STAT 525 FALL 2018

Chapter 6 Multiple Regression

Professor Min Zhang

The Data and Model

- Still have single response variable \boldsymbol{Y}
- Now have multiple explanatory variables
- Examples:
 - Blood Pressure vs Age, Weight, Diet, Fitness Level
 - Traffic Count vs Time, Location, Population, Month
- Goal: There is a total amount of variation in Y (SSTO). We want to explain as much of this variation as possible using a linear model and our explanatory variables

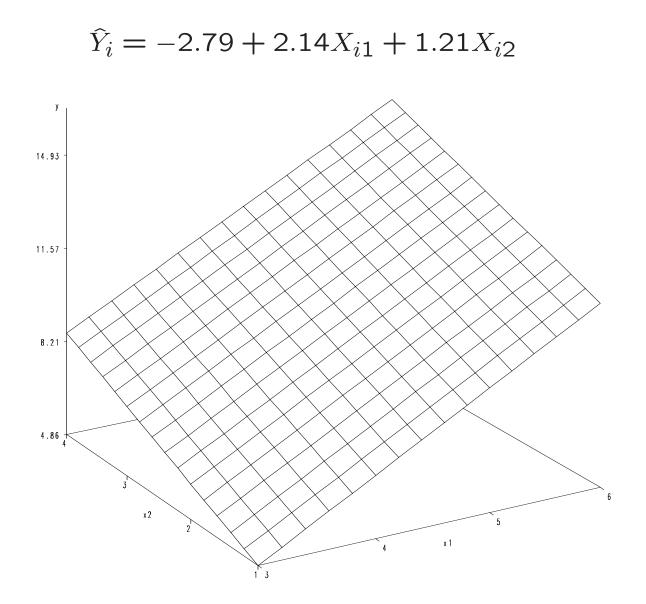
$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

• Have p-1 predictors $\longrightarrow p$ coefficients

First Order Model with Two Predictors

$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i; \qquad i = 1, \dots, n$

- β_0 is the intercept and β_1 and β_2 are the regression coefficients
- Meaning of regression coefficients
 - β_1 describes change in <u>mean response</u> per unit increase in X_1 when X_2 is held constant
 - β_2 describes change in <u>mean response</u> per unit increase in X_2 when X_1 is held constant
- Variables X_1 and X_2 are **additive**. Value of X_1 does not affect the change due to X_2 . There is no **interaction**.
- The response surface is a plane.



Interaction Model

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}X_{i2} + \varepsilon_{i}$$

• Meaning of parameters:

- Change in
$$X_1$$
 when $X_2 = x_2$

$$\Delta E[Y] = \{\beta_0 + \beta_1(X_1 + 1) + \beta_2 x_2 + \beta_3(X_1 + 1)x_2\}$$

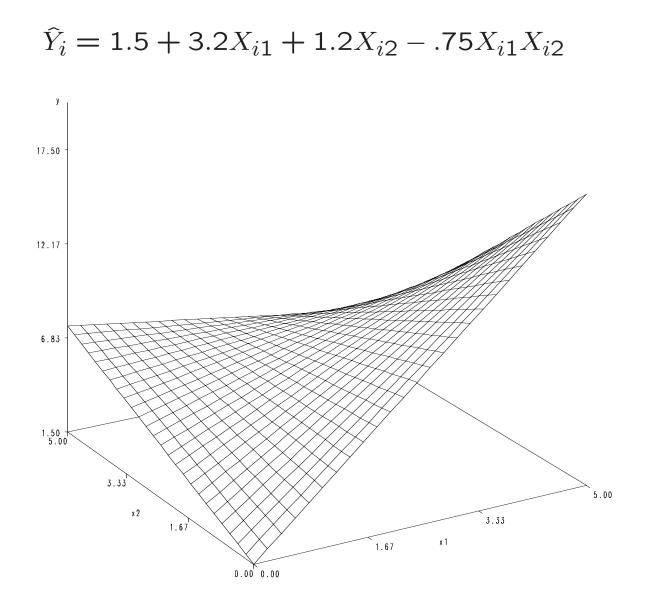
$$-\{\beta_0 + \beta_1 X_1 + \beta_2 x_2 + \beta_3 X_1 x_2\}$$

$$= \beta_1 + \beta_3 x_2$$

- Change in X_2 when $X_1 = x_1$

$$\Delta E[Y] = \beta_2 + \beta_3 x_1$$

• Rate of change due to one variable affected by the other



Qualitative Predictors

 $Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}X_{i2} + \varepsilon_{i}$

where Y is a senior student's GPA, X_1 is the SAT score.

