p/, which entails that

.In, 0/n×pU .d/=.In, 0/n×pŨ,

where Ũ is uniformly distributed on the orthogonal group O.p/. In particular, we see that .μ1, . . . , μn/T is
independent of .In, 0/n×pU. Therefore, these facts along with equation (46) yield the following lemma.

Lemma 1. L{.In, 0/n×pU}=L{.In, 0/n×pŨ} and .μ1, . . . , μn/T is independent of .In, 0/n×pU, where Ũ is
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uniformly distributed on the orthogonal group O.p/ and μ1, . . . , μn are n eigenvalues of ZZT. Moreover,
S is uniformly distributed on the Grassmann manifold Gp,n.

For simplicity, we do not distinguish Ũ and U in singular value decomposition (44).

A.5. Deviation inequality on hSe1, e1i
Lemma 2. L.〈Se1, e1〉/=χ2

n=.χ2
n +χ2

p−n/, where χ2
n and χ2

p−n are two independent χ2-distributed random
variables with degrees of freedom n and p − n respectively, i.e. 〈Se1, e1〉 has a beta distribution with
parameters n=2 and .p−n/=2.

Proof. Lemma 1 gives L.S/=L{UT diag.In, 0/U}, where U is uniformly distributed on O.p/. Clearly,
.Ue1/ is a random vector on the unit sphere Sp−1. It can be shown that Ue1 is uniformly distributed on the
unit sphere Sp−1.

Let W = .W1, . . . , Wp/T ∼N .0, Ip/. Then, we have Ue1 =.d/ W=‖WT‖ and

〈Se1, e1〉= .Ue1/
T diag.In, 0/Ue1

.d/= W2
1 + . . . +W2

n

W2
1 + . . . +W2

p

:

This proves lemma 2. �
Lemmas 3 and 4 below give sharp deviation bounds on the beta distribution.

Lemma 3 (moderate deviation). Let ξ1, . . . , ξn be IID χ2
1-distributed random variables. Then,

(a) for any "> 0, we have

P{n−1.ξ1 + . . .+ ξn/> 1+ "}� exp.−A"n/, .47/

where A" ={"− log.1+ "/} =2 > 0, and
(b) for any "∈ .0, 1/, we have

P{n−1.ξ1 + . . .+ ξn/< 1− "}� exp.−B"n/, .48/

where B" ={−"− log.1+ "/}=2 > 0.

Proof.

(a) Recall that the moment-generating function of a χ2
1-distributed random variable ξ is

M.t/=E exp.tξ/= .1−2t/−1=2, t ∈ .−∞, 1
2 /: .49/

Thus, for any " > 0 and 0 < t < 1
2 , by Chebyshev’s inequality (see, for example, van der Vaart and

Wellner (1996)), we have

P

(
ξ1 + . . . + ξn

n
> 1+ "

)
� 1

exp{.1+ "/nt}E exp{t.ξ1 + . . . + ξn/}= exp{−n f".t/},

where f".t/= 1
2 log.1 − 2t/+ .1 + "/t. Setting the derivative f ′

".t/ to zero gives t = "=2.1+ "/, where
f" attains the maximum A" ={"− log.1+ "/}=2, "> 0. Therefore, we have

P{n−1.ξ1 + . . . + ξn/> 1+ "}� exp .−A"n/:

This proves inequality (47).
(b) For any 0 <"< 1 and t> 0, by Chebyshev’s inequality and equation (49), we have

P{n−1.ξ1 + . . . + ξn/< 1− "}� 1
exp.tn"/

E exp{t.1− ξ1/+ . . . + t.1− ξn/}= exp{−n g".t/},

where g".t/= 1
2 log.1+2t/− .1− "/t. Taking t = "=2.1− "/ yields inequality (48).

Lemma 4 (moderate deviation). For any C>0, there are constants c1 and c2 with 0<c1 <1<c2 such that

P

(
〈Se1, e1〉<c1

n

p
or >c2

n

p

)
�4 exp.−Cn/: .50/
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Proof. From lemma 2, we know that 〈Se1, e1〉=.d/ ξ=η, where ξ is χ2
n distributed and η is χ2

p distributed.
Note that A" and B" are increasing in " and have the same range .0, ∞/. For any C > 0, it follows from
the proof of lemma 3 that there are c̃1 and c̃2 with 0 <c̃1 < 1 <c̃2, such that B1−c̃1 =C and Ac̃2−1 =C. Now
define

A=
{

ξ

n
< c̃1or >c̃2

}
,

B =
{

η

p
< c̃1or >c̃2

}
:

Let c1 = c̃1=c̃2 and c2 = c̃2=c̃1. Then, it can easily be shown that{
〈Se1, e1〉<c1

n

p
or >c2

n

p

}
⊂A∪B: .51/

It follows from inequalities (47) and (48) and the choice of c̃1 and c̃2 above that

P.A/�2 exp.−Cn/,
P.B/�2 exp.−Cp/:

.52/

Therefore, by p�n and Bonferroni’s inequality, the results follow from expressions (51) and (52).

A.6. Deviation inequality on hSe1, e2i
Lemma 5. Let Se1 = .V1, V2, . . . , Vp/T. Then, given that the first co-ordinate V1 = v, the random vector
.V2, . . . , Vp/T is uniformly distributed on the sphere Sp−2{√

.v−v2/}. Moreover, for any C> 0, there is
some c> 1 such that

P.|V2|>cn1=2p−1|W |/�3 exp.−Cn/, .53/

where W is an independent N .0, 1/-distributed random variable.

Proof. In view of equation (46), it follows that

‖bV‖2 = eT
1 Se1 =V1,

where V = .V1, . . . , Vp/T. For any Q∈O.p−1/, let Q̃=diag.1, Q/∈O.p/. Thus, by lemma 1, we have

Q̃V .d/=.UQ̃T/T diag.In, 0/.UQ̃T/Q̃e1
.d/= UT diag.In, 0/Ue1

.d/= V:

This shows that, given V1 =v, the conditional distribution of .V2, . . . , Vp/T is invariant under the orthog-
onal group O.p−1/. Therefore, given V1 =v, the random vector .V2, . . . , Vp/T is uniformly distributed on
the sphere Sp−2{√

.v−v2/}.
Let W1, . . . , Wp−1 be IID N .0, 1/-distributed random variables, independent of V1. Conditioning on V1,

we have

V2
.d/= √

.V1 −V 2
1 /

W1√
.W2

1 + . . . +W2
p−1/

: .54/

Let C> 0 be a constant. From the proof of lemma 4, we know that there is some c2 > 1 such that

P.V1 >c2n=p/�2 exp.−Cn/: .55/

It follows from inequality (48) that there is some 0 <c1 < 1 such that

P{W2
1 + . . . +W2

p−1 <c1.p−1/}� exp{−C.p−1/}� exp.−Cn/, .56/
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since p > n. Let c =√
.c2=c1/. Then, by V1 −V 2

1 �V1 and Bonferroni’s inequality, inequality (53) follows
immediately from expressions (54)–(56).

A.7. Verifying property C for Gaussian distributions
In this section, we check property (16) for Gaussian distributions. Assume that x has a p-variate Gaussian
distribution. Then, the n×p design matrix X ∼N .0, In ⊗Σ/ and

Z∼N .0, In ⊗ Ip/=N .0, In×p/,

i.e. all the entries of Z are IID N .0, 1/ random variables, where the symbol ‘⊗’ denotes the Kronecker
product of two matrices. We shall invoke results in the random matrix theory on extreme eigenvalues of
random matrices in Gaussian ensemble.

Before proceeding, let us make two simple observations. First, in studying singular values of Z, the role
of n and p is symmetric. Second, when p>n, by letting W ∼N .0, Im×p/, independent of Z, and

Z̃.n+m/×p =
(

Z
W

)
,

then the extreme singular values of Z are sandwiched by those of Z̃. Therefore, a combination of lemmas
6 and 7 below immediately implies property (16).

Lemma 6. Let p� n and Z ∼N .0, In×p/. Then, there is some C > 0 such that, for any eigenvalue λ of
p−1ZZT and any r> 0,

P{|λ1=2 −E.λ1=2/|>r}�C exp.−pr2=C/:

Moreover, for each λ, the same inequality holds for a median of λ1=2 instead of the mean.

Proof. See proposition 3.2 in Ledoux (2005) and note that Gaussian measures satisfy the dimension-free
concentration inequality (3.6) in Ledoux (2005).

Lemma 7. Let Z∼N .0, In×p/. If p=n→γ > 1 as n→∞, then we have

lim
n→∞

.median[
√{λmax.p−1ZZT/}]/=1+γ−1=2

and

lim
n→∞

inf.E[
√{λmin.p−1ZZT/}]/�1−γ−1=2:

Proof. The first result follows directly from Geman (1980):

λmax.p−1ZZT/→ .1+γ−1=2/2 almost surely as n→∞:

For the smallest eigenvalue, it is well known that (see, for example, Silverstein (1985) or Bai (1999))

λmin.p−1ZZT/→ .1−γ−1=2/2 almost surely as n→∞:

This and Fatou’s lemma entail the second result.
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Discussion on the Paper by Fan and Lv

Peter Bickel (University of California at Berkeley)
Professor Fan and Professor Lv are to be congratulated on this timely paper. A paradigm of much statis-
tical activity is the generalized regression setting. We observe repeatedly a large number of covariates X
and an outcome Y : what our machine learning colleagues call a training sample. Our goals, in a stylized
form, are twofold:

(a) to construct as effective a method as possible for predicting a new Y given its X;
(b) to gain insight into the relationships between X and Y for scientific purposes, as well as, hopefully,

to construct an improved prediction method.

Fan and Lv’s focus is very much on this second aspect, which is also known as model selection.
We live in an era of massive and complex data arising in many fields of endeavours ranging from the

hard sciences such as physics, astronomy and biology through the social sciences such as economics to
critical applications such as medical science and various aspects of engineering. All these situations are
marked by

(i) a very large number p of predictors and
(ii) a much more modest number n of observations.

The paper’s timeliness comes from its dealing head on with this environment.
Formally, Fan and Lv consider the linear regression model

Yn×1 = .X.1/
n×1, . . . , X.p/

n×1/βp×1 + "n×1,

where p�n.
Let M ≡ {j : βj �= 0} and M̃ be the smallest such set, |M̃| < n, where |·| is cardinality. Fan and Lv

propose sure independence screening and sequential and other refinements to obtain an estimate MÅ of
M̃ with MÅ �n.

They focus on the important property, which was also introduced by Meinshausen and Yu (2008), that,
as p, n→∞,

P.MÅ ⊃M̃/→1:
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Their paper stimulated me to ask three questions.

Question 1
Sure independence screening corresponds roughly to testing

Hj :βj =0, j =1, . . . , p,

where both for Hj and its alternative all βk, k �= j, are 0, and then screening out the 100(1 −α)% largest
p-values.

Do methods such as Benjamini and Hochberg’s (1995) and later methods attempting to keep the false
discovery rate at α have consistency properties under the same conditions?

Question 2

‘All models are false but some models are useful’

G. E. P. Box

Suppose that there are a number of linear models which fit equally well or, even, a linear model holds,
but M̃ is not unique so β is not identifiable. The natural question is, what variables should be presented
as important since the R-representations or approximations to E[Y |X] that are given by Σ{βjX.j/ : j ∈
Mm}, m=1, . . . , R, |Mm �K small, are equally good. What we would like is something like

P.MÅ ⊃all potentially important factors) →1:

I give a possible definition of importance in my discussion to Candes and Tao (2007) (Bickel, 2007).

Question 3
Fan and Lv propose ‘screen first; fit after, whereas others (Bickel et al., 2008; Meinshausen and Bühlmann,
2006; Bühlmann and Meier, 2008; Zou and Li, 2008) propose ‘fit first; screen after’.

(a) How do these compare in terms of consistency and oracle properties?
(b) Is there sequentially no real difference?

