STAT 525 FALL 2018

Chapter 7 General Linear Test and Multicollinearity

Professor Min Zhang

General Linear Test

- Comparison of a <u>full</u> model and <u>reduced</u> model that involves a subset of full model predictors (i.e., hierarchical structure)
- Involves a comparison of unexplained SS
- Consider a full model with k predictors and reduced model with l predictors (l < k)
- Can show that

$$F^{\star} = \frac{(\mathsf{SSE}(\mathsf{R}) - \mathsf{SSE}(\mathsf{F}))/(k-l)}{\mathsf{SSE}(\mathsf{F})/(n-k-1)}$$

 Degrees of freedom for F* are the number of <u>extra</u> variables and the error degrees of freedom for the larger model

- Testing the Null hypothesis that the regression coefficients for the <u>extra</u> variables are all zero.
- Examples:
 - $X_1, X_2, X_3, X_4 \text{ vs } X_1, X_2 \longrightarrow H_0 : \beta_3 = \beta_4 = 0$
 - X_1, X_2, X_4 vs $X_1 \longrightarrow H_0$: $\beta_2 = \beta_4 = 0$
 - $X_1, X_2, X_3, X_4 \text{ vs } X_1 \longrightarrow H_0 : \beta_2 = \beta_3 = \beta_4 = 0$
- Because SSM+SSE=SSTO, can also compare using explained SS (SSM)

Extra SS and Notation

- Consider $H_0: X_1, X_3$ vs $H_a: X_1, X_2, X_3, X_4$
- Null can also be written H_0 : $\beta_2 = \beta_4 = 0$
- Write SSE(F) as $SSE(X_1, X_2, X_3, X_4)$
- Write SSE(R) as $SSE(X_1, X_3)$
- Difference in SSE's is the extra SS
- Write as

 $SSE(X_2, X_4 | X_1, X_3) = SSE(X_1, X_3) - SSE(X_1, X_2, X_3, X_4)$

Recall SSM can also be used

 $SSM(X_2, X_4 | X_1, X_3) = SSM(X_1, X_2, X_3, X_4) - SSM(X_1, X_3) \Longrightarrow$ $SSM(X_1, X_2, X_3, X_4) = SSM(X_1, X_3) + SSM(X_2, X_4 | X_1, X_3)$

General Linear Test in Terms of Extra SS

• Can rewrite F test as

$$F^{\star} = \frac{\mathsf{SSE}(X_2, X_4 | X_1, X_3) / (4-2)}{\mathsf{SSE}(X_1, X_2, X_3, X_4) / (n-5)}$$

- Under H_0 , $F^* \sim F(2, n-5)$
- If reject, conclude either X₂ or X₄ or both contain additional useful information to predict Y in a linear model with X₁ and X₃
- Example: Consider predicting GPA with HS grades, do SAT scores add any useful information?

Special Cases

• Consider testing individual predictor X_i based on

 $SSE(X_i|X_1,...,X_{i-1},X_{i+1},...,X_{p-1})$

These are related to SAS's indiv parameter t-tests

 $F(1, n-p) = t^2(n-p)$

- Can decompose SSM variety of ways
 - Decomposition of $SSM(X_1, X_2, X_3)$

= SSM $(X_1) +$ SSM $(X_2|X_1) +$ SSM $(X_3|X_2,X_1)$

- = SSM (X_2) + SSM $(X_1|X_2)$ + SSM $(X_3|X_2, X_1)$
- = SSM(X₃) + SSM(X₂|X₃) + SSM(X₁|X₂, X₃)
- Stepwise sum of squares called Type I SS

Type I SS and Type II SS

- Type I and Type II are very different
 - Type I is sequential, so it depends on model statement

 Type II is conditional on all others, so it does not depend on model statement

• For example,

Type IType II $SSM(X_1)$ $SSM(X_1|X_2, X_3)$ $SSM(X_2|X_1)$ $SSM(X_2|X_1, X_3)$ $SSM(X_3|X_1, X_2)$ $SSM(X_3|X_1, X_2)$

- Could variables be explaining same SS and "canceling" each other out?
- Look at other models / general linear test

