STAT 525 FALL 2018

Chapter 3 Diagnostics and Remedial Measures

Professor Min Zhang

Diagnostics

- Procedures to determine appropriateness of the model and check assumptions used in the standard inference
- If there are violations, inference and model may not be reasonable thereby resulting in faulty conclusions
- Always check before any inference!!!!!!!!
- Procedures involve both graphical methods and formal statistical tests

Diagnostics for X

- Scatterplot of Y vs X common diagnostic
 - Fit smooth curve \rightarrow I=SM## (e.g., I=SM70 in slide 1-5)
 - Is linear trend reasonable?
 - Any unusual/influential (X, Y) observations?
- Can also look at distribution of X alone
 - Skewed distribution
 - Unusual or outlying values?
 - Recall model does <u>**not**</u> state $X \sim$ Normal
 - Does X have pattern over time (order collected)?
- If Y depends on X, looking at Y alone may be deceiving (i.e., mixture of normal dists)

PROC UNIVARIATE in SAS

- Provides numerous graphical and numerical summaries
 - Mean, median
 - Variance, std dev, range, IQR
 - Skewness, kurtosis
 - Tests for normality
 - Histograms
 - Box plots
 - QQ plots
 - Stem-and-leaf plots

options nocenter; /* output layout: not centerized */
goptions colors=(none); /* graphics display: black/white */

data a1;

infile 'U:\.www\datasets525\CH01PR19.txt'; input grade_point test_score;

run; quit;

The UNIVARIATE Procedure Variable: test_score

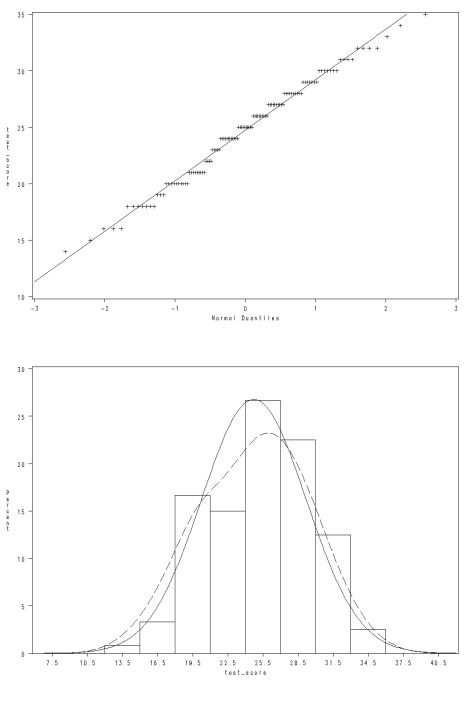
• • •

Moments

Ν	120	Sum Weights	120
Mean	24.725	Sum Observations	2967
Std Deviation	4.47206549	Variance	19.9993697
Skewness	-0.1363553	Kurtosis	-0.5596968
Uncorrected SS	75739	Corrected SS	2379.925
Coeff Variation	18.0872214	Std Error Mean	0.40824186

Basic Statistical Measures

Loca	ation	Variability	
Mean Median	24.72500 25.00000	Std Deviation Variance	4.47207 19.99937
Median Mode	24.00000	Range	21.00000
		Interquartile Range	7.00000



Upper – QQ Plot Lower – Histogram

Diagnostics for Residuals

• If model is appropriate, residuals should reflect assumptions on error terms

$$\varepsilon_i \sim \text{i.i.d.} N(0, \sigma^2)$$

- Recall properties of residuals
 - $-\sum e_i = 0 \longrightarrow$ Mean is zero
 - $\sum (e_i \overline{e})^2 = SSE \longrightarrow Variance is MSE$
 - e_i 's not independent (derived from same fitted regression line)
 - When sample size large, the dependency can basically be ignored

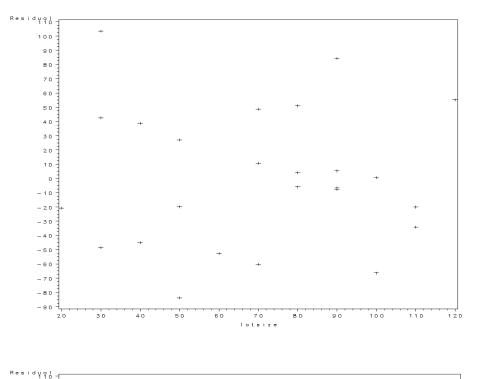
- Questions addressed by diagnostics
 - Is the relationship linear?
 - Does the variance depend on X?
 - Are there outliers?
 - Are error terms not independent?
 - Are the errors normal?
 - Can other predictors be helpful?