As my questions indicate, I found this paper very stimulating and it is my pleasure to propose the vote
of thanks.

Peter Bühlmann (Eidgenössiche Technische Hochschule, Zürich)
I congratulate Fan and Lv for their stimulating and thought-provoking paper. Variable screening is among
the primary goals in high dimensional data analysis. Having a computationally efficient and statistically
accurate method for retaining relevant and deleting thousands of irrelevant variables is highly desirable.

Sure independence screening (SIS) is a marginal method. This makes it very easy to use. To understand
the properties of a marginal view, consider the well-known relationship for a linear model of the form
Y =Σp

j=1 βjX
.j/ + ":

βj �=0⇔Parcorr.Y , X.j/|{X.j/; k �= j}/ �=0:

Of course, if corr(X.j/, X.k//=0 for j �=k there is an exact correspondence to the marginal view:

βj �=0⇔ corr.Y , X.j// �=0:

And, in fact, Fan and Lv justify SIS for the situation with fairly uncorrelated variables: their discussion of
condition 4 in Section 5.1 implies (for large p) that the correlation matrix among the X -variables is ‘not
too far away’ from the identity. In contrast with the purely marginal view, it is possible to start with the
marginal approach and then gradually to consider partial correlations from low to higher order. This can
be achieved within the framework of so-called faithful distributions, a concept which is mainly used in the
literature about graphical modelling. For linear models, Bühlmann and Kalisch (2008) introduce partial
faithfulness which holds if and only if for every j

Parcorr.Y , X.j/|X.S//=0 for some S ⊆{1, . . . , p}\j ⇒βj =0:

Bühlmann and Kalisch (2008) argue that the class of linear models satisfying this condition is quite broad.
Roughly speaking, the partial faithfulness assumption implies that a large (in absolute value) marginal or
partial correlation does not tell us much, but a zero (partial) correlation says plenty. The idea of SIS is the
other way round: a large marginal correlation is interpreted as importance for the corresponding variable
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Table 8. Summary of computationally tractable methods for variable
screening

Method Assumption Computational
complexity

SIS ‘Fairly’ uncorrelated covariates O(np)
Lasso Coherence condition for design O{np min.n, p/}
PC algorithm Partial faithfulness O.npγ/ .1�γ �C)

whereas no decision is taken for small correlations. The PC algorithm (Spirtes et al., 2000) exploits the
partial faithfulness assumption. Instead of assuming fairly uncorrelated covariates (as in SIS) or partial
faithfulness, the lasso (Tibshirani, 1996) is another alternative which requires some coherence assumptions
for the design matrix ruling out cases with too strong linear dependence (of certain design submatrices).
The methods are summarized in Table 8.

The exponent γ in the computational complexity of the PC algorithm (see Table 8) depends on the
underlying sparsity. Asymptotic theory for high dimensional settings include, for the lasso, Meinshausen
and Bühlmann (2006), van de Geer (2008), Meinshausen and Yu (2008), Zhang and Huang (2008) and
Bickel et al. (2008), and, for the PC algorithm, Kalisch and Bühlmann (2007) and Bühlmann and Kalisch
(2008). For finite samples, we consider two simulation models: model 1,

example III from Section 4.2.3, p=1000, n=50, ρ=0:5

model 2,

Y =
5∑

j=1

X.j/ + ", p=1000, n=50, ρ=0:5:

For model 1, Fan and Lv report that P.Mtrue ⊆M̂/ = 0 for SIS and the lasso when using |M̂| = n − 1.
But some differences between the methods can be easily detected in Figs 7 and 8. In addition to the single
number P.Mtrue ⊆M̂/, it is important to report also performance measures such as the number of true
positive results or receiver operating characteristic curves to obtain a more complete picture. In our small
simulation study we see that the lasso (and also the PC algorithm) has a better ‘global’ accuracy than SIS.
The price to pay for this higher accuracy is a more complicated procedure although we should note that
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Fig. 7. Boxplots of the number of true positives Σp
jD1 I .β̂j /D 0, βj /D 0/ (with M̂D n � 1/ for 100 simulations

from (a) model 1 and (b) model 2: the number of effective variables equals 5
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Fig. 8. Receiver operating characteristic curves for (a), (b) model 1 and (c), (d) model 2 (4, lasso; +, SIS;
O, PC algorithm): (b), (d) enlargement for the domain with small false positive rate

the lasso has also linear computational complexity in dimensionality p if p�n. Interestingly, we note that
SIS does well in the conservative domain where the false positive rate is very low. I do not know whether
we can expect such behaviour in a wide variety of scenarios: if such findings would be true in general, this
would indeed be a strong argument in favour of the simple SIS method for detecting very few but most
relevant variables among say thousands of others. A (presumably difficult) theory which would support
such a finding is lacking though.

I agree with the authors that iterative SIS (ISIS) mitigates many of the problems with the marginal
approach of SIS. However, we need to choose a tuning parameter k (or denoted in the paper by k1, k2, . . . , kl/
which is really unpleasant: ideally, for some rough sort of variable screening, no other tuning parameter
should be involved except the number of variables which are to be selected from screening. When using
k=1 in ISIS, we end up with a procedure which is somewhere between orthogonal matching pursuit (which
is almost identical to forward variable selection) and matching pursuit, which is the same as L2-boosting
with componentwise linear least squares (Friedman, 2001; Bühlmann and Yu, 2003; Bühlmann, 2006). In
particular, in the high dimensional setting with fairly low signal-to-noise ratio, the boosting approach is in
our experience often better than orthogonal matching pursuit or forward variable selection. Why should
we use ISIS? Why should we not use the established boosting approach for variable screening (which is
presumably not so different from the lasso; see Efron et al. (2004))? And, if there are strong reasons for
ISIS, how should we select the tuning parameter k for screening whose optimal choice may be in conflict
with accurate prediction?

Finally, the authors stress the fact about ultrahigh dimensionality. In their framework, the dimension-
ality p=pn is a function of sample size such that

log.pn/=O.nξ/ for some ξ > 0:

The usual approaches in asymptotic analysis (exponential inequalities and entropy arguments) would
require that ξ < 1, which is equivalent to log.pn/=n→0 .n→∞/. Fan and Lv write in Section 5.1 (in the
discussion of condition 1) that ‘the concentration property (16) makes restrictions on ξ’. What is the upper
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bound for ξ >0, e.g. in the Gaussian case? Do we see here another range of high dimensionality, or is ultra-
high dimensionality the same as high dimensionality where log.pn/=n→0?

It is my pleasure to second the vote of thanks: this paper will stimulate plenty of future research.

The vote of thanks was passed by acclamation

Qiwei Yao (London School of Economics and Political Science)
The authors are congratulated for tackling a challenging statistical problem with a simple and effective
procedure—sure independence screening. Directly motivated by their work, An et al. (2008) have revisited
some conventional stepwise regression procedures coupled with information criteria. The method adopted
consists of two stages. In stage 1, forward addition is performed to grow the regression model until a modi-
fied Bayes information criterion BIC stops to decrease. In stage 2, backward deletion is employed to delete
redundant variables again according to the modified BIC. The computation is carried out by using the
standard sweep operation.

The conventional BIC must be modified to cope with the cases p>n or p�n. More precisely, we have
proposed the two modified versions of BIC as follows:

BICPk = log.σ̂2
k/+ 2k

n
log.p/,

BICCk = log.σ̂2
k + c0/+ k

n
log.n/,

where k denotes the number of selected regression variables, and c0 > 0 is a fixed constant. BICP uses the
penalty weight 2 log.p/=n (instead of log.n/=n) to penalize the models with large k heavily. It has been
proved that the above two-stage procedure using BICP leads to a consistent estimator for the true sparse
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Fig. 9. Plots of the numbers of selected regression variables by the forward search and backward
search in 200 replications: (a) BICP, n D 200, p D 1000, s D 10 ( ) and s D 25 (-- - - - - - ); (b) BICC,
nD200, p D1000, s D10 ( ) and s D25 (-- - - - - - ); (c) BICP, nD200, p D2000, s D10 ( ) and s D25
(-- - - - - - ); (d) BICC, n D 200, p D 2000, s D 10 ( ) and s D 25 (-- - - - - - ); (e) BICP, n D 800, p D 10000,
s D 25 ( ) and s D 40 (-- - - - - - ); (f) BICC, n D 800, p D 10000, s D 25 ( ) and s D 40 (-- - - - - - );
(g) BICP, n D 800, p D 20000, s D 25 ( ) and s D 40 (-- - - - - - ); (h) BICC, n D 800, f D 20000, s D 25
( ) and s D40 (-- - - - - - )
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model. In contrast, BICC uses the same penalty weight log.n/=n as the standard BIC. But it inserts a
positive constant c0 in the logarithmic function. In fact BICC also applies when p is fixed.

Fig. 9 plots the selected numbers of regression variables in ascending order from a simulation study
with 200 replications. We use model (1) with the first sβ non-zero, all xij ∼ N.0, 1/, and "i independent
N(0,1). The non-zero β are of the form .−1/u.b+|v|/, where b=2:5

√{2 log.p/=n}, u is a Bernoulli random
variable with P.u = 1/ = P.u = 0/ = 0:5 and v ∼ N.0, 1/. The dependences between different xij are set as
follows: for any 1 � k � n and 1 � i �= j � s, corr(Xki, Xkj/ = .−1/u1 × 0:5|i−j|, corr.Xki, Xk, i+s/ = .−1/u2ρ
and corr.Xki, Xk, i+2s/ = .−1/u3 .1 − p2/1=2, where ρ∼ U[0.2, 0.8], and u1, u2 and u3 are independent and
are of the same distribution as u. The numerical results indicate that both criteria work fine, although the
performance of BICC is better than that of BICP.

Richard Samworth (University of Cambridge)
I congratulate the authors for a very interesting and timely contribution to an important problem. The
power of the methodology is well demonstrated and there are many opportunities to explore its possible

(a) (b)

(c) (d)

Fig. 10. (a), (b) Estimated densities of the condition number of p̃�1Z̃Z̃T, based on 100 simulations, when Y is
Gaussian ( ) and multivariate t with ν D20 (-- - - - - - ) and ν D10 (� - � - �) degrees of freedom ((a) nD100,
p̃ D 200; (b) n D 1000, p̃ D 2000), (c) corresponding densities of the radial components of these spherically
symmetric densities when p̃D200, as well as the density of a scaled Weibull distribution with shape parameter
2 (. . . . . . .), and (d) estimated condition number density of p̃�1Z̃Z̃T in the Weibull case, with nD100, p̃ D200
(. . . . . . .) and nD1000, p̃ D2000 ( )
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extensions beyond the linear model. Most of the technical conditions required for their theoretical results
are natural and interpretable. An exception is the concentration property that is imposed on the n × p
matrix Z in expression (16), namely that there exist c, c1 > 1 and C1 > 0 such that

P{λmax.p̃−1Z̃Z̃T/>c1 or λmin.p̃−1Z̃Z̃T/< 1=c1}� exp.−C1n/

for any n× p̃ submatrix Z̃ of Z with cn� p̃�p. The authors prove that this condition is satisfied when the
entries of Z are independent standard normal random variables and we now study their conjecture that it
holds for a wide class of spherically symmetric distributions.

The condition is expected to be most restrictive when p̃ is at the lower end of the range, so in the simula-
tions below I took p̃= cn with c=2. To compare with the case of independent Gaussian entries, the rows
of Z̃ were taken to be independent and each row was generated as aY, where the distribution of Y was
multivariate t with ν = 10 and ν = 20 degrees of freedom, and a was such that each component had unit
variance. Figs 10(a) and 10(b) plot estimated densities of the condition number of p̃−1Z̃Z̃T (i.e. the ratio of
the largest and smallest eigenvalues) when n= 100 and n= 1000 respectively. Note that, in the Gaussian
case, the condition number density becomes more concentrated as n increases. For the multivariate t case
with ν =20, the distribution is quite similar at both sample sizes, whereas when ν =10 it is more dispersed
with a long right-hand tail at the larger sample size, suggesting that the concentration property may fail
to hold there.