Example: Body Fat (p.256)

- Twenty healthy female subjects
- Y is body fat via underwater weighing
- Underwater weighing is expensive/difficult
- X_1 is triceps skinfold thickness
- X_2 is thigh circumference
- X₃ is midarm circumference

• Investigate the model with all three predictors:

```
data a1;
    infile 'U:\Ch07ta01.txt';
    input skinfold thigh midarm fat;
proc reg data=a1;
    model fat=skinfold thigh midarm /ss1 ss2;
run;
```

Analysis of Variance								
			Sum o	f M	lean			
Source		DF	Square	s Squ	lare	F Val	ue	Pr > F
Model		3	396.9846	1 132.32	2820	21.	52	<.0001
Error		16	98.4048	9 6.15	5031			
Corrected	Total	19	495.3895	0				
Doot MCE			0 17000	D C que ma		0 001/		
Root MSE			2.47998	R-Square		0.8014		
Dependent	Mean		20.19500	Adj R-Sc	1	0.7641		
Coeff Var			12.28017					
]	Parameter	Estimates				
		Para	ameter	Standard				
Variable	DF	Es	timate	Error	t V	Value	Pr >	t
Intercept	1	117	.08469	99.78240		1.17	0.	2578
skinfold	1	4	.33409	3.01551		1.44	0.	1699
thigh	1	-2	.85685	2.58202	-	·1.11	0.	2849
midarm	1	-2	.18606	1.59550	-	$\cdot 1.37$	0.	1896

Conclusions

- Set of three variables helpful in predicting body fat (P < 0.0001)
- None of the individual parameters is significant
 - Addition of each predictor to a model containing the other two is not helpful
 - Example of multicollinearity
 - Will discuss more in next topic
- Will now focus on extra SS

• Output Using SS1 & SS2

Parameter Estimates

Parameter

Variable	DF	Estimate	Type I SS	Type II SS
Intercept	1	117.08469	8156.76050	8.46816
skinfold	1	4.33409	352.26980	12.70489
thigh	1	-2.85685	33.16891	7.52928
midarm	1	-2.18606	11.54590	11.54590

• Investigate the model: fat=skinfold

```
proc reg data=a1;
    model fat=skinfold;
run;
```

	An	alysis of V	ariance		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	352.26980	352.26980	44.30	<.0001
Error	18	143.11970	7.95109		
Corrected Tota	al 19	495.38950			
Root MSE		2.81977	R-Square	0.7111	
Dependent Mean	1	20.19500	Adj R-Sq	0.6950	
Coeff Var		13.96271			
	Р	arameter Es	timates		
	Para	meter Sta	ndard		
Variable DI	F Esti	mate E	rror t Valu	e Pr>	• t
Intercept	L -1.4	9610 3.3	1923 -0.4	5 0.	6576
skinfold :	L 0.8	5719 0.1	2878 6.6	6 <.	0001

• Skinfold now helpful. Note the change in coefficient estimate and standard error compared to the full model.

- Does this variable alone do the job?
- Perform general linear test

```
proc reg data=a1;
    model fat=skinfold thigh midarm;
    thimid: test thigh, midarm;
run; quit;
```

Test thimid Results for Dependent Variable fat

		Mean		
Source	DF	Square	F Value	Pr > F
Numerator	2	22.35741	3.64	0.0500
Denominator	16	6.15031		

• Appears there is additional information in the variables. Perhaps the addition of one more variable would be helpful.

