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Matrix

• Collection of elements arranged in rows and columns

• Elements will be numbers or symbols

• For example:

A =

[

1 3
1 5
2 6

]

• Rows denoted with the i subscript

• Columns denoted with the j subscript

• The element in row 1 col 2 is 3

• The element in row 3 col 1 is 2
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• Elements often expressed using symbols

A =







a11 a12 a13 · · · a1c
a21 a22 a23 · · · a2c
...

...
...

...
...

ar1 ar2 ar3 · · · arc







• Matrix A has r rows and c columns

• Said to be of dimension r × c

• Element aij is in ith row and jth col

• A matrix is square if r = c

• Called a column vector if c = 1

• Called a row vector if r = 1
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Matrix Operations

• Transpose

– Denoted as A′

Row 1 becomes Column 1, Row r becomes Column r

↓

Column 1 becomes Row 1, Column c becomes Row c

– If A = [aij] then A′ = [aji]

– If A is r × c then A′ is c× r

• Addition and Subtraction

– Matrices must have the same dimension

– Addition/subtraction done on element by element basis

A+B =

[

a11 + b11 a12 + b12 · · · a1c + b1c
...

...
...

...
ar1 + br1 ar2 + br2 · · · arc + brc

]
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• Multiplication

– If scalar then λA = [λaij]

– If multiplying two matrices (C = AB)

∗ cij =
∑

k aikbkj

∗ Columns of A must equal Rows of B

∗ Resulting matrix of dimension Rows(A) × Columns(B)

– Elements obtained by taking cross products of rows of A with columns
of B

[

1 2
4 1
3 3

]

[

4 2 1
1 2 1

]

=

[

6 6 3
17 10 5
15 12 6

]
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Regression Matrices

• Consider example with n = 4

• Consider expressing observations:

Y1 = β0 + β1X1 +ε1
Y2 = β0 + β1X2 +ε2
Y3 = β0 + β1X3 +ε3
Y4 = β0 + β1X4 +ε4







Y1

Y2

Y3

Y4






=







β0 + β1X1

β0 + β1X2

β0 + β1X3

β0 + β1X4






+







ε1
ε2
ε3
ε4













Y1

Y2

Y3

Y4






=







1 X1

1 X2

1 X3

1 X4







[

β0

β1

]

+







ε1
ε2
ε3
ε4







Y = Xβ +ε
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Special Regression Examples

• Using multiplication and transpose

Y′Y =
∑

Y 2
i

X′X =

[

n
∑

Xi
∑

Xi
∑

X2
i

]

X′Y =

[

∑

Yi
∑

XiYi

]

• Will use these to compute β̂ etc.

5-6



Special Types of Matrices

• Symmetric matrix

– When A = A′

– Requires A to be square

– Example: X′X

• Diagonal matrix

– Square matrix with off-diagonals equal to zero

– Important example: Identity matrix

I =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







– IA = AI = A
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Linear Dependence

• Consider the matrix

Q =

[

5 3 10
1 2 2
1 1 2

]

the columns of Q are vectors.

C1 =

[

5
1
1

]

C2 =

[

3
2
1

]

C3 =

[

10
2
2

]

• If there is a relationship between the columns of a matrix
such that

λ1C1 + . . .+ λcCc = 0

and not all λj’s are 0, then the set of column vectors are
linearly dependent.

– For the above example, −2C1 +0C2 +1C3 = 0.

• If such a relationship does not exist then the set of columns
are linearly independent.

– Columns of an identity matrix are linearly indpendent.

• Similarly consider rows
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Rank of a Matrix

• The rank of a matrix is the maximum number of linear in-

dependent columns (or rows)

• Rank of a matrix cannot exceed min(r, c)

• Full Rank ≡ all columns are linearly independent

• Example:

Q =







5 3 10

1 2 2

1 1 2







– The rank of Q is 2
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Inverse of a Matrix

• Inverse similar to the reciprocal of a scalar

• Inverse defined for square matrix of full rank

• Want to find the inverse of S, such that

S · S−1 = I

• Easy example: Diagonal matrix

– Let S =

[

2 0
0 4

]

then

S−1 =

[

1
2

0

0 1
4

]

inverse of each element

on the diagonal
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• General procedure for 2× 2 matrix

• Consider:

A =

[

a b
c d

]

1. Calculate the determinant D = a · d− b · c

If D = 0 then the matrix has no inverse.