- Let $X_2 = 1$ if case from Purdue, and $X_2 = 0$ if from IU
- Meaning of parameters:

- Case from Purdue
$$(X_2 = 1)$$
:
 $E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 1 + \beta_3 X_1(1)$
 $= (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1$

- Case from other location $(X_2 = 0)$ $E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 0 + \beta_3 X_1(0) = \beta_0 + \beta_1 X_1$
- Have <u>two</u> regression lines
 - β_2 quantify the difference between intercepts
 - $\beta_{\rm 3}$ quantify the difference between slops

• Polynomial regression:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

= $\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$

where $X_{i2} = X_i^2$.

- this is a linear model because it is a linear function of parameters $\boldsymbol{\beta}$
- Transformations

$$Y_{i} = \frac{1}{\beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \varepsilon_{i}}$$
$$\iff \frac{1}{Y_{i}} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \varepsilon_{i}$$
$$log(Y_{i}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \varepsilon_{i}$$

- the last one is a linear model on the $log(Y_i)$ scale

General Linear Regression In Matrix Terms

• As an equation

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

• As an array

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1 \ p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2 \ p-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n \ p-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

• In matrix notation

$$Y = X\beta + \varepsilon$$

• Distributional assumptions:

$$\varepsilon \sim N(0, \sigma^2 I) \longrightarrow \mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I)$$

Estimation of Regression Coefficients

- Least squares estimates
 - find b to minimize $(Y-Xb)^\prime(Y-Xb)$
 - $-\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- Fitted values define a (hyper)plane
 - $\hat{\mathbf{Y}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}$
 - HY forms a response surface
- Residuals
 - $e = Y \hat{Y} = (I H)Y$

The Distribution of Residuals

• $e = Y - \hat{Y} = (I - H)Y$

– $\mathbf{I}-\mathbf{H}$ is symmetric and idempotent

- Expected value E(e) = 0
- Covariance Matrix

$$\sigma^{2}(e) = \sigma^{2}(I - H)(I - H)'$$
$$= \sigma^{2}(I - H)$$

- $Var(e_i) = \sigma^2(1 - h_{ii})$ where $h_{ii} = \mathbf{X}'_i(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i$

- Residuals are usually correlated, i.e., $cov(e_i, e_j) = -\sigma^2 h_{ij}$, $i \neq j$

• Will use this information to look for outliers

Estimation of σ^2

- Similar approach as before
- Now *p* model parameters

$$s^{2} = \frac{e'e}{n-p}$$
$$= \frac{(Y - Xb)'(Y - Xb)}{n-p}$$
$$= \frac{SSE}{n-p}$$

$$=$$
 MSE

ANOVA TABLE

Source of Variation	df	SS	MS	F Value
Regression (Model)	p - 1	SSR	MSR=SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE=SSE/(n-p)	
Total	n-1	SSTO		

• F Test: Tests if the predictors *collectively* help explain the variation in Y

$$-H_0: \beta_1 = \beta_2 = \ldots = \beta_{p-1} = 0$$

$$-H_a: \text{ at least one } \beta_k \neq 0, \ 1 \leq k \leq p-1$$

$$-F^* = \frac{SSR/(p-1)}{SSE/(n-p)} \overset{H_0}{\sim} F(p-1, n-p)$$

$$- \text{ Reject } H_0 \text{ if } F^* > F(1-\alpha, p-1, n-p)$$

• No conclusions possible regarding individual predictors

Testing Individual Predictor

<u>t-Test</u>

• Have already shown that $\mathbf{b} \sim N\left(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}\right)$

- This implies $b_k \sim N(\beta_k, \sigma^2(b_k))$

• Perform t test

$$-H_0: \ \beta_k = 0 \text{ vs } H_a: \beta_k \neq 0$$

$$-\frac{b_k - \beta_k}{s(b_k)} \sim t_{n-p} \text{ so } t^* = \frac{b_k}{s(b_k)} \sim t_{n-p} \text{ under } H_0$$

$$- \text{ Reject } H_0 \text{ if } |t^*| > t(1 - \alpha/2, n - p)$$

• Confidence interval for β_k

$$- b_k \pm t(1 - \alpha/2, n - p)s\{b_k\}$$

General Linear Test

•
$$H_0$$
: $\beta_k = 0$ vs H_a : $\beta_k \neq 0$

- Full Model :

$$Y_i = \beta_0 + \sum_{j=1}^{p-1} \beta_j X_{ji} + \varepsilon_i$$

- Reduced Model :

$$Y_{i} = \beta_{0} + \sum_{j=1}^{k-1} \beta_{j} X_{ji} + \sum_{j=k+1}^{p-1} \beta_{j} X_{ji} + \varepsilon_{i}$$

$$-F^{\star} = \frac{(\mathsf{SSE}(\mathsf{R}) - \mathsf{SSE}(\mathsf{F}))/1}{\mathsf{SSE}(\mathsf{F})/(n-p)}$$