We can generate the rows of Z̃ having a spherically symmetric distribution as aRU, where the direction
U is uniform on the unit sphere in Rp̃, where R is independent of U and is supported on [0,∞), and a is
chosen so that each component has unit variance. However, it is important to remember (see Hall et al.
(2005), for instance) that, in high dimensions, the distribution of the radial component aR tends to be quite
highly concentrated—see Fig. 10(c). Even when R has a distribution that is traditionally thought of as
light tailed in a univariate context, such as a Weibull distribution with shape parameter 2, the distribution
of aR is much more dispersed (Fig. 10(c)), and Fig. 10(d) shows that in such a context the corresponding
matrix Z̃ can become badly ill conditioned as n becomes large.

Overall, then, we conclude that although condition (16) appears reasonable for the authors’ purposes,
it remains of interest to describe the theoretical properties of independence screening when the rows of Z
have heavier tails and condition (16) may fail.

Peter Hall (University of Melbourne) and D. M. Titterington and Jing-Hao Xue (University of Glasgow)
We thank Fan and Lv for their innovative and stimulating paper. Here we propose a regression-oriented
version of the classification-based approach that was developed in Hall et al. (2008) and raise the general
issue of using a predictive model as a prelude to variable selection.

Our tilting procedure boiled down to the quadratic programming problem of minimizing

dL2.q, q0/=
p∑

k=1
.qk −p−1/2,

subject to
p∑

k=1
qkΔk = c1, .57/

Σp
k=1qk =1, and qk �0, for each k, where Δk is a cross-validated measure of the performance of the classifier

provided by the kth feature variable Xk. Variables corresponding to qk =0 are deselected from the classifier.
In the linear regression analogue, Δk is very close to being a linear function of ρ̂2

k , the squared sample
correlation coefficient between Y and Xk, so, as with the method of Fan and Lv, variables exhibiting
low sample correlation with the response are deselected, the cut-off dictating or being dictated by c1 in
equation (57).

However, it is not always appropriate to attack a variable selection problem via one of linear predic-
tion, and an advantage of the method of Hall et al. (2008) is that it does not require a predictive model
as an intermediary for variable selection. To appreciate the dangers, note that, if one of the significant
components of X influences Y in a non-linear, indeed non-monotone, way, then it might be overlooked
by a linear model approach; see Segal et al. (2003) for a real gene expression example of this and Hall and
Miller (2008) for a more general discussion.

Finally, a few details: first, if in equation (9) Yi is scored as n−1
1 for class 1 and −n−1

2 for class 2, wj cor-
responds to the t-statistic for any sample sizes. Secondly, correlation-based variable selection frequently
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appears in the machine learning literature (Guyon and Elisseeff, 2003), although typically without the
theoretical detail of the current paper. Thirdly, unless A1 in Section 4.1.1 excludes any unimportant pre-
dictor that is highly correlated with the important predictors, iterative sure independence screening will
not deal with the first issue that is referred to in Section 4.1.

C. Anagnostopoulos and D. K. Tasoulis (Imperial College London)
Professor Fan and Professor Lv address the increasingly important problem of ultrahigh dimensional
variable selection by considering the utility of marginal correlations, rather than regression coefficients.
Modern applications, including bioinformatics and text mining, often generate such data, and developing
methods that are both computationally efficient and able to handle extreme dimensionality is a contem-
porary challenge.

Much work on variable selection concerns a ‘true model’, which is defined in terms of regression coeffi-
cients rather than marginal correlations. Selection via regression coefficients tends to overfit, so screening
with marginal correlations is certainly a good idea. Fan and Lv are to be congratulated for developing a
theoretical framework for screening based on marginal correlations. This framework readily accommo-
dates a second-stage selection procedure, using other approaches. The proof that, under suitable condi-
tions, the consistency of smoothly clipped absolute deviation is preserved by sure independence screening
is a particularly useful and promising result. This approach is computationally attractive also, since the
screening does not require matrix inversion. Notably, in contexts where data points arrive sequentially, the
computations necessary for sure independence screening may be implemented in an incremental fashion.
In conjunction with recursive implementations of the lasso and other estimators (e.g. Anagnostopoulos
et al. (2008)) this could allow for on-line variable selection in ultrahigh dimensional data streams.

Although Fan and Lv are content with their theoretical assumptions, it would be very interesting to
weaken them, in particular

(a) that the true model is linear in the sample size and
(b) that variables in the true model are marginally correlated with the response.

Investigating the extent to which these assumptions can be relaxed may enhance the intuitive appeal of
the theorems, as well as yield insights into the applicability of sure independence screening to real data
contexts where the assumption of a small true model may be unwarranted.

We have a small comment about the leukaemia data analysis. This data set has been extensively studied
and used as a benchmark for various data reduction methods. The results that are reported in the paper
indicate that the sure independence screening–smoothly clipped absolute deviation combination can yield
very high classification rates that are comparable with other methods (e.g. Tassoulis et al. (2006)) by select-
ing only 16 variates. It would be interesting to examine the degree of overlap with those genes which are
identified by domain experts as important predictors (Golub et al., 1999).

Wenyang Zhang (University of Bath) and Yingcun Xia (National University of Singapore)
We congratulate Professor Fan and Professor Lv for such a brilliant paper. We believe that this paper will
have a huge influence on high dimensional inference and will stimulate many further researches.

Componentwise regression is an easy way to select variables; however, it may suffer from collinearity.
In this paper, Professor Fan and Professor Lv cleverly avoid this problem by iteratively using compo-
nentwise regression, which is quite interesting. It is also very interesting to see that such a simple and
easy-to-implement method enjoys so many good asymptotic properties.

If we understand the paper correctly, the core idea is to select the variables by two stages. In the first
stage, a simple, easy-to-implement and quick method is used to remove the least important variables. In
the second stage, a more delicate, sophisticated and accurate method is applied to reduce the variables
further. It is very important for the method in the first stage to be unbiased; otherwise, the whole variable
selection procedure would fail. The proposed sure independence screening (SIS) may not be unbiased
under some circumstances. We appreciate that asymptotically we know when SIS is biased; it is just a
matter of checking whether the technical conditions hold or not. However, practically, how do we know
when SIS is biased? The proposed iterative SIS (ISIS) seems more safe to use to guard against bias. Is it
sensible always to use ISIS?

The selection of tuning parameter d is not an issue in SIS; it can be taken as either n−1 or [n= log.n/].
However, in ISIS, it could be an issue, because the selected variables are cumulated through the iterations.
The number of selected variables may be above n if the tuning parameter is not carefully selected. Is there
any way to select the tuning parameter optimally? Also, is there any stopping rule for ISIS?
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Intuitively, traditional forward selection in model selection can almost overcome the collinearity prob-
lem. It would be interesting to see a comparison between ISIS and forward selection or stepwise
regression.

Iain M. Johnstone (Stanford University)
I join the discussants in thanking the authors for a fascinating paper. My comments expand on the authors’
remarks about multiple correlation, specifically in their introduction on how large they can be even in the
absence of any dependence. For example, when the number of variables p and q is proportional to sample
size n, Wachter (1980) showed that, for Gaussian data, the largest sample canonical correlation Rp,q;n
converges to ρp,q;n =√{p=n.1−q=n/}+√{q=n.1−p=n/}. For p=10, q=20 and n=100, values that are
quite plausible for a small empirical study, this is as large as 0.71.

An asymptotic approximation to the null distribution of the largest sample canonical correlation is now
available (Johnstone, 2008a). It states that logit(Rp,q) is approximately distributed as μ+σW1, where simple
explicit formulae are available for μ and σ; and W1 follows the Tracy-Widom distribution for real-valued
variates. This approximation is quite accurate at conventional percentiles (90th, 95th and 99th) for even
the smallest values of p=q = 2—the relative error in the percentiles is less than 10% and becomes much
smaller as p and q grow even a little (Johnstone, 2008b).

Finally, the authors make use of the Dantzig selector that was introduced by Candes and Tao (2007)
and establish its consistency in theorem 4 under an assumption on restricted orthogonality of the columns
of the design matrix A. We note that there is a concentration of measure property for the null distribution
of the largest canonical correlation. It states that, for t> 0,

P.Rp,q;n �ERp,q;n + t/� exp{−.n−2/t2=8}:

It follows from the asymptotic approximation result that was referred to above that, for p sufficiently large,
ERp,q;n <ρp,q;n. Work in progress shows that in turn this leads to concrete bounds for a slightly modified
notion of restricted orthogonality.

Sylvia Richardson and Leonardo Bottolo (Imperial College London)
This discussion relates to the applicability of sure independence screening (SIS) and its extension iterative
SIS (ISIS) to analyse realistic data sets. Most of the theoretical developments presented assume that the
covariates are quasi-independent: a favourable case for asymptotics but an unlikely situation in most appli-
cations, in particular in genetics and genomics. Acknowledging that the conditions imposed in Section 5.1
to limit the correlations are restrictive, the authors propose the extension ISIS but, in doing so, relinquish
sure screening properties. If ISIS has no theoretical foundation, its use relies on arbitrary choices which
could give misleading results.

In all the examples shown, correlations between predictors are simulated in a symmetric fashion. Such
symmetry is rarely encountered but could be the key behind the apparent good performance of ISIS. In
genetics and genomics, we typically see block-like patterns of correlated variables, in line with biological
pathways or linkage disequilibrium. To investigate the performance of ISIS under realistic conditions, we
built a test-case using as predictors 1421 non-redundant markers across the whole genome of rats recom-
binant inbred lines .n = 29/, publicly available from the STAR Consortium (www.snp-star.eu). The
predictorshavecomplexcorrelationpatternscreatedbypopulationstructure(Fig.11(a)(bottom)).Wesimu-
lated three true effects at position (90, 721, 1300) with size (−1, 2.5, 1) and N(0, 0.75) noise. This mimics a
typical situation in genetics where, besides a large effect, there could be a few others with smaller magnitude.

Applying the ISIS–lasso method fails to recover the true effects (one out of three is totally ignored;
Figs 11(a), middle, and 11(b), bottom), highlighting that additional tuning would be necessary, and that
‘sure screening’ properties in correlated cases will be elusive. A more useful formulation of the problem
would acknowledge the inherent uncertainty of variable selection in high dimensional space and would
aim, instead, to find a well-supported set of solutions by exploring the large model space. Such exploration
is possible using, for example, powerful Bayesian variable selection algorithms that cope with arbitrary cor-
relation structure among the predictors. Our own evolutionary stochastic search algorithm ESS (Bottolo
and Richardson, 2008) gives posterior support to the marginal inclusion of the three simulated markers
(Fig. 11(b)); the top three models visited by ESS are the true model .R2 = 0:962/, another three-marker
model involving close-by marker 98 instead of 90 .R2 =0:957/ and a single marker (721) model .R2 =0:879/,
giving a coherent picture of model uncertainty.

We have built several such examples, giving us serious misgivings about the use of ISIS for model choice
and feature selection in cases where structured correlation exists among the predictors.
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Fig. 11. (a) �log10-transformation of p-values obtained from a t -test (top), markers selected from run-
ning the ISIS–lasso (output from four successive iterations with [n= log.n/] D 8) (middle), sample correlation
between the marker at position 721 and the set of remaining predictors (bottom) and (b) marginal posterior
probability of inclusion for the simulated data set applying evolutionary stochastic search (top) and the final
set of 28 selected markers from running the ISIS–lasso (bottom): �, position where the effects have been
simulated
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John T. Kent (University of Leeds)
This paper falls under the general heading of model simplification in regression analysis. There are two
main approaches to this problem:

(a) variable selection or sparsity, as in this paper, and
(b) subspace selection, focusing on selected linear combinations of the x-variables.

The latter point of view forms the basis of several techniques including principal component regression,
partial least squares and also the inverse regression methods that have been developed by Ker-Chau Li,
Dennis Cook and others. In particular, Li et al. (2007) developed links between partial least squares and
inverse regression.