Partial Correlations

- Measures the strength of a linear relation between two variables taking into account other variables or after adjusting for other variables
- Procedure for X_i vs Y
 - Predict Y using other X's
 - Predict X_i using other X's
 - Find correlation between residuals
- Each residual represents what is not explained by the other variables
- Looking for <u>additional</u> information in X_i that better explains Y

Example: Body Fat

```
proc reg data=a1;
```

```
model fat=skinfold thigh midarm / pcorr2;
```

run;

Parameter Estimates

						Squared
		Parameter	Standard			Partial
Variable	DF	Estimate	Error	t Value	Pr > t	Corr Type II
Intercept	1	117.08469	99.78240	1.17	0.2578	•
skinfold	1	4.33409	3.01551	1.44	0.1699	0.11435
thigh	1	-2.85685	2.58202	-1.11	0.2849	0.07108
midarm	1	-2.18606	1.59550	-1.37	0.1896	0.10501

- Squared partial correlation is also called coefficient of partial determination. Has similar interpretation to coefficient of multiple determination.
- In this case, variables only explain approximately 10% of the remaining variation after the other two variables are fit.

Standardized Regression Model

- Can reduce round-off errors in calculations
- Standardization

$$\tilde{Y}_i = \frac{1}{\sqrt{n-1}} \left(\frac{Y_i - \overline{Y}}{s_Y} \right) \quad \text{and} \quad \tilde{X}_{ik} = \frac{1}{\sqrt{n-1}} \left(\frac{X_{ik} - \overline{X}_i}{s_{X_i}} \right)$$

- Puts regression coefficients in common units
- A one SD change in X_i corresponds to $\tilde{\beta}_i$ SD increase in Y
- Can show

$$\beta_i = \left(\frac{s_Y}{s_{X_i}}\right) \tilde{\beta}_i$$

Example: Body Fat

```
proc reg data=a1;
```

```
model fat=skinfold thigh midarm / stb;
```

run;

Parameter Estimates

		Parameter	Standard			Standardized
Variable	DF	Estimate	Error	t Value	Pr > t	Estimate
Intercept	1	117.08469	99.78240	1.17	0.2578	0
skinfold	1	4.33409	3.01551	1.44	0.1699	4.26370
thigh	1	-2.85685	2.58202	-1.11	0.2849	-2.92870
midarm	1	-2.18606	1.59550	-1.37	0.1896	-1.56142

**Skinfold has highest standardized coefficient. Midarm does not appear to be as important a predictor. Perhaps best model includes skinfold and thigh.

Multicollinearity

- Numerical analysis problem is that the matrix X'X is almost singular (linear dependent columns)
 - Makes it difficult to take the inverse
 - Generally handled with current algorithms
- Statistical problem: too much correlation among predictors
 - Difficult to determine regression coefficients \longrightarrow Increased variance
- Want to refine model to remove redundancy in the predictors

Example

• Consider a two predictor model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

- What is the estimate of β_1 ?
- Can show

$$b_1 = \frac{\tilde{b}_1 - \sqrt{\frac{s_Y^2}{s_{X_1}^2}}r_{12}r_{Y2}}{1 - r_{12}^2}$$

where \tilde{b}_1 is the estimate fitting Y vs X_1

Extreme Cases

- Consider X_1 and X_2 are uncorrelated
 - $r_{12} = 0$
 - $b_1 = \tilde{b}_1$ (fitting Y vs X_1)
 - Estimator b_1 does not depend on X_2
 - Type I SS and Type II SS are the same
 - In other words, the contribution of each predictor is the same regardless of whether or not the other predictor is in the model
- Consider $X_1 = a + bX_2$

 $-r_{12} = \pm 1$

- Estimator b_1 does not exist
- Type II SS are zero
- In other words, there is no contribution of the predictor if the other predictor is already in the model

