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A Next Generation Sequencing (NGS)
Refresher

* Became commercially available in 2005

 Construction of a sequencing library = clonal amplification to
generate sequencing features

* High degree of parallelism

e Uses micro and nanotechnologies to reduce size of sample
components

* Reduces reagent costs
* Enables massively parallel sequencing reactions

* Revolutionary: has brought high speed to genome sequencing
* Changed the way we do research, medicine



RNA Sequencing

* High-throughput sequencing of RNA

* Allows for quantification of gene expression and differential
expression analyses

* Characterization of alternative splicing

* Annotation
* Goal is to identify genes and gene architecture

* de novo transcriptome assembly
* N0 genome sequence necessary!



Design
Experiment

RNA
preparation

Prepare
Libraries

Sequence

RNA-seq workflow

e Set up the experiment to address your specific biological questions
e Meet with your bioinformatician and sequencing center!

¢ |solate RNA
e Purify RNA

e Convert the RNA to cDNA
e Add sequencing adapters

e Sequence the cDNA using a sequencing platform

e Quality control
e Align reads to the genome/assemble a transcriptome
* Downstream analysis based on your questions
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Design

Experiment

Replication

Mouse 1 Mouse 2 Mouse 3

* Number of replicates depends on various factors: w
* Cost, complemtg of experlmental design (how many factors are of /—\ : Ry
mterest) availability of samples & =_\

* Biological Replicates

e Sequencing libraries from multiple independent biological
samples W

* Very important in RNA-seq differential expression analysis studies

* At least 3 biological reﬁllcates needed to more accurately
calculate statistics such as p-values Sample 1 Sample 2 Sample 3

* Technical Replication
* Sequencing multiple libraries from the same biological sample
* Allows estimation of non-biological variation
* Not generally necessary in RNA-seq experiments

* Technical variation is more of an issue only for lowly expressed
transcripts

Sample 1 Sample 2 Sample 3
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Experimental

expression analysis and sample pooling in RNA-seq

Anto P. Rajkurnar &5, Per Quist, Ross Lazarus, Francesco Lescai, Jia Ju, Mette Nyegaard, Ole Mors, Anders D. Berglum,

Pooling Samples in RNA-seq

Can be beneficial if tissue is scare/enough RNA is tough to obtain

Utilizes more samples, could increase power due to reduced biological
variability

Danger is of a pooling bias (a difference between the value measured in the

pool and the mean of the values measured in the corresponding individual
replicates)

Can get a positive result due to only one sample in the pool

Might miss small alterations that might disappear when only 1 sample has a
different transcriptome profile than others in the pool

Generally it is better to use one biological replicate per sample

If you must pool, try to use the same amount of material per sample in the
pool, use stringent FDR cutoffs, and many biological reps per pool

Evaluated validity of two pooling strategies (3 or 8
biological replicates per pool; two pools per
group). Found pooling bias and low positive

validation of methods for differential gene
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Single-end versus paired-end

Reads = the sequenced portion of cDNA fragments

Single-end= cDNA fragments are sequenced from
only one end (1x100)

Paired-end= cDNA fragments are sequenced from
both ends (2x100)

Paired-end is important for de novo transcriptome
assembly and for identifying transcriptional
isoforms

Less important for differential gene expression if
there is a good reference genome

Don’t use paired-end reads for sequencing small
RNAs...

Note on read-length: long reads are important for
de novo transcript assembly and for identifying
transcriptional isoforms, not required for
differential gene expression if there is a good
reference genome

Single-end reads

Paired-end reads

sequenced
fragment
—

unknown
sequence

sequenced
fragment

200 - 1000bp

reference
sequence

reference
sequence



w4 Sequencing Depth —
seguence?

e Depth= (read Ien%th)(number of reads) /
(haploid genome length)

* Each library prep method suffers from
specific biases and results in uneven
coverage of individual transcripts = in
order to get reads spanning the entire
transcript more reads (deeper
seguencing) is required

* Depends on experimental objectives

* Differential gene expression? Get enough
counts of each transcript such that accurate
statistical inferences can be made

* De novo transcriptome assembly?
Maximize coverage of rare transcripts and
transcriptional isoforms

* Annotation?
e Alternative splicing analysis?