Although there has been some interaction between traditions (a) and (b) (e.g. Li (2007)), the two tradi-
tions have largely been developed independently. However, one point of contact is componentwise regres-
sion, which appears in this paper as a starting point in Section 2.1 and also lies behind the simplest version
of partial least squares. After standardizing the x-variables to have variance 1, this regression estimate
can be phrased either in terms of the forward regression of y on each component of x in turn or in terms
of the backward regression of each component of x on y. Of course, if the x-variables are uncorrelated,
this estimate coincides with the ordinary least squares regression estimate. However, there seems to be
some hidden regularity in practical problems which makes it a sensible estimate in a much wider range of
settings.

The following contributions were received in writing after the meeting.

Kofi Adragni and R. Dennis Cook (University of Minnesota, Minneapolis)
Fan and Lv give a compelling case for predictor screening based essentially on marginal linear relationships
and penalization. We have been working on methodology called screening by principal fitted components
(SPFC) (Cook, 2007) in the p�n context. Instead of using marginal relations, or a forward regression of
Y on X as in penalized least squares, we adopt an inverse regression approach regressing X on Y. Consider
the relatively simple inverse regression model

X =μ+Γλfy +ε: .58/

The term fy ∈Rr is a user-selected function of y, μ∈Rp, Γ∈Rp×d , λ∈Rd×r and ε∼N.0, σ2I/: Cook (2007)
showed that Y ⊥⊥X|ΓTX. With d = 1, estimating the sparse subspace span(Γ) is equivalent to estimating
span(β) in equation (1) of the paper, the zero elements of Γ identifying the predictors to be screened.

Consider the special case with Γ∈Rp and fy =y− ȳ. Let Φ=Γλ and XT = .X1, . . . , Xn/. The maximum
likelihood estimator under the inverse model (58) of the p × 1 vector Φ= .φ1, φ2, . . . , φp/T is XT.y − ȳ/.
After normalization this corresponds to the ω of equation (2) in the paper. Consequently, SPFC reduces
to sure independence screening (SIS) with fy = y − ȳ. Following Fan and Lv, we can select predictors by
taking the first [γn] with the largest normalized |φi|. But we can also tie the selection to test statistics for
φi =0, which automatically introduces an equivalent scaling. Because of these connections we expect that
SIS will work best when var.X|Y/ is a diagonal matrix, which is not a case represented in Fan and Lv’s
simulations.

The inverse regression approach is more flexible than forward regressions. Unlike SIS or penalized least
squares, inverse regression models can easily accommodate a categorical response, non-linearities and
non-constant variance var.Y |X/ and still perform well. As an example, we generated n=70 observations
on p=500 independent predictors X = .X1, . . . , Xp/T with X1 ∼ Unif(l, 10) and Xi ∼N.0, 4/, i=2, . . . , p.
The response was generated as y = .5X1/" where "∼N.0, 1/. We used SIS and generated 200 data sets to
estimate the frequency that the only active predictor X1 is among the first 35 (Fan and Lv’s γ =0:5) with
the largest normalized |φi|. The result was as expected under random selection: SIS included X1 in the
first 35 predictors 12% of time. In contrast, SPFC with a piecewise linear basis fy captured X1 among the
first two predictors 98% of the time. We have obtained similar results with non-linear mean functions and
a constant variance. Our results so far suggest that SPFC is an effective generalization of SIS, and that it
can be enhanced to produce a generalization of ISIS.

Ursula Gather and Charlotte Guddat (Dortmund University of Technology)
Firstly, we congratulate the authors on their fine paper. It not only provides a very useful approach to
variable selection for ultrahigh dimensional predictor spaces but also is an approach which is as simple as
it can be—an aspect often undervalued.
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Our interest is in the robustness of sure independence screening (SIS). As SIS employs the component-
wise correlations ωj , j = 1, . . . , p, rescaled by the standard deviation of Y it can be conjectured that the
variable selection based on this non-robust measure suffers from outliers and contaminations of the data.

A straightforward robustification of SIS which we suggest replaces the classical estimators by their
robust counterparts, i.e. the median and the median absolute deviation are used instead of the mean and
the standard deviation respectively. For estimating the correlation one can use for example the Gnanadesi-
kan–Kettenring estimator (Gnanadesikan and Kettenring, 1972). We call the resulting method robust SIS
(ROSIS). This is a similar robustification to the dimension adjustment method for the non-robust sliced
inverse regression method of dimension reduction (Li, 1991; Gather et al., 2001, 2002).

We compare SIS and ROSIS under the two simple models

Y =X1 +0:1" .59/

and

Y =5X1 +5X2 +5X3 + " .60/

where the predictor vector X = .X1, . . . , Xp/T ∼N p.0, 1/ and the error term "∼N .0, 1/ are independent.

Table 9. Accuracy of SIS and ROSIS in including the true model {X1} or
{X1, X2, X3} respectively

p Model Results for the following methods:

Clean 10% outlier 20% outlier

SIS ROSIS SIS ROSIS SIS ROSIS

100 (59) 1.000 1.000 0.828 1.000 0.788 1.000
(60) 1.000 0.996 0.714 0.944 0.722 0.942

1000 (59) 1.000 1.000 0.072 1.000 0.068 1.000
(60) 1.000 0.824 0.054 0.796 0.052 0.740

(a) (b)

Fig. 12. Distribution of the minimum number of selected variables required to include the true model (60)
by using SIS ( ) and ROSIS ( ) for samples of size n D 70 contaminated by seven outliers: (a) p D 100;
(b) p D1000
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In each case we generate n=20, 50, 70 data points with dimension p=100, 1000. To analyse the sensi-
tivity of SIS against outliers we contaminate the samples by adding 2

√
χ2

p; 0:999 to 0%, 10% or 20% of the
observations of X1 (see also Gather et al. (2001)). As performance criterion, we calculate the percentage of
cases where the true submodel is included when we reduce to the dimension n−1; see Table 9 for n=70.
Also, we count the minimum number of variables such that all true predictors are selected; see Fig. 12 for
10% contamination and n=70.

The simulation results show clearly that ROSIS outperforms SIS when the data are contaminated by
outliers, whereas in the clean situation SIS works only slightly better.

Though being aware of iterative SIS (ISIS), which performs better, we have only concentrated on SIS
so far. Certainly, ISIS will yield better results than SIS under contamination but its performance will also
suffer from outliers. We then suggest replacing SIS by ROSIS and using a robust model selection procedure
in the ISIS algorithm.

Eitan Greenshtein (Duke University, Durham)
This paper of Fan and Lv provides further understanding of fundamentals in regression with p�n, and
even with p��n.

In what follows I shall question how crucial variable selection is. This is in spite of the very impressive
advantages of the screening that is suggested by Fan and Lv.

When the ultimate goal is to find a parsimonious model, variable selection is essential by definition. I
shall consider cases where the ultimate goal is to provide a good prediction. In such cases, variable selection
is still performed, as a way of regularization. It is a convention that, given n observations, we should avoid
using procedures which depend on more than n variables. I wonder to what extent this convention is helpful.

In Section 2.3 the authors write that ‘classification can be regarded as a specific case of regression
problem’. I shall stretch this analogy.

Consider an example where X = .X1, . . . , Xp/ is a random vector of explanatory variables and Y is a
response variable Y =0, 1. Suppose that X∼N.μi, I/ when Y = i, i=0, 1. Assume equal prior probabilities
for the events Y = i, i= 0, 1. Suppose that there are ni = 25 examples for which Y = i, i= 0, 1. Thus, there
are total of n=n0 +n1 =50 observations.

The optimal classifier is Fisher’s rule, which requires knowledge of μi, i=0, 1. As demonstrated by Fan
and Fan (2008), estimating high dimensional μi by the corresponding maximum likelihood estimator and
plugging into Fisher’s rule could lead to a very weak classifier.

Consider a case where p=100000 and μ0 = .0, . . . , 0/, while μ1 has 50000 zero entries and its remain-
ing 50000 entries are all equal to 0.03. Even the optimal classifier, based on an optimal selection of (say)
d =50 variables, would have a misclassification rate 0.46. Simulations, in which the maximum likelihood
estimator for μi, i=0, 1, is plugged into Fisher’s rule, resulted in an average misclassification rate of 0.41.
Let ν =μ1 −μ0. In Greenshtein and Park (2008) it is demonstrated by simulations that a classifier which is
based on estimating ν by a non-parametric empirical Bayes method and plugged into (a slightly modified)
Fisher’s rule would have an average misclassification rate 0.11. This classifier depends virtually on all the
p=100000 variables, though the weight of each variable is very small.

Fan and Lv’s paper is devoted to sparse situations, unlike our above configuration. However, the above
empirical Bayes method performs very well also in sparse situations, compared with various classification
methods especially designed for such situations.

Gareth M. James and Peter Radchenko (University of Southern California, Los Angeles)
We congratulate the authors on introducing a powerful new methodology for addressing an increasingly
important problem. Although the theoretical aspects of this work are impressive we have concentrated our
discussion on the practical behaviour of the authors’ methodology. The basic moral of this paper is that
when dealing with extremely large numbers of predictors one should use an iterative two-step approach.
At each iteration, one first uses a simple bivariate criterion to rank the predictors and hence to obtain a
‘moderate’ number of variables. Then a multivariate variable selection method is used to obtain the final
set of predictors. The authors present convincing evidence that this approach can produce considerable
improvements, in terms of both computational cost as well as statistical accuracy, over directly work-
ing with the full data set. The idea that a large number of variables can be discarded with little risk of
eliminating important variables seems reasonable.

The authors work primarily with smoothly clipped absolute deviation (SCAD) when implementing the
iterative sure independence screening (ISIS) approach. We were interested in the robustness of ISIS to
different plug-in methods. Hence we reran the simulation results from Section 4.2.1 using two alternatives
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Table 10. Simulation comparison†

p n ρ Results for the following methods:

ISIS Lasso Iterative Forward1 Forwardn=4 Forwardn=2
lasso

100 20 0 1.000 0.970 0.885 0.730 0.850 0.895
0.5 1.000 0.985 0.820 0.515 0.790 0.865

50 0 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000

1000 20 0 1.000 0.340 0.305 0.250 0.275 0.235
0.5 1.000 0.556 0.180 0.025 0.130 0.165

50 0 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 0.985 0.940 0.990 1.000

†The ISIS and lasso results are taken from Table 4. The iterative lasso, Forward1, Forwardn=4
and Forwardn=2 methods respectively replace SCAD in the ISIS method with the lasso and
forward selection using K =1, K =n=4 and K =n=2.

to the SCAD plug-in. The first replaced SCAD with the lasso. The second replaced SCAD with a version
of forward selection which selected the K variables with largest correlations to the response. We utilized
three values: K =1, K =n=4 and K =n=2. In all other respects the set-up was the same as for Section 4.2.1.
Our results are provided in Table 10.

For the n=50 scenarios all methods gave almost perfect predictions. For the p=100, n=20, scenario we
found that the iterative forward method improved as K grew with K =n=2 giving slightly superior results
to those of the iterative lasso approach. For the p=1000, n=20, scenario the iterative lasso outperformed
the iterative forward methods. However, interestingly, the iterative lasso either gave the same performance
as the standard lasso or performed worse. In addition the iterative lasso and forward selection methods
both substantially underperformed compared with the iterative SCAD results reported by Fan and Lv.
We drew the following conclusions from these results.

First, applying the iterative approach does not always cause an improvement, as demonstrated by the
inferior performance of the iterative lasso over the standard lasso. Second, at least in certain scenarios, the
iterative approach seems to be sensitive to the plug-in method with SCAD providing significantly superior
results to those of the lasso and forward selection methods.

Chenlei Leng (National University of Singapore) and Hansheng Wang (Peking University, Beijing)
We congratulate Professor Fan and Professor Lv for a thought-provoking paper, which provides us with
deep understanding about variable selection in an ultrahigh dimensional set-up. We would like to comment
as follows.