2. In A−1, switch a and d; make c and b negative; multiply each element
by 1

D

A−1 =
1

D

[

d −b
−c a

]

=

[

d
D

−b
D

−c
D

a
D

]

– Steps work only for a 2× 2 matrix.

– Algorithm for 3× 3 given in book
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Use of Inverse

• Consider equation 2x = 3 −→ x = 3× 1
2

• Inverse similar to using reciprocal of a scalar

• Pertains to a set of equations

A X = C

(r × r) (r × 1) (r × 1)

• Assuming A has an inverse:

A−1AX = A−1C

X = A−1C

5-12



Random Vectors and Matrices

• Contain elements that are random variables

• Can compute expectation and (co)variance

• In regression set up, Y = Xβ + ε, both ε and Y are random

vectors

• Expectation vector: E(Y) = [E(Yi)]

• Covariance matrix: symmetric

σ2(Y) =







σ2(Y1) σ(Y1, Y2) · · · σ(Y1, Yn)
σ(Y2, Y1) σ2(Y2) · · · σ(Y2, Yn)

...
...

...
...

σ(Yn, Y1) σ(Yn, Y2) · · · σ2(Yn)






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Basic Theorems

• Consider random vector Y

• Consider constant matrix A

• Suppose W = AY

– W is also a random vector

– E(W) = A×E(Y)

– σ2(W) = A× σ2(Y)×A′
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Regression Matrices

• Can express observations

Y = Xβ +ε

• Both Y and ε are random vectors

E(Y) = Xβ +E(ε)

= Xβ

σ2(Y) = 0 +σ2(ε)

= σ2I
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Least Squares

• Express quantity Q

Q = (Y −Xβ)′(Y −Xβ)

= Y′Y − β′X′Y −Y′Xβ + β′X′Xβ

= Y′Y − 2β′X′Y + β′X′Xβ

– (Xβ)′ = β′X′

• Taking derivative −→ −2X′Y +2X′Xβ = 0

– ∂
∂β

β′X′Y = X′Y

– ∂
∂β

β′X′Xβ = 2X′Xβ

• This means b = (X′X)−1X′Y
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Fitted Values

• The fitted values Ŷ = Xb = X(X′X)−1X′Y

• Matrix H = X(X′X)−1X′ is called the hat matrix

– H is symmetric, i.e., H′ = H

– H is idempotent, i.e., HH = H

• Equivalently write Ŷ = HY

• Matrix H used in diagnostics (Chapter 9)
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Residuals

• Residual matrix

e = Y − Ŷ

= Y −HY

= (I−H)Y

• e is a random vector

E(e) = (I−H)× E(Y)

= (I−H)Xβ

= Xβ −Xβ

= 0

σ2(e) = (I−H)× σ2(Y)× (I−H)′

= (I−H)σ2I(I−H)′

= (I−H)σ2
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ANOVA

• Quadratic form defined as

Y′AY =
∑

i

∑

j

aijYiYj

where A is symmetric n× n matrix

• Sums of squares can be shown to be quadratic forms (page

207)

• Quadratic forms play a significant role in the theory of linear

models when errors are normally distributed
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Inference

• Vector b = (X′X)−1X′Y = AY

• The mean and variance are

E(b) = (X′X)−1X′E(Y)

= (X′X)−1X′Xβ

= β

σ2(b) = A× σ2(Y)×A′

= A× σ2I×A′

= σ2AA′

= σ2(X′X)−1

• Thus, b is multivariate Normal(β, σ2(X′X)−1)
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• Consider X′
h = [1 Xh]

• Mean response Ŷh = X′
hb

E(Ŷh) = X′
hβ

Var(Ŷh) = X′
h × σ2(b)×Xh = σ2X′

h(X
′X)−1Xh

• Prediction of new observation

σ2{pred} = σ2(1 +X′
h(X

′X)−1Xh)

s2{pred} = MSE(1 +X′
h(X

′X)−1Xh)

5-21



Chapter Review

• Review of Matrices

• Regression Model in Matrix Form

• Calculations Using Matrices
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