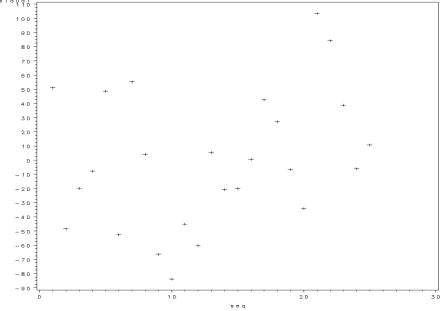
Residual Plots

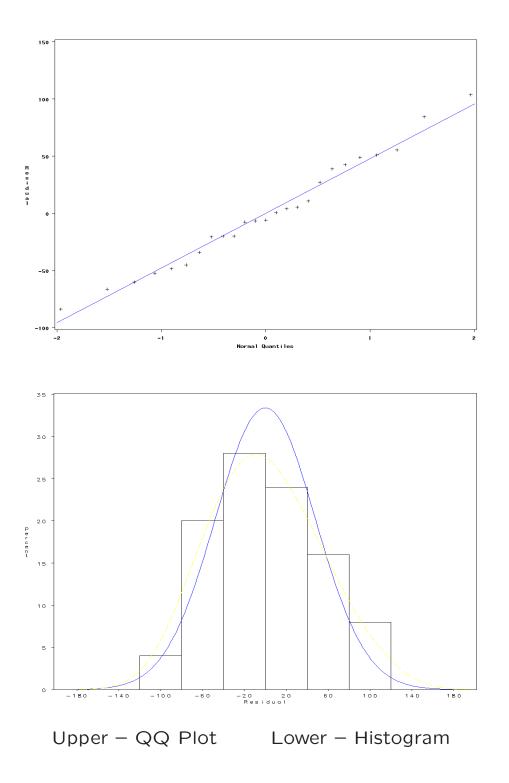
- Plot e vs X can assess most questions
- Get same info from plot of e vs \hat{Y} because X and \hat{Y} linearly related
- Other plots include *e* vs time/order, a histogram or QQplot of *e*, and *e* vs other predictor variables
- See pages 102-113 for examples
- Plots are usually enough for identifying gross violations of assumptions (since inferences are quite robust)

Example: Toluca Campany

```
data a1;
   infile 'U:\.www\datasets525\CH01TA01.txt';
   input lotsize workhrs;
   seq = n_;
proc reg data=a1;
  model workhrs=lotsize;
   output out=a2 r=resid;
proc gplot data=a2;
  plot resid*lotsize;
  plot resid*seq;
run;
/* Line type: L=1 for solid line; L=2 for dashed line */
proc univariate data=a2 plot normal;
  var resid;
  histogram resid / normal kernel(L=2);
  qqplot resid / normal (L=1 mu=est sigma=est);
run;
```







3-12

Tests for Normality

- Test based on the correlation between the residuals and their expected values under normality proposed on page 115
- Requires table of critical values
- SAS provides four normality tests

proc univariate normal;
 var resid;

• Shapiro-Wilk most commonly used

Example: Plasma Level (p. 132)

The UNIVARIATE Procedure Variable: resid (Residual)

Test		r Normality tistic	 -p Val	ue
Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	W D W-Sq A-Sq	0.839026 0.167483 0.137723 0.95431		0.0011 0.0703 0.0335 0.0145