The important work of Breiman (1996) and Tibshirani (1996) demonstrated clearly that shrinkage esti-
mation is a promising solution for variable selection. The first paper on the asymptotic results of the lasso
was Knight and Fu (2000). However, the important question regarding whether those shrinkage methods
are consistent in model selection (Shao, 1997) was not clear. In a seminal paper, Fan and Li (2001) devel-
oped smoothly clipped absolute deviation (SCAD) and, more importantly, introduced a general theoretical
framework to understand the asymptotic behaviour of various shrinkage methods. As a consequence, Fan
and Li (2001) is also partially responsible for the recent development of the adaptive lasso methods (Zou,
2006; Wang et al., 2007a; Zhang and Lu, 2007).

Note that the oracle properties defined in Fan and Li (2001) depend on an appropriate selection of tuning
parameters, for which prediction-based criteria such as generalized cross-validation have been commonly
used in practice. Nevertheless, Leng et al. (2006) and Wang et al. (2007b) showed that this practice leads
to seriously overfitted models. For model selection consistency, a Bayes information type of criterion is
a justifiable alternative. Results were established for SCAD (Wang et al., 2007b) and the adaptive lasso
(Wang and Leng, 2007) with a fixed dimension, and also for these two methods with diverging model
dimensions (Wang et al., 2008).

It is very natural to ask whether similar results can be established in an ultrahigh dimensional set-up. In
particular, we are very interested in knowing the answers to the following questions.
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(a) How can the parameter γ in the first stage of sure independence screening (SIS) be automatically
tuned? The authors’ numerical studies suggest that [kn=log.n/] might be a good choice, with a
reasonably range of κ (e.g. κ = 1, 2, . . .). However, we still believe that a completely data-driven
choice can make SIS more attractive for real practitioners.

(b) What is known about the stochastic error involved in SIS’s first-stage screening? Is it ignorable in
its second-stage shrinkage estimation? Are the Bayes information criteria developed in the existing
literature still applicable? We believe that research along those directions will further enhance the
applicability of SIS in an ultrahigh dimensional setting.

Lastly, we conclude by congratulating the authors again for such a wonderful piece of work!

Elizaveta Levina and Ji Zhu (University of Michigan, Ann Arbor)
We congratulate the authors on developing an attractive and practical method for high dimensional var-
iable selection with many potential applications. One area where this method may have applications is
genomewide association studies, where one is interested in identifying common genetic factors that influ-
ence health and disease. For complex diseases and traits, the genetic contribution of a true association is
often expected to be moderate. In terms of the model in the paper, this would result in a low signal-to-
noise ratio (SNR) var.Xβ/=var."/ but, in the simulations in Section 4, the SNRs are all relatively high,
ranging from 40 to 200. Thus we decided to investigate briefly the behaviour of iterative sure independence
screening (ISIS) under lower SNR levels.

To illustrate the point, we mimicked the simple simulated example I from Section 4.2.1. Specifically, we
considered the linear model

Y =5X1 +5X2 +5X3 + ",

where X1, . . . , Xp .p = 1000/ have a multivariate normal distribution N.0, Σ/ and " ∼ N.0, σ2/ is inde-
pendent of the predictors. The covariance matrix Σ has diagonal elements equal to 1 and off-diagonal
elements equal to ρ= 0:5. Instead of setting σ = 1, which corresponds to an SNR of 150, we considered
several different values of σ, i.e. σ=1, 2, 4, 8, 12, 16: The last scenario σ=16 corresponds to an SNR of 0.6.

We considered n = 25,50,100 and ran ISIS exactly as described in Section 4.1.1 using the lasso at the
second stage of variable selection, with the tuning parameter selected by the Bayes information criterion.
For each simulation, we recorded how many important variables (out of X1, X2 and X3) were selected. The
results over 100 replications are summarized in Table 11.

Not surprisingly, as the SNR decreases, the performance of ISIS degrades. For example, when n=50,
p = 1000 and σ = 12, which corresponds to an SNR of about 1 (which is considered relatively high in
genomewide association studies), the ISIS could still identify some important variables (identifying at
least one important variable in 61 out of 100 simulations) but could not identify all three important
variables.

Table 11. Simulation results for p D1000 and ρD0:5†

σ Results for the following values of n:

n=25 n=50 n=100

#0 #1 #2 #3 #0 #1 #2 #3 #0 #1 #2 #3

1 16 32 18 34 0 0 0 100 0 0 0 100
2 21 35 20 24 1 1 1 96 0 0 0 100
4 23 37 25 15 2 4 22 72 0 0 1 99
8 62 35 2 1 9 42 38 11 1 0 26 73

12 73 25 2 0 39 39 22 0 12 20 45 23
16 84 16 0 0 63 32 5 0 25 51 17 7

†The true model contains three important variables. #3 corresponds to the num-
ber of times that all three important variables were selected by ISIS out of 100
simulations, and similarly for #2, #1 and #0.
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A theoretical question to consider is whether the asymptotic results in the paper could be extended to
incorporate the SNR or σ2 into the rate explicitly. Modifications of the method that would allow it to be
applied to low SNR large-scale problems may also be an interesting topic for further investigation.

Runze Li (Pennsylvania State University, University Park)
Fan and Lv are to be congratulated for their inspiring work. I have some comments on both screening and
post-screen variable selection.

Screening
Consider a regression model, E.y|x/ = η.xTβ/, and assume that x follows an elliptical distribution with
mean μx and covariance Σx (Fang et al., 1990). It can be shown (see, for example, Li (2008)) that

E.x −μx/y =kΣxβ .61/

for some constant k. Equation (61) implies that, assuming elliptical symmetry on x, the sure independence
screening procedure may be directly applied to generalized linear models, single-index models, Cox’s model
and various regression models in the literature.

Post-screen variable selection
The penalized least squares problem (PLS) (11) in the paper provides a unified framework for post-screen
variable selection. I would like to comment on two fundamental issues in the implementation of the PLS:
tuning parameter (λ) selection and optimization of PLS.

Selection of λ plays a crucial role in PLS. This issue has been carefully studied in Wang et al. (2007), who
suggested using a Bayes information criterion type of λ-selector to achieve the oracle property (Fan and
Li, 2001). Zhang et al. (2008) further proposed generalized information criteria for λ-selection in penalized
likelihood and studied its asymptotic behaviour.

In the same spirit as the lasso, Fan and Li (2001) advocated non-convex penalties, such as the smoothly
clipped absolute deviation penalty. It is challenging to minimize PLS with non-convex penalties. This opti-
mization problem has been studied by several researchers. With the local quadratic approximation (LQA),
the minimization of PLS can be carried out by iterative ridge regression, which can be easily implemented.
The LQA algorithm also provides a robust standard error formula for the resulting estimate. With the local
linear approximation, one may obtain a solution to PLS by iteratively reweighed penalized L1-regression,
and the least angle regression algorithm LARS can be used to solve a weighed penalized L1-regression.
For some penalty functions, such as smoothly clipped absolute deviation, iteratively conditional (co-ordi-
nate) minimization (ICM) provides another alternative to minimize PLS. As demonstrated in Friedman
et al. (2007), ICM for penalized L1-regression may be much faster than the LARS algorithm for a large-
scale linear regression problem. Dziak (2004) and Zhang (2006) conducted some numerical comparisons
between ICM and LQA for PLS and penalized likelihood respectively. From their numerical results, the
ICM algorithm performs well.

Yufeng Liu (University of North Carolina, Chapel Hill)
The authors are to be congratulated for their stimulating and path breaking paper. Variable selection is an
extremely important aspect in the model building process, especially for high dimensional problems. Sure
independence screening (SIS) is a simple yet powerful procedure. With the solid theoretical justification,
SIS allows researchers to prescreen the variables marginally before applying well-established statistical
methods. It is certain that this work will have a great influence in the field of high dimensional variable
screening and selection.

Various feature selection procedures for classification have been proposed to improve classification accu-
racy and interpretability. SIS provides another promising technique to rank features and to reduce the
dimension of data for binary classification. In particular, if two classes are labelled as y∈{±1} and have n1
and n2 samples, the SIS criterion becomes wj = .n1X̄j,1 −n2X̄j,2/=.standard deviation of the jth feature/.
When the sampling proportions are not balanced, i.e. n1 �n2 or n2 �n1, wj may be affected accordingly;
see Qiao and Liu (2008). One possible modification is wÅ

j = .X̄j,1 − X̄j,2/=.standard deviation of the jth
feature/. It will be interesting to compare them.

For multiclass problems with y ∈{1, . . . , k} and k �3, feature ranking can be more challenging. There
are several properties that a good ranking criterion for multiclass problems should have. First of all, the
ranking criterion should be invariant of the coding system for y. For example, the popular between-groups
to within-groups sum of squares ratio BW criterion (Dudoit et al., 2000) satisfies this property. The BW
criterion measures the relevance of each feature by the ratio of the between-class to the within-class sums
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of squares. Secondly, the ranking should be robust against unbalanced sample sizes, i.e. features which
discriminate smaller classes should be protected. One such example is the ‘smarter’ BW ratio (Dudoit et al.,
2000). Despite the popular use of BW ratios, there are some drawbacks. In particular, the BW ratio tends
to select highly correlated features and it does not reveal interactions between features. Natural questions
include how to generalize SIS for multiclass problems, and how to resolve the issues of the BW ratio.

The authors demonstrated the performance of the SIS–SCAD–LD and SIS–SCAD–NB methods. It
would be interesting to see how SIS may improve the classification accuracy of other classifiers such as
the support vector machine (Vapnik, 1998). Furthermore, there is some work using L1-regularization to
perform simultaneous classification and variable selection (e.g. Wang and Shen (2007) and Wu and Liu
(2007)). In particular, Wang and Shen (2007) developed convergence rates of the generalization error
with dimension p=O{exp.n/}. Comparisons of SIS with L1-regularization in the context of classification
remain to be seen.

N. T. Longford (SNTL, Reading, and Universitat Pompeu Fabra, Barcelona)
The problem that is studied in the paper is truly formidable and the solutions proposed match it with
their ingenuity. The problem is understated by the description of looking for ‘a couple needles in a huge
haystack’, because a satisfactory solution must locate all the needles, even if they come with a little hay.
Maybe the two kinds of error that can be committed, omission of a needle and inclusion of hay, could be
associated with losses (penalties). If these could be stated (elicited from the relevant experts), then we could
clearly see or be able to assess (even) more realistically the value of a method such as sure independence
screening or iterative sure independence screening.

The fundamental assumption made is that there is a small number of important covariates (needles)
and the remaining variables are useless (hay). A more realistic assumption is that there is a pyramid of
variables; a select few of them (at the top) are very important, and then for every lower level of importance
there are increasingly more variables; at the bottom of the pyramid, there is the vast majority of variables
that are nearly or completely irrelevant. I appreciate that working with such a weaker assumption would
be difficult. However, the methods that are considered are not subjected to a stern test in the simulations
in Section 3.3 by assuming the needles and hay instead of the pyramid or a similar scenario.

With the ‘pyramid’ assumption, the problem is not that of identifying the minimal valid model (the
select list of variables), but of finding an invalid model which yields efficient inferences. Technically, such a
model is not valid because it cannot include all the covariates that are associated with non-zero regression
parameters. I think that we should prefer efficiency (the best trade-off of variance and bias) to validity (no
bias as an imperative), even if it makes asymptotics less relevant.

Weiqi Luo, Paul D. Baxter and Charles C. Taylor (University of Leeds)
Being able to select variables reliably, and automatically, in high dimensional models is a notoriously diffi-
cult problem. The paper tackles this question, introducing not only a computationally efficient method
(sure independence screening (SIS)), but at the same time introducing comprehensive theory explaining
the details of the procedure as well as theory to guide its practical implementation. We congratulate the
authors on their excellent work.