How deep should |

Required number of reads per sample in sequencing projects
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1) Liu Y., et al., RNA-seq differential expression studies: more sequence or more replication?
Bioinformatics 30(3):301-304 (2014) 2) Liu Y., et al., Evaluating the impact of sequencing depth on
transcriptome profiling in human adipose. Plos One 8(6):e66883 (2013) 3) Bentley, D. R. et al. Accurate
whole human genome sequencing using reversible terminator chemistry. Nature 456, 53—59 (2008) 4)
Rozowsky, J.et al., PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls.
Nature Biotech. 27, 65-75 (2009).
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Strand Specificity

 Strand-specific= you know whether the read originated from the + or
— strand

* Important for de novo transcript assembly
* Important for identifying true anti-sense transcripts

* Less important for differential gene expression if there is a reference
genome

* Knowledge of strandedness may help assign reads to genes adjacent
to one another but on opposite strands
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RNA-seq experimental design summary

* Very important step - if done incorrectly no amount of statistical expertise can glean information out of your data!!!

* Biological replicates
* For differential expression | generally recommend at least 3 — allows you to estimate variance and p-values

* Technical replicates
* Generally not necessary in RNA-seq experiments

* Depth of sequencing
* Depends on your experimental goals and organism!

* Length of reads
* Longer reads = better alignments
* Longer reads = more expensive

* Paired-end or single-end?
* Paired-end = better alignment
* Paired-end = more expensive

* Pooling — Not ideal but sometimes necessary

* Strand-specific?
» Definitely for antisense transcript identification and de novo transcriptome assembly
* Not necessary for differential gene expression on an organism with a well-characterized reference genome
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Experimental Design

Perfect World Real World

* Reads as long a possible * Determine what your goals are and
e Paired-end what treatments you are interested

_ in; plan accordingly
* Sequence as deeply as possible to

_ * For a simple differential gene
ggfﬁ\ﬁt) novel transcripts (100 expression experiment on a human

, , you could get away with single-
* As many replicates as possible end, 75-100b|i>_ reads, with n=3
|

* Preferably run a small pilot biological replicates, sequenced to
experiment first to see how many 30 million reads/sample (1 lane of

replicates are needed given the sequencing for a simple control vs
effect size treatment 6 sample design)

http://scotty.genetics.utah.edu/scotty.php



http://scotty.genetics.utah.edu/scotty.php

Microarray versus RNA-Seg

Design
Experiment
RNA-seq Microarray
e Counts (discrete data) * Continuous data
* Negative binomial distribution used in * Normal distribution used in statistical analysis

statistical analysis e Genome must be sequenced

* No genome sequence needed * Uses DNA hybridizations — sequence info

* Can be used to characterize novel heeded

transcripts/splice forms * Metric: Relative intensities

* Metric: Counts (quantitative)
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Do | use Microarray or Sequencing?

* What expertise is available?

* Is your lab already set up for microarraYs3 Does your bioinformatician prefer to
analyze next gen data? What are Ipeop e in your deg)artment familiar with? Is there
someone who can help you troubleshoot problems:

* Cost = microarrays are cheaper

* At what levels are the transcripts of interest likely to be expressed at?

* Microarrays indicate relative rather than absolute expression

* This can be problematic for accurate estimation of expression levels of very highly or lowly
expressed transcripts

* Does your organism of interest have a well characterized genome?

e Data analysis: how confident are you in your ability to analyze the data?

* Microarrays have been around for a lot longer and so microarray analysis has more
user-friendly tools
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RNA-seq workflow

e Set up the experiment to address your specific biological questions
e Meet with your bioinformatician and sequencing center!!!

¢ |solate RNA
e Purify RNA

e Convert the RNA to cDNA
e Add sequencing adapters

e Sequence the cDNA using a sequencing platform

e Quality control
e Align reads to the genome/assemble a transcriptome
* Downstream analysis based on your questions
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S RNA extraction, purification, and quality
assessment

Figure 2.1 Example Agilent Bioanalyzer Electropherograms from three different total RNAs of varying
integrity. Panel [A] represents a highly intact total RNA (RIN = 9.2), panel [B] represents a moderately
intact total RNA (RIN = 6.2), and panel [C] represents a degraded total RNA sample (RIN = 3.2).
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e RIN=RNA integrity number
* Generally, RIN scores >8 are good, depending on the organism
* Important to use high RIN score samples, particularly when sequencing small RNAs to be sure you aren’t

simply selecting degraded RNAs
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RNA-seq workflow

e Set up the experiment to address your specific biological questions
e Meet with your bioinformatician and sequencing center!!!