Other Formal Tests

- Durbin-Watson test for correlated errors (assuming AR(1) for errors as in Chapter 12)
- Modified Levene / Brown-Forsythe test for constant variance (Chapter 18)
- Breusch-Pagan test for constant variance
- Plots vs Tests

Plots are more likely to suggest a remedy. Also, test results are very dependent on n. With a large enough sample size, we can reject most null hypotheses even if the deviation is slight

Lack of Fit Test

- More formal approach to fitting a smooth curve through the observations
- Requires repeat observations of Y at one or more levels of X
- Assumes $Y|X \stackrel{ind}{\sim} N(\mu(X), \sigma^2)$
- $H_0: \mu(X) = \beta_0 + \beta_1 X$

 $H_a: \mu(X) \neq \beta_0 + \beta_1 X$

• Will use full/reduced model framework

• Notation

- Define X levels as X_1, X_2, \ldots, X_c
- There are n_j replicates at level X_j ($\sum n_j = n$)
- Y_{ij} is the i^{th} replicate at X_j
- Full Model: $Y_{ij} = \mu_j + \varepsilon_{ij}$
 - No assumption on association : $E(Y_{ij}) = \mu_j$
 - There are c parameters

$$- \hat{\mu}_j = \overline{Y}_{.j}$$
 and $s^2 = \sum \sum (Y_{ij} - \hat{\mu}_j)^2 / (n - c)$

- Reduced Model: $Y_{ij} = \beta_0 + \beta_1 X_j + \varepsilon_{ij}$
 - Linear association
 - There are 2 parameters

$$-s^{2} = \sum \sum (Y_{ij} - \hat{Y}_{j})^{2}/(n-2)$$

• SSE(F)=
$$\sum \sum (Y_{ij} - \hat{\mu}_j)^2$$

• SSE(R)=
$$\sum \sum (Y_{ij} - \hat{Y}_j)^2$$

$$F^{\star} = \frac{(\mathsf{SSE}(\mathsf{R}) - \mathsf{SSE}(\mathsf{F}))/((n-2) - (n-c))}{\mathsf{SSE}(\mathsf{F})/(n-c)}$$

- Is variation about the regression line substantially bigger than variation at specific level of *X*?
- Approximate test can be done by grouping similar X values together

Example: Plasma Level (p. 132)

```
/* Analysis of Variance - Reduced Model */
proc reg;
   model lplasma=age;
run;
                   Sum of Mean
Source
                  Squares Square F Value Pr > F
              DF
                  0.52308 0.52308 134.03 <.0001
Model
             1
     23 0.08976 0.00390
Error
Corrected Total 24 0.61284
/* Analysis of Variance - Full Model */
proc glm;
   class age;
   model lplasma=age;
run;
                   Sum of Mean
Source
                  Squares Square F Value Pr > F
              DF
Model
            4 0.53854 0.13463 36.24 <.0001
    20 0.07430 0.00372
Error
Corrected Total 24 0.61284
     ______
```

$$F^{\star} = \frac{(.08976 - .07430)/(23 - 20)}{.00372} = 1.387$$

$$\downarrow$$

P-value = 0.2757

Remedies

- Nonlinear relationship
 - Transform X or add additional predictors
 - Nonlinear regression
- Nonconstant variance
 - Transform Y
 - Weighted least squares
- Nonnormal errors
 - Transform Y
 - Generalized Linear model
- Nonindependence
 - Allow correlated errors
 - Work with first differences

Nonlinear Relationships

• Can model many nonlinear relationships with linear models, some with several explanatory variables

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

$$Y_i = \beta_0 + \beta_1 \log(X_i) + \varepsilon_i$$

• Can sometimes transform nonlinear model into a linear model

$$Y_i = \beta_0 \exp(\beta_1 X_i) \varepsilon_i$$

$$\downarrow$$

$$\log(Y_i) = \log(\beta_0) + \beta_1 X_i + \log(\varepsilon_i)$$

- Have altered our assumptions about error
- Can perform nonlinear regression (PROC NLIN)