The numerical simulations that are illustrated in Section 4.2 show the performance of the iterative SIS
(ISIS) method. When n variables are selected from candidate predictors, ISIS always picks out all the true
variables, but the false discovery rate is quite high. We would like to point out another relevant approach to
dimension reduction. The jack-knife partial least squares regression (JKPLSR) algorithm, which was pro-
posed by Westad and Martens (2000), is based on significance tests of the regression coefficients estimated
in a PLSR model. Analogous to ISIS, JKPLSR is effective as a pre-step to reduce dimensionality.

We used the simulation study (as described in Section 4.2.1) to compare ISIS and JKPLSR. For simplic-
ity, we considered models only with dimension p=100. The performance of both methods was evaluated by
correct hit and false discovery rate statistics. Table 12 shows the comparative results. Similar performance
was observed when n=20; however, JKPLSR produced a simpler model when n=50.

A second, more specific, comment is with respect to the reliability and robustness of ISIS. According
to the settings of the simulated linear models (Sections 4.2.1–4.2.3), less than 1% model error is included
(comparing noise variance with signal variance). It is of interest to experiment with more simulations
under different configurations, e.g.

(a) varying the variance of model error,
(b) using skew instead of symmetric distributions for modelled predictors or
(c) increasing the number of non-zero coefficients in the model.
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Table 12. Results of a simulated study†

n Method Hit rate False discovery rate

ρ=0 ρ=0.1 ρ=0.5 ρ=0.9 ρ=0 ρ=0.1 ρ=0.5 ρ=0.9

20 ISIS 1 1 1 1 0.175 0.175 0.175 0.175
JKPLSR 0.991 0.997 0.995 0.970 0.123 0.100 0.088 0.101

50 ISIS 1 1 1 1 0.485 0.485 0.485 0.485
JKPLSR 1 1 1 1 0.001 0.001 0.001 0.002

†The average correct hit and false discovery rate was calculated across 200 simulation runs; p=100.

It is possible that these configurations will have a strong influence on the performance of ISIS. We wonder
whether the sure screening property still holds for ISIS under these general conditions, and we would
welcome the authors’ comments on this.

J. S. Marron (University of North Carolina, Chapel Hill)
The model selection issues that are addressed here are deep and the viewpoints are novel. The approaches
taken are simple and straightforward, so it is the models used, the sure screening criterion and the style
of analysis that are keenly interesting. For many real life high dimensional data contexts, I feel that the
assumption (that might be critical to the whole notion of sure screening) that the number of ‘important
parameters’ is less than the sample size is a serious limitation. For example in genetic applications it seems
easily conceivable that the actual number of ‘active genes’ could be much larger than the number of data
points. Nevertheless, it is still valuable to understand the asymptotic behaviour in this domain.

In the definition of sure screening, it sounds sensible to insist that the probability of finding important
variables tends to 1, but it seems that it should make sense also to control the false discovery rate. For
example one could consider making some sort of statement about the number of unimportant variables.
This false discovery rate could also be used to compare methods which share the sure screening property.

In situations where it is sensible to consider a dimension which is an exponentially large function of
the sample size, why does it make sense to index the asymptotics by using the sample size? It is certainly
traditional to do so, but traditionally the dimension is fixed, which is certainly not relevant here. With such
large dimensions, it seems more sensible to index the asymptotics by the dimension, and then to express
the sample size as a function of that. In addition, this type of framework allows natural interface with fixed
sample size asymptotics, as done by Hall et al. (2005). See Ahn et al. (2007) for recent results of that type.

Jeffrey S. Morris (University of Texas M.D. Anderson Cancer Center, Houston)
I congratulate the authors on an interesting and thought-provoking paper. Working at a cancer centre,
I have been involved with various projects involving high throughput genomic data yielding extremely
high dimensional data (large p) and very small sample sizes (small n). A key problem of interest in can-
cer research is to build models by using subsets of genomic factors to predict clinical response, with the
eventual goal of developing personalized therapy strategies.

In this setting, it is common to perform separate single-variable regressions on each of the p factors
(equivalent to sure independence screening (SIS) in this paper) to reduce the number of factors to a more
manageable number before applying formal variable selection methods. Considering how widely used this
approach is in practice, it is insightful to see a formal study of this approach, investigating its properties
through theoretical exploration and simulation. It is encouraging to see positive results, suggesting that it
may not be a bad idea.

However, I am concerned about how well it would perform for typical genomic data, which tend to be
characterized by

(a) small sample sizes and
(b) between-gene correlation.

The smallest sample size that is considered in simulation studies is n=200, larger than typical microarray
studies. It is more typical to have several dozen arrays and p = 30000 or so features. I wonder whether
SIS would perform very well in that setting. If the number of features d were chosen by n= log.n/ as in
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this paper, then we would pick only d = 7 features when n = 20, d = 9 features when n = 30 and d = 13
features when n = 50. Do I really expect that I should be able to pick out reliably the seven, nine or 13
crucial features from 30000 by using a univariate screening method? This is especially difficult, given
that we know from biology that the expression levels of different genes are not independent, but have
correlations that are induced by complex biological pathways. The set of most predictive single-factor
predictors may be highly correlated and may leave out factors with moderate marginal effects but strong
joint effects.

The authors acknowledge this problem and discuss an approach, iterative SIS (ISIS), that applies the
principles of boosting to alleviate it. I expect ISIS to perform better, given that it focuses on partial instead
of marginal effects. Further theoretical investigation of this method would be interesting and insightful.

Again, I congratulate the authors on their contribution to this important and challenging problem of
variable selection in high dimensional spaces.

Christian P. Robert (Université Paris Dauphine and Centre de Recherche en Economie et Statistique,
Malakoff )
Although I appreciate the tour de force involved in the paper and in particular by the proof that P.MÅ ⊂
Mγ/ goes to 1, I can only get an overall feeling of slight disbelief about the statistical consequences of the
results contained in the paper: in short, I basically question the pertinence of assuming a ‘true’ model in
settings when p�n.

Indeed, when constructing a statistical model like the regression model at the core of the paper, it is
highly improbable that there is a single model, e.g. a single subset of regressors that explains the data.
Therefore, to assume, as the authors do,

(a) that there is such a subset and
(b) that a statistical procedure will pick the ‘right’ regressors when applied in a context where p�n

strikes me as implausible or only applicable in formalized settings such as orthogonal regressors. If con-
fronted by the opposite, as when reading this paper, my natural reaction is to question the final relevance of
the asymptotic results in terms of statistical meaning. Once again, far from the idea of casting doubt about
the mathematical validity of those asymptotic results, but they seem to be orthogonal to the purposes
of statistical modelling. In most if not all practical settings, considering a large number p of potential
regressors implies that a wide range of alternative submodels will enjoy the same predictive properties,
especially if n�p because, in this setting, an explicative model is in my opinion statistically meaningless.
Significant variables may be identified in such cases but not a single monolithic collection of those, I am
afraid.

It thus seems to me that a decisional approach that focuses on the decisional consequences of model
selection rather than assuming the existence of a single true model would be more appropriate, especially
because it naturally accounts for correlation between covariates. In addition, using a loss function on the
βs or on the models allows for a rational definition of ‘important variables’, instead of the 0–1 dichotomy
that is found in the paper. That traditional model choice procedures suffer from computational difficulties
and are in practice producing suboptimal solutions is a recognized problem, even though more efficient
exploration techniques are under development (Hans et al., 2007a, b; Liang et al., 2008; Bottolo and
Richardson, 2008). In addition, adopting a more sensible predictive perspective means that missing the
exploration of the full submodel space is only relevant if better fitting models are omitted. I also think that
this is more than a mere philosophical difference of perspectives, since it has direct consequences on the
way that inference is conducted and since the overall simplicity of the hard threshold is more convincing
for practitioners than more elaborate modelling.

Keming Yu (Brunel University, Uxbridge)
Although some newly proposed variable selection methods for high dimensional statistical modelling typ-
ically fall under the rule of lp-penalty least squares (p = 0, 1, 2), this paper is welcomed to attract one’s
eyes to the combination of simple correlation learning with other methods for the aim. However, the
correlation learning rule may not work or exclude the following cases:

(a) componentwise regression mainly measures the ‘linear’ correlation whereas many dependent struc-
tures such as neural network training follow ‘non-linear’ dependence;

(b) some of the variables in regression analysis are dummy variables, and the componentwise magni-
tudes that are associated with these variables largely depend on the numerical values assigned, so it
is likely that an unimportant dummy variable but with big assigned values is selected, and this issue
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may not be easily avoided even using the extension of correlation learning that is proposed in the
paper.

For this we may propose an alternative variable selection rule named ‘score learning’. On the basis of a
neural network, for example, we simply use a ‘keep-one-in’ (or ‘keep-two-in’) rule to evaluate the associated
score function such as squared error for all p .p�n/ variables, than we rank or order the output scores
and take the first d .<n/ variables with large scores (or maybe the other way round).

Along the lines of neural networks, we further point out that Hinton and Salakhutdinov (2006) have
recently described a different way of training a multilayer neural network with a small central layer to
reconstruct high dimensional input vectors.

Cun-Hui Zhang (Rutgers University, Piscataway)
We congratulate the authors for their correct call for attention to the utility of screening and great effort
in studying its effectiveness.

Computational issues
In addition to the minimax concave penalty, we introduced a PLUS algorithm (Zhang, 2007a, 2008) to
compute an entire path of local minimizers of concave penalized loss. Moreover, we proved the selec-
tion consistency P{sgn.β̂j/= sgn.βj/∀ j}→ 1 for exactly the PLUS solutions MC+ and SCAD+ at the
universal penalty level λÅ =σ

√{2 log.p/=n} (Donoho and Johnstone, 1994). Since iterative approxima-
tions are not guaranteed to converge to the ‘right’ local minimizer, selection consistency holds for the
PLUS algorithm after consistent screening.

The computational cost of the PLUS algorithm is the same as that of the least angle regression algorithm
LARS (Efron et al., 2004) per step. Heuristics provide the computational cost of the PLUS algorithm as
O.snp/ up to λÅ, higher than O.np/ for correlation screening, the same as iterative sure independence
screening with O.s/ iterations, but lower than O.p3 +np2/ for the iteratively thresholded ridge regression
screener. As Qiwei Yao discusses, we prove selection consistency of stepwise regression, intuitively also
costing O.snp/ to compute.

Consistency
The consistency (4) of correlation screening hinges on condition 3, although the rankings of |E.XjY/|
are non-trivial. In Huang et al. (2006), ωj provide consistent weights for the adaptive lasso under a par-
tial orthogonality condition. We report simulation results without screening, at λÅ, with estimated σ at
p=20000, in the settings of simulation I (Table 13). An additional example is included with reduced signal.
Compared with Tables 1 and 7, our simulations underscore the scalability and consistency of the PLUS
algorithm and the importance of picking a proper method after consistent screening.

Information limits
Consider X with independent and identically distributed N.0, Σ/ rows, where the eigenvalues of Σ are all in
[cÅ, cÅ]⊆ .0, ∞/. Selection consistency requires min βj �=0|βj|�Mσ

√{log.p/=n} according to Wainwright

Table 13. Simulation results for the lasso MCC and SCADC methods

Variable Results for (n, p, s)= Results for (800,
(200, 1000, 8) 20000, 18) and

and the following minimum signal a
minimum signals a: =5 log(n)=

√
(n)

4 log(n)=
√

n log(n)=
√

n MC+ MC+(σ̂)

Lasso MC+ SCAD+ Lasso MC+ SCAD+

median.|M̂|/ 10 8 8 10 8 8 18 18
median.‖β̂−β‖2/ 1.52 0.18 0.18 1.34 0.34 0.76 0.09 0.09
%.M̂=MÅ/ 0.08 0.86 0.87 0.07 0.54 0.30 0.91 0.91
mean(steps) 11 17 25 11 13 17 37 37
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(2007) for Σ= Ip and Zhang (2007b) for general Σ. This information bound is achieved by the lasso for
Σ= Ip (Wainwright, 2007) and by the PLUS algorithm for general Σ (Zhang, 2007a, b). The same should
hold post correlation screening under the additional condition 3. Since condition (16) holds for p̃ > 2n,
the answer seems to lie in equation (18) and δ = .n=p/1=.k−r/ in expression (41), after dealing with the
dependence between the rows of X at the beginning of step 2(b).