¢ |solate RNA
e Purify RNA

e Convert the RNA to cDNA
e Add sequencing adapters

e Sequence the cDNA using a sequencing platform

e Quality control
e Align reads to the genome/assemble a transcriptome
* Downstream analysis based on your questions
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Target Enrichment

* It is necessary to select which RNAs you sequence
* Total RNA generally consists of >80% rRNA (Raz et al. ,2011)

* If rRNA not removed, most reads would be from rRNA

* Size selection — what size RNAs do you want to select? Small RNAs?
MRNAS?

* Poly A selection= method of isolating Poly(A+) transcripts, usually
using oligo-dT affinity

* Ribodepletion = depletes Ribosomoal RNAs using sequence-specific
biotin-labeled probes



Prepare

Libraries

Library Prep

e Before a sample can be
sequenced, it must be
prepared into a sample
library from total RNA.

* Alibrary is a collection
of fragments that
represent sample input

e Different methods exist,
each with different
biases
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RNA-seq workflow

e Set up the experiment to address your specific biological questions
e Meet with your bioinformatician and sequencing center!!!

¢ |solate RNA
e Purify RNA

e Convert the RNA to cDNA
e Add sequencing adapters

e Sequence the cDNA using a sequencing platform

e Quality control
e Align reads to the genome/assemble a transcriptome
* Downstream analysis based on your questions
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Sequence

Next Generation Sequencing Platforms

* 454 Sequencing / Roche
* GS Junior System
A 4

* |[llumina (Solexa)

* HiSeq System
* Genome analyzer lIx
* MySeq

* Applied Biosystems — Lite Technologies
* SOLiID 5500 System )
e SOLiD 5500x| System
* lon Torrent ' ‘ ‘
: Efgigrr:al Genome Machine (PGM) S *

GS FLX 454

illumina o

HiSeq 2000
(TLLUMINA)

ion torren (ABI)
R ADED+ R

- i

https://youtu.be/HMyCqgWhwBS8E Ion TORRENT
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RNA-seq workflow

e Set up the experiment to address your specific biological questions
e Meet with your bioinformatician and sequencing center!!!

¢ |solate RNA
e Purify RNA

e Convert the RNA to cDNA
e Add sequencing adapters

e Sequence the cDNA using a sequencing platform

e Quality control
e Align reads to the genome/assemble a transcriptome
* Downstream analysis based on your questions
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Standard Ditferential Expression Analysis

~

( )
Check data
quality
N\ J
( )
Trim & filter
reads, remove
adapters
G J
( )
Check data
quality
N\ J

&
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~
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Count reads
aligning to
each gene

~

4 )
Differential
expression

analysis
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GO enrichment

J

~

Align reads to
reference
genome

~

analysis
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( )
Pathway
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o J




File formats - FASTQ files — what we get back
from the sequencing center

e This is usually the format your data is in when
sequencing is complete

* Text files
e Contains both sequence and base quality information

* Phred score = Q = -10log,,P
* P is base-calling error probability

* Integer scores converted to ASCII characters
* Example:

@ILLUMINA:188:CO03MYACXX:4:1101:3001:1999 1:N:0:CGATGT
TACTTGTTACAGGCAATACGAGCAGCTTCCAAAGCTTCACTAGAGACATTTTCTTTCTCCCAACTCACAAGATGAACACAAAATGGAAACT
+

1=DDFFFHHHHHJIDGHHHUUIIJUGIGINICHEINGIIUINUIFGGGGGUIFFBEFDC>@ @BB?A9@3;@(553>@>C(59:?