Nonconstant Variance

- Will discuss weighted analysis in Chapter 11
- Nonconstant variance often associated with a skewed error term distribution
- A transformation of Y often remedies both violations
- Will focus on Box-Cox transformations

$$Y' = Y^{\lambda}$$

Box-Cox Transformation

- Special cases:
 - $\lambda = 1 \longrightarrow$ no transformation
 - $\lambda = .5 \longrightarrow square root$
 - $\lambda = 0 \longrightarrow$ natural log (by definition)
- Can estimate λ using ML

$$f_i = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(Y_i^\lambda - \beta_0 - \beta_1 X_i)^2\right\}$$

– λ_{ML} minimizes SSE

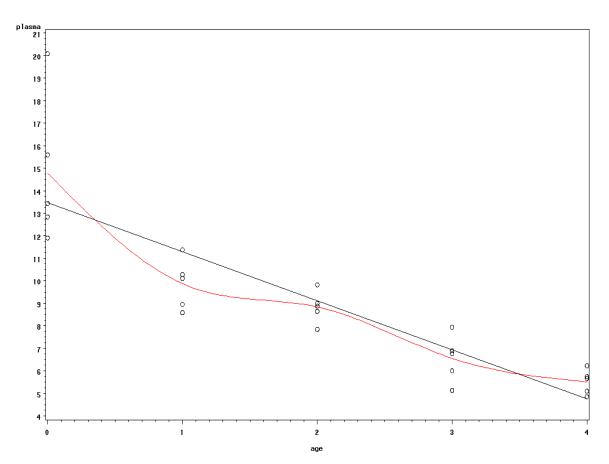
- Can also do a numerical search
- PROC TRANSREG will do this in SAS

Example: Plasma Level (p. 132)

data a1; infile 'd:\nobackup\tmp\CH03TA08.txt'; input age plasma lplasma;

symbol1 v=circle i=sm50 c=red; symbol2 v=circle i=rl c=black; proc gplot;

plot plasma*age=1 plasma*age=2/overlay; run;

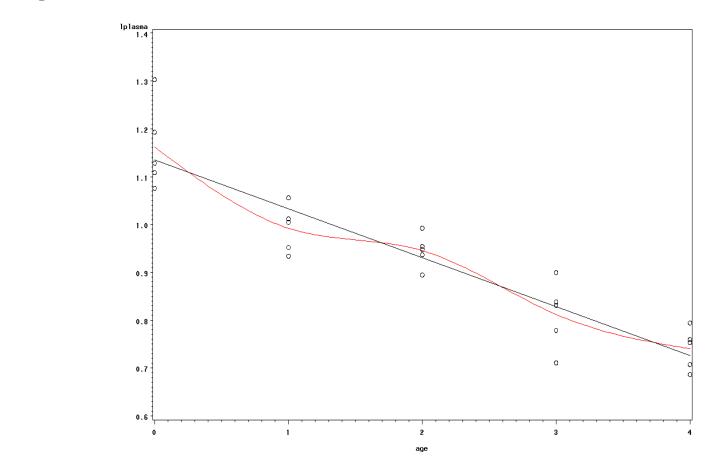


```
proc transreg data=a1;
    model boxcox(plasma)=identity(age);
run;
```

The TRANSREG Procedure

Lambda	R-Square	Log Like	
-1.50	0.83	-8.1127	
-1.25	0.85	-6.3056	
-1.00	0.86	-4.8523	*
-0.75	0.86	-3.8891	*
-0.50	0.87	-3.5523	<
-0.25	0.86	-3.9399	*
0.00 +	0.85	-5.0754	*
0.25	0.84	-6.8988	
0.50	0.82	-9.2925	
0.75	0.79	-12.1209	
1.00	0.75	-15.2625	

- < Best Lambda
- * Confidence Interval
- + Convenient Lambda
 - R^2 instead of SSE is given
 - $\lambda = 0$ (log transform) is the most convenient value



proc gplot; plot lplasma*age=1 lplasma*age=2/overlay; run; quit;

Chapter Review

- Diagnostics
 - Graphical methods
 - Statistical tests
- Remedies
 - Nonlinearity
 - Nonconstant variance