Hao Helen Zhang (North Carolina State University, Raleigh)
We congratulate the authors for their thought-provoking and fascinating work on a fundamental yet
challenging topic in variable selection. Driven by the pressing need of high dimensional data analysis in
many fields, the problem of dimension reduction without losing relevant information becomes increasingly
important. Fan and Lv successfully tackled the extremely challenging case, where log.p/ = O.nξ/, ξ > 0.
The proposed sure independence screening (SIS) is a state of the art method for high dimensional variable
screening: simple, powerful and having optimal properties. This work is a substantial contribution to the
area of variable selection and will also have a significant effect in other scientific fields.

Extension to non-parametric models
In linear models, marginal correlation coefficients between linear predictors and the response are effective
measures to capture the strength of their linear relationship. However, correlation coefficients generally
do not work for ranking non-linear effects. Consider the additive model

Yi =
p∑

j=1
fi.Xij/+ "i, i=1, . . . , n,

where fj takes an arbitrary non-linear function form. Motivated by the ranking idea of SIS, one could
first fit a univariate smoother for each predictor and then use some marginal statistics to rank the covari-
ates. Many interesting questions arise in this approach. Firstly, what are good measures to characterize the
strength of the non-linear relationship fully? Possible choices include non-parametric test statistics,
p-values and goodness-of-fit statistics like R2. But which is best? Also, how do we develop consistent
selection theory for the procedure of screening non-linear effects? All these questions are challenging
because of the complicated estimation that is involved in non-parametric modelling. It would be interest-
ing to explore whether and how the SIS can be extended to this context.

Connection to multiple hypotheses testing and false discovery rate control
The variable selection problem can be regarded as the problem of testing multiple hypotheses: H1 : β1 =
0, . . . , Hp : βp = 0. Screening important variables is hence equivalent to identifying the hypotheses to be
rejected. The false discovery rate (Benjamini and Hochberg, 1995) has been developed to control the pro-
portion of false rejections. Some consistent procedures based on individual tests of each parameter have
been developed (Potscher, 1983; Bauer et al., 1988). Recently, Bunea et al. (2006) considered the case when
p increases with n, and showed that the false discovery rate or Bernoulli adjustment can lead to consistent
selection of variables under certain conditions. Their method is based on the ordered p-values of individual
t-statistics for testing Hj : βj = 0, j = 1, . . . , p. It would be interesting to compare SIS with these adjusted
multiple hypotheses testing approaches.

Harrison H. Zhou (Yale University, New Haven) and Xihong Lin (Harvard University, Cambridge)
An important finding of this paper is that the method proposed can identify the true model with a high
probability in ultrahigh dimensional variable selection settings such as p= exp.nξ/, with ξ > 0 arbitrarily
large. To understand when this result can be applied in practice, we consider the following special linear
model. Denote by X = .X1, . . . , Xp/ an n×p design matrix. Let y =Xβ+ε with

(a) each of the p Xs being independent N.0, 1/,
(b) p= exp.nξ/ with ξ > 0,
(c) ε∼N.0, In×n/ and
(d) β1 =n−κ for some κ< 1

2 , and βj =0 for all j �2.

Let λ=∞, and write

β̂1 = 1
n

XT
1 y = 1

n
‖X1‖2β1 + 1

n
XT

1 ε,

β̂j = 1
n

XT
j y = 1

n
XT

j .X1β1 +ε/ for j �2:
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Note that β̂1 ={1+o.1/}β1 ={1+o.1/}n−κ. Given X1 and ε, β̂j are independent and identically distrib-
uted normal. Hence the maximum noise

max
2�j�p

.β̂j/={1+o.1/}√{2 log.p/}
√(

1+β2
1

n

)
={1+o.1/}√{2.1+β2

1/}n.ξ−1/=2:

This calculation suggests that the true model can be identified with a high probability when κ<.1− ξ/=2,
i.e. ξ < 1 − 2κ. However, it is difficult to identify the true model when ξ > 1 − 2κ, as the maximum noise
dominates the true signal. Can the authors’ method be applied in this example to identify the true model
when ξ > 1−2κ?

This example is related to the scenario in which some predictors are highly correlated. For example, when
p is large, it is expected that there is a predictor Xj with j �2 such that the sample correlation coefficient
between Xj and true predictor X1 is arbitrarily close to 1. The authors proposed a useful iterative sure
independence screening procedure to deal with such a correlated X case. Can the authors provide some
guidelines on how to choose ki in each step and when to stop the iteration to ensure that the true model
can be identified with a high probability, or β can be estimated with some nice risk property? It seems that
the procedure proposed assumes that, if a variable is selected in the previous steps, it cannot be deleted
in later steps. Intuitively, it would be desirable to let variables in and out at each step. Can the authors’
procedure be modified to allow for this? We realize that the problem might become more complicated for
a general covariance matrix of x. For example, when the covariance is non-stationary, such as a constant
exchangeable correlation among the Xs, the concentration property may not hold. Is the method still
applicable in this case, and what are the required assumptions about signals relative to noise for the true
model to be identified?

We would like to make one minor comment. We think, under condition 3, the term log.d/ for the risk of
method SIS–DS in theorem 4 may not be necessary given the other assumed conditions. Hence the result
might be more general.

Hui Zou (University of Minnesota, Minneapolis)
I congratulate Professor Fan and Professor Lv for an excellent and stimulating paper which discusses sev-
eral fundamental issues in high dimensional data analysis. My comments will focus on the oracle properties
after sure independence screening.

The size of reduced dimension
Fan and Peng (2004) extended the oracle properties of non-concave penalized likelihood estimators in a
finite dimension setting (Fan and Li, 2001) to the diverging dimension setting with p=o.n1=3/. Combined
with sure independence screening (SIS), this result allows us to reduce the dimension from p�n to d =
o.n1=3/ and we still have an oracle-like estimator. In real applications, we wish to use SIS to screen out
noise features and also want to do so conservatively. Thus, it is of interest to know whether theorem 5
holds for larger d , i.e. d =o.nν/ and ν > 1

3 . Some positive answers are reported in Zou and Zhang (2008)
which show that, under reasonably weak conditions, the adaptive elastic net estimator enjoys the oracle
properties for p=O.nν/ as long as 0�ν <1. Hence, we believe that SIS can be used in a more conservative
way without sacrificing any theoretical optimality.

Which oracle estimator should be mimicked?
In Fan and Li (2001) and Fan and Peng (2004) the likelihood estimators are considered; thus the oracle
estimator should be the maximum likelihood estimator (MLE) and the non-concavely penalized likelihood
estimator mimics the MLE oracle estimator. However, in linear regression models, we often do not wish
to impose the error distribution assumption unless there is strong evidence for doing so. Thus the MLE
estimator cannot be used to construct the oracle estimator. A popular oracle estimator is the least squares
estimator, and the non-concavely penalized least squares estimator mimics the least squares oracle esti-
mator. When the error distribution is non-normal, then the least squares oracle can be inefficient. Zou
and Yuan (2008) discuss the issues with the oracle in the oracle model selection theory and propose the
composite quantile regression (CQR) oracle estimator. Zou and Yuan (2008) show that the relative effi-
ciency of the CQR oracle compared with the least squares oracle is greater than 70% regardless of the
error distribution. Kai et al. (2008) further show that the efficiency lower bound can be as high as 86.4%.
In the Gaussian model the relative efficiency is 95.5%. In a wide class of non-normal error models, the
CQR oracle could be much more efficient and sometimes arbitrarily more efficient than the least squares
oracle. Therefore, the CQR oracle is a safe and efficient alternative to the least square oracle.
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The authors replied later, in writing, as follows.

We are very grateful to all the contributors for their stimulating comments and questions on the role of var-
iable screening and selection on high dimensional statistical modelling. This paper would not have been in
the current form without the benefit of private communications with Professor Peter Bickle, Professor
Peter Bühlmann, Professor Eitan Greenshtein, Professor Qiwei Yao, Professor Cun-Hui Zhang and
Dr Wenyang Zhang at various stages of this research. We shall not be able to resolve all the points in
a brief rejoinder—indeed, the discussion can be seen as a collective research agenda for the future and
some of the agendas have already been undertaken by the discussants.

Independent learning
We would like to point out that correlation learning is a specific case of independent learning that we
advocate, which ranks the features according to the marginal utility of each feature. Correlation ranking
is the same as feature ranking according to the reduction of the residual sum of squares in the least squares
setting. In general, the marginal utility can be the quasi-likelihood or classification margin, contributed
by each individual feature. This has.been made more explicit in Fan (2007) and Fan et al. (2008). We do
not claim that independent learning can solve all high dimensional problems, but we indicate its power
for some class of problems with ultrahigh dimensionality. The computational expediency and stability are
prominently featured in independent learning.

We are very pleased to see that independent learning can indeed be derived from an empirical likeli-
hood viewpoint as elucidated by Hall, Titterington and Xue. An added feature of the empirical likelihood
approach is that the classifier is automatically built on the basis of the selected features. The idea of inde-
pendent learning is also applicable to generalized additive models as discussed by Helen Zhang. The critical
aspect is that the degrees of freedom for each component should be comparable or adjusted as elaborated
in the generalized likelihood ratio tests by Fan et al. (2001) and Fan and Jiang (2007). This also partially
responds to the question that was raised by Keming Yu on non-linear regression and categorical covariates.
Although our theory does not cover the case with categorical variables, our method does. The discussion
by Runze Li suggested further that correlation learning is applicable to the non-linear single-index model,
which is more general than a single-layer neural network model. This also answers partially the question
raised by Keming Yu.

Relationship to multiple testing and selection consistency
Several discussants (Bickel, Bühlmann, Marron, Luo, Baxter and Taylor, and Helen Zhang) link inde-
pendent learning with multiple testing. Bickel raises several important theoretical questions from different
perspectives and Bühlmann provides nice receiver operating characteristic curves, both for further under-
standing of sure independence screening (SIS). As Bickel correctly points out, our procedure is similar to
multiple-testing problems to see whether each feature is correlated with the response variable. Translating
the test statistics into P-values puts them into the same scale, as Adragni and Cook, Richardson and
other discussants correctly point out. Helen Zhang mentions some existing work that answers the selec-
tion consistency question that was raised by Bickel. However, sure screening and multiple testing have
a different philosophy and evaluation criterion. Multiple testing aims at controlling the false discovery
rate (FDR) whereas screening focuses on missed discoveries. In the simulated example II in Section 4.2.2,
for example, failing to discover the variable X4, which is uncorrelated with Y having marginal regression
coefficient 0, is regarded as a serious mistake, whereas in the multiple-testing problem this would even be
regarded as a correct decision. Hence, the evaluation criterion is also different from the multiple-testing
problem.

Several contributors (Bühlmann, Qiwei Yao, Cun-Hui Zhang, Leng and Wang) address the issue of
selection consistency. This corresponds to no false and missed discoveries in variable selection, if the eval-
uation criterion for model selection is used. Although this is a very nice property, the selection consistency
in ultrahigh dimensional space is a stringent requirement. The selection consistency is usually achieved
by more complicated procedures than independent learning. For example, Bühlmann explores the idea of
partial faithfulness, Qiwei Yao suggests stepwise regression procedures using modified information crite-
ria, Leng and Wang discuss the penalized likelihood methods (Fan and Li, 2001), and so does Cun-Hui
Zhang. However, in high dimensional statistical endeavours, a procedure with low FDR and no missed
variables is already remarkable, if the procedure is computationally expedient and stable. Such a procedure
can indeed be constructed by using SIS below.