- Reject H_0 if $F^* > F(1 - \alpha, 1, n - p)$

Equivalence of t-Test and General Linear Test

• Can show that $F^* = (t^*)^2$

- both tests result in the same conclusion

• Both tests investigate significance of a predictor given the other variables are already in the model

- i.e. significance of the variable which is fitted last

Coefficient of Multiple Determination

• Coefficient of Determination R^2 describes proportionate reduction in total variation associated with the **full set** of X variables

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}, \ 0 \le R^2 \le 1$$

• R^2 usually increases with the increasing p

- Adjusted
$$R_a^2$$
 attempts to account for p
 $R_a^2 = 1 - \frac{SSE/(n-p)}{SSTO/(n-1)}$, $0 \le R_a^2 \le 1$

The adustment is often insufficient

Example: Purdue Computer Science Students

- Computer Science majors at Purdue have a large drop-out rate
- Goal: Find predictors of success (defined as high GPA)
- Predictors must be available at time of entry into program. These are:
 - GPA: grade points average after three semesters
 - HSM: high-school math grades
 - HSS: high-school science grades
 - HSE: high-school english grades
 - SATM: SAT Math
 - SATV: SAT Verbal
- Data available on n = 224 students

• Now investigate the model: GPA = HSM HSS HSE

```
options nocenter linesize=72;
goptions colors=('none');
data a1;
   infile 'U:\.www\datasets525\csdata.dat';
   input id gpa hsm hss hse satm satv;
```

```
proc reg data=a1;
    model gpa=hsm hss hse;
run; quit;
```

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	27.71233	9.23744	18.86	<.0001
Error	220	107.75046	0.48977		
Corrected Total	223	135.46279)		
Root MSE	C	.69984	R-Square	0.2046	
Dependent Mean	2	2.63522	Adj R-Sq	0.1937	
Coeff Var	26	5.55711			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.58988	0.29424	2.00	0.0462
hsm	1	0.16857	0.03549	4.75	<.0001
hss	1	0.03432	0.03756	0.91	0.3619
hse	1	0.04510	0.03870	1.17	0.2451

Estimation of Mean Response $E(Y_h)$

ullet We are interested in predictors \mathbf{X}_h

- Can show
$$\widehat{Y}_h \sim N\left(\mathbf{X}'_h \boldsymbol{\beta}, \sigma^2 \mathbf{X}'_h (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_h\right)$$

 \bullet Individual CI for \mathbf{X}_h

$$- \hat{Y}_h \pm t(1-\alpha/2, n-p)s\{\hat{Y}_h\}$$

• Bonferroni CI for g vectors \mathbf{X}_h

$$- \hat{Y}_h \pm t(1 - \alpha/(2g), n - p)s\{\hat{Y}_h\}$$

• Working-Hotelling confidence band for the whole regression line

$$- \hat{Y}_h \pm \sqrt{pF(1-\alpha, p, n-p)} s\{\hat{Y}_h\}$$

• Be careful to be only in range of X's

Predict New Observation

•
$$Y_{h(new)} = E(Y_h) + \varepsilon$$

$$- s^{2}(pred) = s^{2}(\hat{Y}_{h}) + \mathsf{MSE}$$
$$- \hat{Y}_{h} + \varepsilon \sim N\left(\mathbf{X}_{h}^{\prime}\boldsymbol{\beta}, \sigma^{2}(1 + \mathbf{X}_{h}^{\prime}(\mathbf{X}^{\prime}\mathbf{X})^{-1}\mathbf{X}_{h})\right)$$

• Individual CI of $Y_{h(new)}$

$$- \hat{Y}_h \pm t(1-\alpha/2, n-p)s\{pred\}$$

• Bonferroni CI for g vectors \mathbf{X}_h

$$- \hat{Y}_h \pm t(1-lpha/(2g), n-p)s\{pred\}$$

• Simultaneous Scheffé prediction limits for g vectors \mathbf{X}_h

$$-\hat{Y}_h \pm \sqrt{gF(1-\alpha,g,n-p)} s\{pred\}$$

Diagnostics

- Diagnostics play a key role in both the development and assessment of multiple regression models
- Most previous diagnostics carry over to multiple regression
- Given more than one predictor, must also consider relationship between predictors
- Specialized diagnostics discussed later in Chapters 9 and 10