Data Cleaning: a Multistep Process

\
Remove
adapters e Removes adapter sequences
\\
Remove e Remove contamination from
contamination fastq files
/

.
Trim reads J e Trim reads based on quality

e Separate reads into
paired and unpaired




Quality Control — Per Base Sequence Quality

Quality scores across all bases (Sanger f lllumina 1.9 encoding) Quality scores across all bases Ganger / lllumina 1.9 encoding)
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Quality Control — Per Sequence Quality Scores

Quality score distribution over all sequences
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Aligning Reads to a Reference

AGCACCGTTAGTI CGAGGACTAGTT CCGATUGTCA

_—

Unigue reads

C A CCGTTAGTTCGA

Reference Genome

T CGAG G ACT A GT

A CCGTTAGTCGA AG

T A GTCCG A TG C A

T A GGTCCG A TG C A

Sample 1 Sample2 ... Sample N
Gene 1 145 176 ... 189
Gene 2 13 27 19
Gene G 28 30 Ll 20




File formats: FASTA files

* Text file with sequences (amino acid or nucleotides)

* First line per sequence begins with > and information
about sequence

* Example:

>comp2_c0 _seql
GCGAGATGATTCTCCGGTTGAATCAGATCCAGAGGCATGTATATATCGTCTGCAAAATGCTAGAAA
CCCTCATGTGTGTAATGCAGTGCATTCATGAAAACCTTGTAAGCTCACGTGTCGCTGACTGTCTGA
GAACCGACTCGCTAATGTTCCATGGAGTGGCTGCATACATCACAGATTGTGATTCCAG
GTTGCGAGACTATTTGCAGGATGCATGCGAGCTGATTGCCTATTCCTTCTACTTCTTAAATAAAGTA
AGAGC



File formats: BAM and SAM files

* SAM file is a tab-delimited text file that contains sequence alignment
information

* This is what you get after aligning reads to the genome

* BAM files are simply the binary version (compressed and indexed
version) of SAM files = they are smaller

es50 SN:chrM IN: 16299

* Example: T

50 N:chrX_rondom  LN: 178575
50 SN:chrY IN:15502555

o5 N:chrY_rondon  LN: 58682461
W1 -EAS@38:6:1:23:12280 4 . ] ] . . 0 # TAGCCTTGATGTTTACCTATTGTATCAAAGGL DJYMXL TPROPOXYSS8552222220800000 /)
]
HNL-EAS@38:6:1:25:28320 @ chrid  ZNNZ726 e N . ) ] NGAGACCCAGGAAATTGAAG TCAGNCAGTTAG oboa_Z_ " X]PW2222020800008
. BBBRRRERR XTAAGR Wil X@:0:3 X1::@ 0t X0:1:@ XG:i:0 MD:Z:18T22
Header Ilnes IV -EAS@38:6: 1:26: 64080 © chrd 27584890 Y EE VI @ a COTTTCTTTIGTCTACTCCTTTCCTCTTGRTAT obboobbbbbh o\ "o\oo[]
JOWoo ' YXS KT:ALU ML X0 XL Ml X0 X6l ity
. . WWT-EASO38:6:1:30: 01800 16 chrl? 95265601 » I . " El GTGTTTATCAGTCCCAMGGCONC TAGAGGL TG NODBRBRBRBRERAS[ [ \ooloo
(begln Wlth 0000 0 KUGACR M2 Xl Xl a2 X0:0i@ XG:Li0 MDIZINGAT2e
MWT-EAS@38:6:1:32: 150790 16 chrid 57505480 ¥ M . o 0 COGAGC TGO TGO TAGMATTGTGTGLTGECTAG \ZINL [ JIMIAAZAT
o n bbob, W\ oo " b XTrASU i@ 0ty Xl (e X0:0:0 xGiih Moz
@ ) NI -EASO38:6:1:32;: 20840 4 . [ 0 . . o i TATAATAMMTGACATTTTATTAAATACGCCT Agoo._\)A[SBBBBESE3324428800000
[ .
WWT-EAS@3816:1: 32: 193400 El hr? 65636851 14 L] . o o TTTATATTTCTCCCCTTATCATTCCATTTTTTT OOMAXNYONY [AUY L A||gnment
JIMONZEVIO ] [Beea XA MLl il X8 dved:l X0:e:0 X6l M2
HVT-EAS@3816:1:32: 86100 4 . ] ® . . o ¢ TGATTCTAAGTTGGTTTAATATAAATCAACAT 1bUSIGKMNX_ \BREBBRSAASAAAAA00D .
- section
WWT-EAS@38:6:1:32: 181440 Fl e 08506748 0 1M . El N CCACTTGACGAC TTCAMMMATGACGAAATCALT WRAX " 1Z]e)X2]02
WIPYWAYRA[SLZESY XT:AGR AN 002 XA vt X0:0:0 XG:L:® MD:2:14G18
HNVT-EAS@38:611: 34: 200089 Fl chrld 97252404 Er e . El o CCTAGATTCCTTAGAA TATAMAGGAGGAGAGC o' _ba) _Oalov['o
OHDTA_BBBBSASESES XT:A:U NVl 0:icl XA:ii® XMiizl M0:6:0 XG:i:8 MD:2:2973
HNL-EAS@38:6:1:37:66750 @ chrX  GOES26E54 37 3N . » @ CAAGTCCAAAAATTCCTTGAAAAATTTCACAAT ¥ _TONPTAA_ [P QQYN]
BBBBBBAER XT:AU MMGiil XB:i:1 X1:6:0 J0Gi:1 XD:i:@ XG:1:0 MD:Z:19C13
HNL-EAS@38:6:1:37:123620 4 . ) e . . e ] ATGATTTCTTGTTGTGTATCACTATTICTAGGGG _(\LY3333333333330000000
BBBBBBBER
HNI-EAS@38:6:1:37:26220 16 chr2 3386587 23 ke . [ ) TCTAGTACCCACATGGTGCAAGGAGAGAACCAA 88712 [LFTOQTZYQRHILOISNG . [L0]