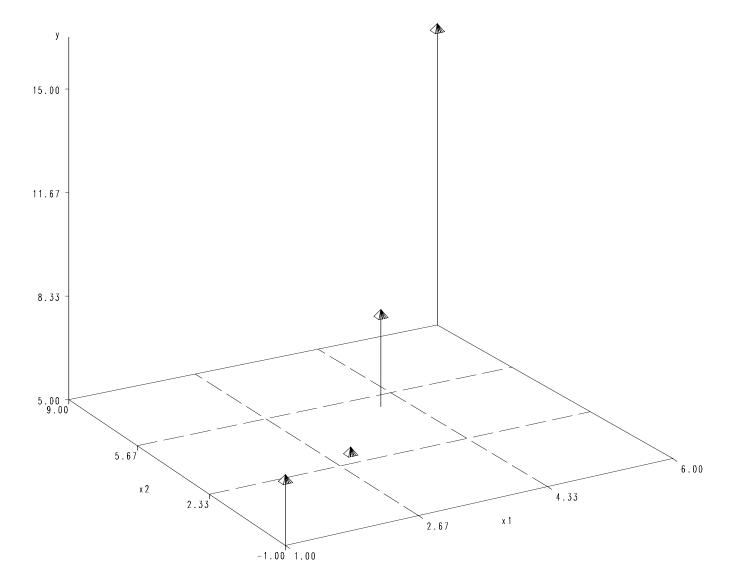
Extreme Case in SAS

• Consider the following data set

```
data a1;
    input case x1 x2 y @@@@@;
    cards;
    1 3 3 5
    2 4 5 8
    3 1 -1 7
    4 6 9 15
;
```

- Notice $x_2 = 2x_1 3$
- Will generate 3-D plot and run regression

```
/* Generate 3-D Scatterplot */
proc g3d data=a1;
    scatter x2*x1=y / rotate=30;
run;
```



7-21

```
proc reg data=a1;
    model y=x2 x1;
run; quit;
```

		Analysis Sum of	of Variance Mean	
Source	DF	Squares	Square H	F Value Pr > F
Model	1	55.59211	55.59211	96.02 0.0103
Error	2	1.15789	0.57895	
Corrected Total	3	56.75000		
Root MSE		0.76089	R-Square	0.9796
Dependent Mean		8.75000	Adj R-Sq	0.9694
Coeff Var		8.69584		

- NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of 0 or B means that the estimate is biased.
- NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

x1 = 1.5 * Intercept + 0.5 * x2

Parameter Estimates					
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	В	-0.65789	1.03271	-0.64	0.5893
x2	В	1.71053	0.17456	9.80	0.0103
x1	0	0	•	•	•

- In this example, no inverse exists so X_1 dropped
- In practice, we are concerned with less extremal cases
- General results still hold
 - Regression coefficients are not well estimated
 - Regression coefficients may be meaningless
 - Type I SS and II SS will differ substantially
 - R^2 and predicted values are usually ok

Pairwise Correlations

- Assesses "pairwise collinearity" but not complicated multicollinearity
- Consider our body fat example

```
proc reg data=a1 corr;
    model midarm = skinfold thigh;
run; quit;
```

```
Correlation
```

Variable	skinfold	thigh	midarm	fat
skinfold	1.0000	0.9238	0.4578	0.8433
thigh	0.9238	1.0000	0.0847	0.8781
midarm	0.4578	0.0847	1.0000	0.1424
fat	0.8433	0.8781	0.1424	1.0000

None of these are too troublesome

• "MODEL midarm = skinfold thigh" reported $R^2 = 0.9904$

- All three $\rightarrow r = \sqrt{0.9904} = .995$

- Should not use model with all three predictors

Coefficient Estimation

• Page 284 summarizes coefficients

Variables in Model	b_1	b_2
skinfold	0.8572	-
thigh	_	0.8565
skinfold, thigh	0.2224	0.6594
skinfold, thigh, midarm	4.3340	-2.857

- skinfold and thigh similar info
- Coeffs change when both are included (sum \approx 0.86)
- Very dramatic change when midarm is in
- Reflected in std errors too

Chapter Review

- Extra Sums of Squares
- Partial correlations
- Standardized regression coefficients
- Multicollinearity
 - Effects
 - Remedies