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Testing for Linear Relationship

• Term β1Xi defines linear relationship

• Will then test H0 : β1 = 0

• Test requires

– Test statistic

– Sampling distribution of the test statistic

Note: form of test statistic is often

point estimate− E(point estimate|H0)

s(point estimate)
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Sampling Distribution of b1

• Express b1 as a linear combination of Yi

• Can show that

n
∑

i=1

(Xi −X)(Yi − Y ) =
n
∑

i=1

(Xi −X)Yi

• Therefore rewrite

b1 =
n
∑

i=1

(Xi −X)(Yi − Y )
∑

(Xi −X)2

=
n
∑

i=1

Xi −X
∑

(Xi −X)2
Yi =

n
∑

i=1

kiYi

where ki fixed constants where
∑

ki = 0 and
∑

kiXi = 1
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• Since b1 =
∑n

i=1 kiYi, we can analytically derive its distribu-

tion:

– Normal since linear combination of i.i.d. Yi’s

E(b1) = E(
∑

kiYi)

=
∑

kiE(Yi)

= β0
∑

ki + β1
∑

kiXi

= 0+ β1

Var(b1) = Var(
∑

kiYi)

=
∑

k2i var(Yi)

= σ2
∑

k2i

= σ2/
∑

(Xi −X)2
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Test Statistics b1−β1
s{b1}

• An estimator of Var(b1) is obtained by replacing σ2 by its

unbiased estimator MSE =
∑

(Yi − Ŷi)
2/(n− 2),

s2{b1} = MSE/
∑

(Xi −X)2

• Rewrite as

b1 − β1
σ{b1}

÷ s{b1}
σ{b1}

• Since Yi’s are i.i.d. normal

– b1 is normal −→ 1st term is standard normal

– The quantity
∑

(Yi − Ŷi)
2/σ2 ∼ χ2

n−2

– The variable s2{b1}/σ2{b1} ∼ χ2
n−2/(n− 2)

– The variable s{b1}/σ{b1} is independent of b1

=⇒ Test Statistics :
b1 − β1

s{b1}
∼ tn−2

2-4



Steps of Hypothesis Test

• H0 : β1 = 0 and Ha : β1 6= 0 (or β1 > 0 or β1 < 0)

• Compute the test statistic. In “Leaning Tower of Pisa”:

t⋆ =
b1 − 0

s(b1)
=

9.31868− 0

0.30991
= 30.0690

• Compute p-value using sampling distribution

P (|t13−2| ≥ |t⋆|) = 6.5024× 10−12(< .0001)

– The above is for two-sided test! What about one-sided test?

• Compare to α

• Reject H0 at α (usually = .05) level, evidence suggests a

positive linear relationship
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Power of Hypothesis Test

• Power = P{ reject H0 : β1 = β
H0
1 | Ha : β1 6= β

H0
1 }

• If Ha is true, the test statistic

t⋆ ∼ tn−2(δ)

where δ is the non-centrality parameter

δ =
β1 − β

H0
1

σ(b1)
=

β1 − β
H0
1

√

σ2/
∑

(Xi − X̄)2

• Power calculation requires knowledge of δ, n, and also α.

• Can calculate power for a range of input values.
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SAS Code for Toluca Company Example (p. 51)

• enter information necessary to compute noncentrality param-

eter as in example.

• tinv computes the cutoff of the t-distribution such that the

area to the left of the cutoff is 1− α/2

• probt computes the area to the left of the cutoff t c

DATA a2;
n=25; sig2=2500; ssx=19800; alpha=.05;
sig2b1=sig2/ssx; df=n-2;
DO beta1=-2.0 TO 2.0 BY .05;

delta=beta1/sqrt(sig2b1);
t_c=tinv(1-alpha/2,df);
power=1-probt(t_c,df,delta)+probt(-t_c,df,delta);
OUTPUT;

END;
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/*Generate a power curve based on the data set a2; */
TITLE1 ’Power for the slope in simple linear regression’;
SYMBOL1 V=NONE I=JOIN;
PROC GPLOT DATA=a2; PLOT power*beta1/FRAME; RUN; QUIT;
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Inferences Concerning β0

• Test of intercept is usually not of interest

Sampling Distribution of b0

• Rewrite b0 =
∑

kiYi where

ki =
1

n
− X(Xi −X)
∑

(Xi −X)2
,

∑

ki = 1,
∑

kiXi = 0

• Can now describe distribution of b0

– Normal since linear combination of i.i.d. Yi’s

E(b0) = E(
∑

kiYi) =
∑

kiE(Yi) =
∑

kiβ0 +
∑

kiβ1Xi = β0 +0

Var(b0) = Var(
∑

kiYi) =
∑

k2
i var(Yi) = σ2

[

1

n
+

X2

∑

(Xi −X)2

]
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Test Statistics b0−β0
s{b0}