As discussed above, SIS is not designed to control the FDR. But, it can easily be used to reduce the
FDR with no missed variables. The idea is very simple. Split the data randomly into two halves and apply
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SIS separately to both subsets of the data to obtain two submodels. Since we assume that the method has
a sure screening property, both submodels contain all relevant variables in the model. Therefore, we take
the common variables in these two submodels as the selected model. This selected model should have a
low FDR, as a falsely discovered variable must appear independently twice in the selected model. The
probability of such an event is merely .n=p/2 under the mild condition on exchangeability, thanks to the
‘blessing of dimensionality’. See Fan et al. (2008) for details and extensions. In particular, they showed
that the probability of choosing r extra variables is bounded by .n2=p/r=r!.

Tuning parameters
Several contributors (Bühlmann, James and Radchenko, Leng and Wang, Runze Li, Wenyang Zhang,
Zhou and Lin) discuss the need for a data-driven method for choosing the tuning parameters in both
stage 1 and stage 2. We agree wholeheartedly. In the first stage, our preference is to select sufficiently many
features, such as d =n or d =n= log.n/, though one can easily use twofold cross-validation to choose the
number of features d. This answers partially the question that was raised by Zhang and Xia. In the second
or final stage, Leng and Wang suggest using a Bayes information type of criterion and provide related
references. Bühlmann comments correctly that a tuning scheme is needed for the second stage of iterative
SIS (ISIS). Since ISIS means to be a simple screening procedure, a simple selection scheme suffices in many
situations. The predetermined parameters k1, . . . , kl in the second stage should be a decreasing sequence
and the geometric sequence is more appropriate. Suppose, for example, that we wish to run ISIS for five
iterations .l=5/ and to decrease the number of selected variables at each stage by a factor of θ (0.75, say).
Then, the first iteration should choose k1 =n.1−θ/=.1−θ5/, the second iteration picks θk1 variables and
the third stage selects θ2k1 variables, and so on. This avoids the ambiguity of variable selection of ISIS.

Clarifications
Some of our concepts were poorly presented and cause confusion as seen in some of discussions. First of
all, the paper stressed the simplicity and utility of independent learning rules in high dimensional feature
screening. Although correlation learning is an important specific example, we stress in fact independent
screening. This is why we chose the title with sure independent learning. Secondly, we would like to clarify
that condition 4 in the paper indicates a constraint on population collinearity, whereas usual conditions
on the design talk about sample collinearity. The difference between these two types of collinearity could
be severe when the dimensionality is much larger than the sample size, as illustrated by Figs 1 and 4 in the
paper. Condition 4 accommodates the situation in which the features can be divided into several uncorre-
lated groups, each satisfying condition 4. Thirdly, although d =n−1 is our default in the screening stage,
we do not rule out the possibility of selecting more features in the first stage. This partially answers the
concerns by Morris, and Richardson and Bottolo that d = n= log.n/ or d = n − 1 can be too small in the
first stage for some applications. In other words, we do not disagree with the comments that were made by
Greenshtein and Marron, who have in mind to construct as effective a method as possible to predict future
observations (the first goal in Bickel’s comment). However, for the second goal in Bickel’s comment, to gain
insight into the relationship between features and response for scientific purposes, as well as, hopefully,
to construct an improved prediction method, selection of smaller numbers of features without too much
compromise of prediction errors is also an important object and hence the default that d = n − 1 makes
sense. Lastly, our goal is feature screening. The number of selected features is an order of magnitude larger
than the number of active features. This makes sure screening much more easy and feasible.

Questions
Various contributors raise excellent questions that can be seen as a research agenda. For brevity, we cannot
respond to most of them.

Bickel’s questions 2 and 3 touch the foundation of feature selection. We are pleased that he extends the
concept of sure screening to the situation when more than one parsimonious models fit approximately
equally well. In such a situation, the independence screening would be more likely to obtain all important
factors than more sophisticated variable selection approaches, as the former is more likely to retain highly
correlated variables that would fit approximately equally well in the final model. In addition, among those
parsimonious models, the variables with a large marginal utility are usually preferred. Apparently much
work is needed to compare screen first–fit after types of method with fit first–screen after types of method
in terms of consistency and oracle properties, but the former would be faster and can deal with higher
dimensionality.

Bühlmann questions the advantages of ISIS in comparison with the boosting algorithm. With the pre-
determined variable selection schemes at stage 2 that were shown above, ISIS chooses multiple features in
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the second stage using the joint information of important covariates. It is less greedy than the boosting
algorithm. At the same time, it avoids solving large optimization problems as smoothly clipped absolute
deviation or the lasso would have done without prescreening. In other words, it bridges the gap between
these two extreme methods. It would be interesting to study and compare consistency properties of ISIS
and the boosting approach, as commented by Bühlmann. The concentration property (16) always holds
for the Gaussian case, as shown in our theoretical study. Bühlmann, and Zhou and Lin both raise an
excellent question about the upper bound of dimensionality for our theoretical results. Inspecting our
technical proofs more carefully yielded the need for such an upper bound, which is stated in condition 1.

Leng and Wang, and Zhang and Xia raise the question of how the stochastic error in the screening
stage impacts on the second stage of estimation. For many applications, this would not be severe. As
commented in the paper, to avoid the selection bias in the screening stage, we can split the sample into two
portions, where the first portion is used to screen variables and the second portion is used for shrinkage
estimation.

Comments
Johnstone provides beautiful theoretical results on the distribution of the largest sample canonical correl-
ation which gives us a better idea of how the problem of collinearity becomes severe when we have only
a modest sample size compared with the dimensionality. We agree with Samworth that the concentration
property should hold for a broader class of spherically symmetric distributions, as he shows via careful
simulations, and that it is important to derive the theoretical properties of independence screening for
heavier-tailed distributions that may have no concentration property.

We appreciate the remark by Hall, Titterington and Xue that the correlation coefficient for binary data
becomes a t-statistic for any sample size provided that class 1 is scored by n−1

1 and class 2 is scored with
−n−1

2 . The idea is related to assigning an empirical prior to the class labels in a reverse order. This also
provides some insights to the question that was raised by Yufeng Liu, who would like to know the relative
merits between the correlation ranking and t-statistic ranking. Yufeng Liu discusses several scenarios in
classification problems in which SIS deserves further development. One possible method of feature rank-
ing in multiclass problems is to rank them according to the F -statistics or their variants. An alternative is
to regard it as a sequence of two-class problems and to use ISIS to select all relevant features.

We appreciate the connections between SIS and screening by principal fitted components by using the
inverse regression made by Adragni and Cook. In their simulation, the response is uncorrelated with all
predictors, and this explains why SIS performs poorly. It is unclear to us how the piecewise linear basis
fy was constructed, but screening by principal fitted components in this simulated example is the same
as correlation learning based on a non-linear transform fy of the response, which is now correlated with
the relevant predictor. This gives advantages over plain SIS, which does not use any transform, for this
simulated model.

Greenshtein remarks that the non-parametric empirical Bayes method performs very well for classifica-
tions and works well also for sparse situations. As the method does not explicitly explore the sparsity, we
would not expect it to adapt to the sparse setting as well as the methods that are tailored for this setting. The
non-parametric empirical Bayes method is useful for constructing an effective method for prediction class
labels, without selecting features. This would not be suitable for achieving aim (b) of Bickel’s discussion.

Levina and Zhu look at the performance of ISIS with the lasso plug-in under lower signal-to-noise levels
through a simulation study. We agree that incorporating the signal-to-noise ratio the convergence rate will
give us a better picture of its effect. Of importance is to develop extensions of ISIS that are robust to low
signal-to-noise ratio. Some related questions have also been addressed by Luo, Baxter and Taylor.

Several discussants, including Anagnostopoulos and Tasoulis, bring up questions of relaxing the tech-
nical assumptions in the paper to give more insights into the applicability of SIS. We believe that these
questions will certainly stimulate much new research on variable screening and selection. For the leukae-
mia data analysis, we cannot compare the overlap of the genes selected since we do not have the keys to
check that.

Robustness
Several contributors, including Gather and Guddat, Hui Zou, and Luo, Baxter and Taylor, bring up the
issue of robustness to outliers and model assumptions. We appreciate their efforts to make the procedure
more robust to those assumptions. In particular, Gather and Guddat, and Hui Zou both propose more
robust procedures to the outliers. We agree with all discussants that robustness to outliers and to model
assumptions are important issues and they have addressed some of those. Independent learning is still in
the infancy and certainly needs more researchers to nurture and understand it.
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Criticisms
Many discussants give very critical scrutiny of independent learning in high dimensional modelling. SIS
and ISIS are simple procedures and cannot expect to address all the needs.

Robert casts doubts on the assumption of the existence of a single true model when p � n, as Bickel
does. We acknowledge that there are many models that are statistically indifferentiable given the limited
amount of information, but some are more useful. SIS and ISIS are procedures to pick some submodels
that have large marginal contributions. The asymptotic results provide merely an ideal situation under
which our common sense of independent screening works. However, Bayesian methods are viable tools
for selecting a family of submodels that have similar performance.

Longford comes up with a pyramid view of the importance of the variables which leads to a weaker
assumption than sparsity in the narrow sense. In a sense, the classical best subset selection provides such a
pyramid view on the most important k-variable models. However, such a best set selection is an NP-hard
problem and classical stepwise addition or stepwise algorithms provide a useful proxy. In high dimensional
endeavours, however, the accumulation of noise and computational cost make these methods more chal-
lenging to use and to understand. The penalized least squares methods provide an alternative solution to
these traditional methods with more efficient computation and easier structure to understand its statistical
properties. The ‘SCAD+’ and ‘MCP+’ (Zhang, 2007) or lasso solution paths provide, in a sense, such a
pyramid view. SIS and ISIS purely assist in reducing the dimensionality so that a more efficient solution
path can be constructed.

Richardson and Bottolo speculate that sure screening can be elusive in some correlated cases. The poor
performance of SIS in their simulation is related to the selection of the tuning parameter and leakage effect
from the peaks. If a larger d such as d =n−1 is used in the first stage of screening and if the leakage issue is
addressed, then the results of SIS can be significantly improved, by looking at their figures. In other words,
the sure screening property still holds in their simulated example. In searching for quantitative trait loci or
other similar biological endeavours, the leakage issue should be addressed. The peak locations are often
of interest and large values around the peak are regarded as the leakage from the peaks and correspond
to the same genetic locus.

Computation
Many contributors touch on the issue of computation, including Bühlmann, Runze Li and Cun-Hui Zhang,
who address different computation algorithms and their computational complexity. We agree with those
discussants that SIS has the smallest computational cost at the screening stage. The PC algorithm for explor-
ing partial faithfulness is certainly very stimulating and useful. The PLUS algorithm that was proposed
by Zhang (2007) is creative for effectively finding the solution paths to the folded concave penalized least
squares problems and is backed by asymptotic theory. Alternative algorithms are iteratively reweighted
penalized L1-regression proposed by Zou and Li (2008) and elaborated further in the paper, the itera-
tive co-ordinatewise minimization that was discussed by Runze Li and the local quadratic approximation
(Fan and Li, 2001). With these, we agree with Cun-Hui Zhang and Runze Li that the implementation
of folded concave penalized least squares problems are not much harder or slower to compute than
the lasso. However, the gains in bias reduction can be substantial in the high dimensional setting. We
believe that, with better understanding and implementation, the folded concave penalized likelihood (Fan
and Li, 2001) will play even more important roles in high dimensional statistical modelling and feature
selection.

Conclusion
Taken together, the discussants cover a wide range of topics, from foundations, philosophy and theory
to methods, computation and applications. The wide interest in high dimensional learning and related
methods in many fields, from bioinformatics and genetics to climatology and finance, clearly presents
exciting opportunities for interdisciplinary collaborations and expanded exchanges in ideas and tools
between statistics and other disciplines. We are very pleased to conclude by reiterating our thanks to all
the contributors, and to the Royal Statistical Society and the journal for hosting this forum.
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