STAT 525 FALL 2018

Chapter 20 Two-Factor Studies with One Case per Treatment

Professor Min Zhang

One Observation Per Cell

- Do not have enough information to estimate **both** the interaction effect and error variance
- With interaction, error degrees of freedom is ab(n-1) = 0
- Common to assume there is no interaction (i.e., pooling)
 - $-SSE^* = SSAB + 0$
 - $df_E^* = df_{AB} + 0$
- Can also test for less general type of interaction that requires fewer degrees of freedom

Tukey's Test for Additivity

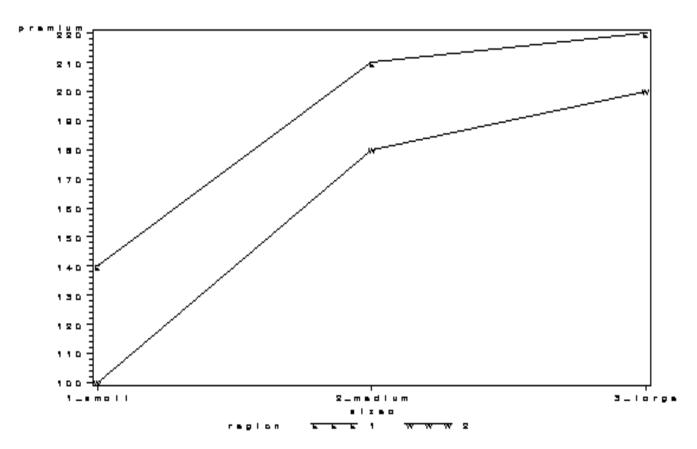
- Consider special type of interaction
- Assume following model

$$Y_{ij} = \mu + \alpha_i + \beta_j + \theta \alpha_i \beta_j + \varepsilon_{ij}$$

- Uses up only one degree of freedom
- Other variations possible (e.g., $\theta_i\beta_j$)
- Want to test $H_0: \theta = 0$
- Will use regression after estimating factor effects to test θ

Example (Page 882)

- Y is the premium for auto insurance
- Factor A is the size of the city


-a = 3: small, medium, large

• Factor B is the region

-b=2: east, west

• Only one city per cell was observed

```
data a1; infile 'u:\.www\datasets525\CH20TA02.txt';
    input premium size region;
    if size=1 then sizea='1_small ';
    if size=2 then sizea='2_medium';
    if size=3 then sizea='3_large ';
    symbol1 v='E' i=join c=black; symbol2 v='W' i=join c=black;
    proc gplot data=a1;
        plot premium*sizea=region/frame;
    run; quit;
```



```
proc glm data=a1;
   model premium=;
   output out=aall p=muhat;
```

```
proc glm data=a1;
    class size;
    model premium=size;
    output out=aA p=muhatA;
```

```
proc glm data=a1;
    class region;
    model premium=region;
    output out=aB p=muhatB;
```

```
data a2; merge aall aA aB;
    alpha=muhatA-muhat;
    beta=muhatB-muhat;
    atimesb=alpha*beta;
```

```
proc print data=a2;
    var size region atimesb;
run; quit;
```

Obs	size	region	atimesb
1	1	1	-825
2	1	2	825
3	2	1	300
4	2	2	-300
5	3	1	525
6	3	2	-525

- These estimates are based on the factor effects model where $\sum_i \alpha_i = 0$ and $\sum_j \beta_j = 0$.
- While not shown, the following were used to compute atimesb:

$$-\hat{\mu} = 175$$

- $-\hat{\mu}_{1.}=120$
- $-\hat{\mu}_{2.}=195$
- $-\hat{\mu}_{3.}=210$

$$-\hat{\mu}_{.1}=190$$

 $-\hat{\mu}_{.2}=160$

<pre>proc glm data=a2; class size region; model premium=size region atimesb/solution; run; quit;</pre>											
-				Sum	of						
Source		DF	C	Squar	ces	Mean	Square	F Valu	1e Pr > F		
Model		4	1073	7.096	577	2684	1.27419	208.0	0.0519		
Error		1	12	2.903	323	12	2.90323				
Corrected	Tota	15	10750	0.000	000						
R-Square	C	oeff V	ar	Be	oot M	9F	premium	Mean			
0.998800		2.0526			5921		-	.0000			
0.000000		2.0020	02	0.	0021	00	110				
Source		DF	Туј	be I	SS	Mean	Square	F Valu	ıe Pr > F		
size		2	9300	•			.000000		37 0.0372		
region		1	1350	.0000	000	1350	.000000	104.6	62 0.0620		
atimesb		1	87	.0967	74	87	.096774	6.7	75 0.2339		
					St	andaro	1				
Parameter			imate			Erro		alue	Pr > t		
Intercept		195.00				294230		6.49	0.0096		
size		-90.00		В		210604		5.05	0.0254		
size		-15.00		В	3.59	210604	1 –	4.18	0.1496		
size	3		00000	В	•			•	•		
region	1			В	2.93	294230) 1	0.23	0.0620		
region	2		00000	В	•			•	•		
atimesb		-0.00	64516		0.00	248323	3 –	2.60	0.2339		

• The same parameter estimates as the model without the interaction term

One Quantitative Factor

- Similar to regression with one indicator or categorical variable
- Plot the means vs the quantitative factor for each level of the categorical factor
- Based on this plot,
 - Consider linear/quadratic relationships for the quantitative factor
 - Consider different slopes for the different levels of the categorical factor
 - Can perform lack of fit analysis
- If two quantitative variables, can consider linear and quadratic terms. Interactions modeled as the direct product. Lack of fit test very useful. Again very similar to linear regression models.

Chapter Review

- Two-Factor Studies with $n_{ij} = 1$
 - No degrees of freedom for interaction
 - Tukey's test for additivity
 - * Use only one degree of freedom
 - * Can be generalized to use more degrees of freedom
- One or both factors are quantitative
 - A test for interactions effects can be obtained by regression methods
 - * Include interactions by taking direct products