• An estimator of Var(b0) is obtained by replacing σ2 by its

unbiased estimator MSE =
∑

(Yi − Ŷi)
2/(n− 2),

s2{b0} = MSE

[

1

n
+

X2

∑

(Xi −X)2

]

• Rewrite as

b0 − β0
σ{b0}

÷ s{b0}
σ{b0}

• Since Yi’s are i.i.d. normal

– b0 is normal −→ 1st term is standard normal

– The quantity
∑

(Yi − Ŷi)
2/σ2 ∼ χ2

n−2

– The variable s2{b0}/σ2{b0} ∼ χ2
n−2/(n− 2)

– The variable s{b0}/σ{b0} is independent of b0

=⇒ Test Statistics :
b0 − β0

s{b0}
∼ tn−2
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Steps of Hypothesis Test

• H0 : β0 = 0 and Ha : β0 6= 0

• Compute the test statistic. In “Leaning Tower of Pisa”:

t⋆ =
b0 − 0

s{b0}
=

−61.12− 0

25.13
= −2.43

• Compute p-value using sampling distribution

P (|tn−2| ≥ |t⋆|) = 0.0333

• Compare to α and draw conclusion

– Reject H0 at α (usually = .05) level, evidence suggests the intercept
is different from zero
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Confidence Intervals for β0 and β1

• Could also form confidence intervals

b1 − β1
s(b1)

∼ tn−2

– General form for parameter β1

b1 ± t(1− α/2, n− 2)s{b1}

– Reject H0 : β1 = β
H0
1 if β

H0
1 is not in CI

• Same procedure for β0

b0 − β0
s(b0)

∼ tn−2 =⇒ b0 ± t(1− α/2, n− 2)s{b0}

• These CIs generated in SAS with clb option
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Comments

• When errors not normal, procedures are generally reasonable

approximations

– Bootstrapping as alternative approach

• Procedures can be modified for one-sided test / confidence

intervals

• At design stage, if can choose values of Xi:

– Var(b1) = σ2/
∑

(Xi −X)2 smaller when
∑

(Xi −X)2 is large

– Var(b0) = σ2

(

1
n
+ X2
∑

(Xi−X)2

)

smallest when X = 0
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Interval Estimation of E(Yh)

• Often interested in estimating the mean response for partic-

ular Xh

Ŷh = b0 + b1Xh

• Need sampling distribution of Ŷh to form CI

– Rewrite Ŷh =
∑

kiYi where

ki =
1

n
+

(Xh −X)(Xi −X)
∑

(Xi −X)2

– Similar construction as b0 (i.e., Xh = 0)

– E(Ŷh) = E(Yh)

– Var(Ŷh) = σ2
(

1
n
+ (Xh−X)2

Σ(Xi−X)2

)

– s2{Ŷh} = s2
(

1
n
+ (Xh−X)2

Σ(Xi−X)2

)

– CI: Ŷh ± t(1− α/2, n− 2)s{Ŷh}
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Interval Estimation of Yh(new)

• Predicting future observation Yh(new) = E[Yh] + εh(new)

– Estimate E[Yh] with Ŷh =⇒ Var(Ŷh) = σ2
(

1
n +

(Xh−X)2

Σ(Xi−X)2

)

• The prediction error is Yh(new) − Ŷh = (E[Yh]− Ŷh) + εh(new)

– Unlike the expected value, a new observation does not fall

directly on the regression line.

– Must account for added variability in εh(new) −→ σ2.

• The variance of the prediction error

σ2{pred} = Var(Yh(new) − Ŷh) = σ2
(

1+
1

n
+

(Xh −X)2

Σ(Xi −X)2

)

• s2{pred} = s2
(

1 + 1
n +

(Xh−X)2

Σ(Xi−X)2

)

• CI: Ŷh ± t(1− α/2, n− 2)s{pred}
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Example: Toluca Company (p. 19)

/* read data */
DATA a1;

INFILE ’C:\Textdata\CH01TA01.txt’;
INPUT size hours;

/* add size 65 and 100 for prediction */
DATA a2; size=65; OUTPUT;

size=100; OUTPUT;
DATA a3; SET a1 a2;

/* plot predicted confidence intervals */
SYMBOL1 V=CIRCLE I=RLCLM90 CI=BLUE CO=BLACK;
SYMBOL2 V=CIRCLE I=RLCLI90 CI=BLUE CO=RED;
PROC GPLOT DATA=a1;

PLOT hours*size=1 hours*size=2 / OVERLAY;
RUN;
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Scatterplot
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/* calculate the actual CI limits */
PROC REG DATA=a3;