Scatterplot Matrix

- Scatterplot matrix summarizes bivariate relationships between Y and X_i as well as between X_i and X_k (j, k = 1, 2, ..., p 1)
 - Nature of bivariate relationships
 - Strength of bivariate relationships
 - Detection of outliers
 - Range spanned by X's
- Can be generated within SAS
 - Click on Solutions \rightarrow Analysis \rightarrow Interactive data analysis
 - Inside SAS/Insight window, click on library WORK
 - Click on the desired data set (NOTE: data must already be read into SAS)
 - Click Open
 - (shift) Click on desired variables
 - Go to menu Analyze
 - Choose option Scatterplot(XY)

Correlation Matrix

- Complementary summary
- Displays all pairwise correlations
- Must be wary of
 - Nonlinear relationships
 - Outliers
 - Influential observations

Example: Purdue Computer Science Student

• Descriptive Statistics: using PROC MEANS or PROC UNIVARIATE

proc means data=cs maxdec=2;

var gpa hsm hss hse satm satv; run;

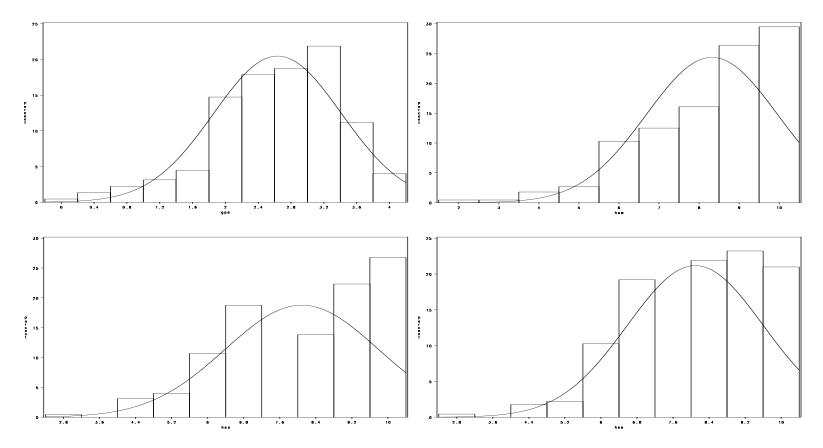
		The MEAN	The MEANS Procedure			
Variable	Ν	Mean	Std Dev	Minimum	Maximum	
gpa	224	2.64	0.78	0.12	4.00	
hsm	224	8.32	1.64	2.00	10.00	
hss	224	8.09	1.70	3.00	10.00	
hse	224	8.09	1.51	3.00	10.00	
satm	224	595.29	86.40	300.00	800.00	
satv	224	504.55	92.61	285.00	760.00	

 maxdec = 2 sets the number of decimal places in the output to 2. proc univariate data=cs noprint;

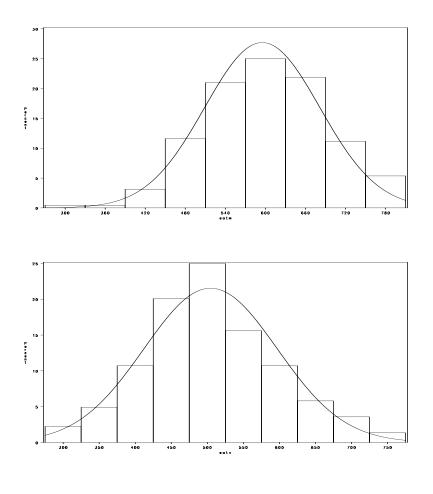
var gpa hsm hss hse satm satv;

histogram gpa hsm hss hse satm satv /normal;

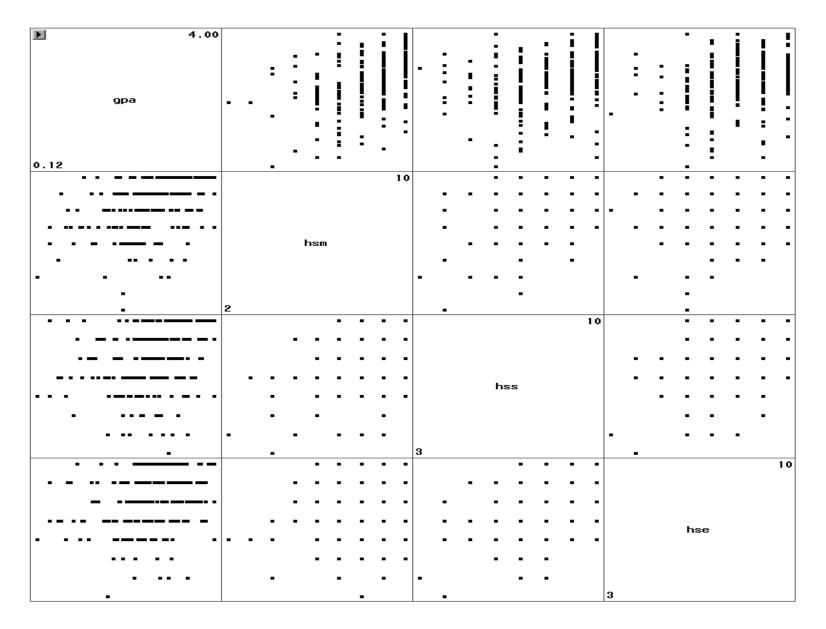
run;