Terminology

* Counts = (X)) the number of reads that align to a particular feature i (gene,
isoform, miRNA...)

* Library size= (N) number of reads sequenced

‘e FPKM = Fragments per kilobase of exon per million mapped reads

* Takes length of gene (/) into account

~  * FPKM=(X. /I *N)*10°

 CPM = Counts Per Million mapped reads

~ * CPM:=X;/N*106

* FDR = False Discovery Rate gfthe rate of Type | errors — false positives?; a
10% FDR means that 10% of your differentially expressed genes are likely

to be false positives
* we must adjust for multiple testing in RNA-seq statistical analyses to control the FDR

Units




Caveats

* If you have zero counts it does not necessarily mean that a gene is not
expressed at all
* Especially in single-cell RNA-seq

* RNA and protein expression profiles do not always correlate well
e Correlations vary wildly between RNA and protein expression

* Depends on category of gene

* Correlation coefficient distributions were found to be bimodal between gene
expression and protein data (one group of gene products had a mean
correlation of 0.71; the another had a mean correlation of 0.28)

 Shankavaram et. al, 2007



Many tools exist for differential expression

e Cufflinks

* Tests both isoform and gene differential expression
» Corrects for differences in sequencing depth and transcript length
* Allows comparison of genes across samples and between different genes within the same sample

* DESeq2
» Tests gene differential expression
* Corrects for differences in transcript pool and extreme outliers to allow better across-sample comparability
* Allows comparison of genes across samples
* More conservative

e edgeR
* Tests gene differential expression
* Corrects for differences in transcript pool and extreme outliers to allow better across-sample comparability
* Allows comparison of genes across samples
* Less conservative



Downstream analysis: What to do with your
gene list

¥

* Annotate DEG

* Find biological processes that are enriched amongst the DEGs
e Pathway analysis

* Clustering analyses

* Biological Validation



GO terms

* GO Consortium (Gene Ontology Consortium) seeks to provide
consistent descriptions of gene products across databases

 Started as a collaboration between FlyBase (Drosophila), Saccharomyces
Genome Database (SGD), and the Mouse Genome Database (MGD)

* Now incorporates many more databases

* Comprised of 3 structured ontologies that describe gene products in
terms of associated:

* Biological processes (operations or sets of molecular events with a defined
beginning and end)

e Cellular components (the parts of a cell or its extracellular environment)

* Molecular functions (activities of a gene product at a molecular/biochemical
level — such as “catalysis” or “binding”)



GO term enrichment analysis

* Which GO terms are enriched in my list of interesting genes?

* Find GO terms that are over-represented or under-represented using annotations for
your gene set

* Fisher’s Exact Test/Hypergeometric test often used

* Compare GO terms mapping to gene list with GO terms mapping to a
background/reference gene list (such as all the genes in the yeast genome)

* Numerous tools exist for GO term enrichment analysis (the following
require no computational background and have GUIs):
* AmiGO
* OBO-edit
AgriGO
BLAST2GO
DAVID
BINGO



Pathway Analysis

Prostate Cancer Signaling
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