Top Left: GPA Top Right: HSM Bottom Left: HSS Bottom Right: HSE



Scatterplot Matrix in SAS: From the menu bar, select Solutions
 -> analysis -> interactive data analysis



- Uses PROC CORR to report correlation values;
- Use NOPROB statement to get rid of those *p*-values.

```
[1] proc corr data=a1;
  var hsm hss hse;
```

	hsm	hss	hse
hsm	1.00	0.57	0.44
		<.0001	<.0001
hss	0.57	1.00	0.57
<	.0001		<.0001
hse	0.44	0.57	1.00
<	.0001	<.0001	

[2] proc corr data=a1 noprob; var satm satv;

	satm	satv
satm	1.00	0.46
satv	0.46	1.00

[3] proc corr data=a1; var hsm hss hse satm satv; with gpa;

	hsm	hss	hse
gpa	0.43	0.32	0.28
<	.0001	<.0001	<.0001

	\mathtt{satm}	satv
gpa	0.25	0.11
	0.0001	0.0873

Residual Plots

- Used for similar assessment of assumptions
 - Model is correct
 - Normality
 - Constant Variance
 - Independence
- Plot e vs \hat{Y} (overall)
- Plot e vs X_j (with respect to X_j)
- Plot e vs missing variable (e.g., X_jX_k)

<u>Tests</u>

- Univariate graphical summaries of e are still preferred
- NORMAL option in PROC UNIVARIATE test normality
- Modified Levene's and Breusch-Pagan for constant variance
- Lack of fit test: need repeated observations where all X fixed at same levels

Lack of Fit Test

- Compare
 - (reduced) linear model

 $H_0: E(Y_i) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}$

- (full) model where Y has c means (i.e. c combinations of X_i)

$$H_a: E(Y_i) \neq \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}$$

•
$$F^* = \frac{\{SSE(R) - SSE(F)\}/\{(n-p) - (n-c)\}\}}{SSE(F)/(n-c)} \sim F(c-p, n-c)$$
 under H_0

- Reject H_0 if $F^* > F(1 \alpha, c p, n c)$
- If reject H_0 , conclude that a more complex relationship between Y and X_1, \ldots, X_{p-1} is needed

Calculate SSE(F) in SAS

* Analysis of Variance - Full Model
proc glm;
 class x1 x2;
 model y=x1*x2;
run;

- CLASS and MODEL specify that every combination of levels of $X_{\rm 1}$ and $X_{\rm 2}$ has their own mean
- Plug the SSE of this model into the lack of fit test

Example: Purdue Computer Science Student

• Investigate the model: GPA = HSM HSS HSE

- PROC REG reports SSE(R) = 107.75046 with df(SSE) = 220.

```
proc glm data=a1;
    class hsm hss hse;
    model gpa=hsm*hss*hse;
run; quit;
```

```
Class Level Information
```

Class	Levels	Values
hsm	9	2 3 4 5 6 7 8 9 10
hss	8	3 4 5 6 7 8 9 10
hse	8	3 4 5 6 7 8 9 10

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	99	85.0469697	0.8590603	2.11	<.0001
Error	124	50.4158191	0.4065792		
Corrected Total	223	135.4627888			

• $F^* = \frac{\{SSE(R) - SSE(F)\}/\{(n-p) - (n-c)\}\}}{SSE(F)/(n-c)} = \frac{\{107.75046 - 50.4158191\}/\{220 - 124\}}{50.4158191/124} = 1.4689 > 1.3688 = F_{96,124}^{-1}(0.95).$

Chapter Review

- Data and Notation
- Model in Matrix Terms
- Parameter Estimation
- ANOVA F-test
- Estimation of Mean Responses
- Prediction of New Observations
- Diagnostics