MODEL hours=size / CLM CLI ALPHA=.10;
ID size;

RUN;

Dependent Variable: hours
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 252378 252378 105.88 <.0001
Error 23 54825 2383.71562
Cor Total 24 307203

Root MSE 48.82331 R-Square 0.8215
Dependent Mean 312.28000 Adj R-Sq 0.8138
Coeff Var 15.63447

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 62.36586 26.17743 2.38 0.0259
size 1 3.57020 0.34697 10.29 <.0001
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Output Statistics
Dep Var Predicted Std Error

Obs size hours Value Mean Predict 90% CL Mean
1 80 399.0000 347.9820 10.3628 330.2215 365.7425
2 30 121.0000 169.4719 16.9697 140.3880 198.5559
3 50 221.0000 240.8760 11.9793 220.3449 261.4070
4 90 376.0000 383.6840 11.9793 363.1530 404.2151
5 70 361.0000 312.2800 9.7647 295.5446 329.0154
6 60 224.0000 276.5780 10.3628 258.8175 294.3385
7 120 546.0000 490.7901 19.9079 456.6706 524.9096
8 80 352.0000 347.9820 10.3628 330.2215 365.7425
9 100 353.0000 419.3861 14.2723 394.9251 443.8470
10 50 157.0000 240.8760 11.9793 220.3449 261.4070
11 40 160.0000 205.1739 14.2723 180.7130 229.6349
12 70 252.0000 312.2800 9.7647 295.5446 329.0154

22 90 468.0000 383.6840 11.9793 363.1530 404.2151
23 40 244.0000 205.1739 14.2723 180.7130 229.6349
24 80 342.0000 347.9820 10.3628 330.2215 365.7425
25 70 323.0000 312.2800 9.7647 295.5446 329.0154
26 65 . 294.4290 9.9176 277.4315 311.4264
27 100 . 419.3861 14.2723 394.9251 443.8470
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Output Statistics
Dep Var Predicted Std Error

Obs size hours Value Mean Predict 90% CL Predict
1 80 399.0000 347.9820 10.3628 262.4411 433.5230
2 30 121.0000 169.4719 16.9697 80.8847 258.0591
3 50 221.0000 240.8760 11.9793 154.7171 327.0348
4 90 376.0000 383.6840 11.9793 297.5252 469.8429
5 70 361.0000 312.2800 9.7647 226.9460 397.6140
6 60 224.0000 276.5780 10.3628 191.0370 362.1189
7 120 546.0000 490.7901 19.9079 400.4244 581.1558
8 80 352.0000 347.9820 10.3628 262.4411 433.5230
9 100 353.0000 419.3861 14.2723 332.2072 506.5649
10 50 157.0000 240.8760 11.9793 154.7171 327.0348
11 40 160.0000 205.1739 14.2723 117.9951 292.3528
12 70 252.0000 312.2800 9.7647 226.9460 397.6140

22 90 468.0000 383.6840 11.9793 297.5252 469.8429
23 40 244.0000 205.1739 14.2723 117.9951 292.3528
24 80 342.0000 347.9820 10.3628 262.4411 433.5230
25 70 323.0000 312.2800 9.7647 226.9460 397.6140
26 65 . 294.4290 9.9176 209.0432 379.8148
27 100 . 419.3861 14.2723 332.2072 506.5649
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Confidence Band

• Consider looking at entire regression line

• Want to define likely region where line lies

• Replace t(1−α/2, n−2) with Working-Hotelling value in each

confidence interval

W =
√

2F(1− α; 2, n− 2) =⇒ Ŷh ±W × s{Ŷh}

• Boundary values define a hyperbola

• Confidence level α covers all Xh

Pr
{

| Ŷh − Yh| ≤ Ws(Ŷh), ∀Xh

}

≥ 1− α

• Will be discussed more in Chapter 4
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• The band is the narrowest at X

• Theory comes from fact that (b0, b1) is multivariate normal

– Joint confidence region for (β0, β1) is an ellipse

– Cov(b0, b1)=Cov(
∑

ki0Yi,
∑

ki1Yi)=−XVar(b1)

• Band width at Xh > individual CI width of E[Yh]

• Can find α′ for individual CIs that gives same results:

– t(1− α′/2, n− 2) =
√

2F(1− α; 2, n− 2)
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SAS for Confidence Band

/* p: predicted values for the mean
stdp: sd of the predicted values for the mean
uclm/lclm: upper/lower bounds of the CI for the mean
ucl/lcl: upper/lower bounds of the CI for a new value*/

proc reg data=a1;
model hours=size/clm cli alpha=0.05;
output out=a2 p=predicted stdp=stdp uclm=uclm lclm=lclm ucl=ucl lcl=lcl;
id size;

run;

/* Calculate Working-Hotelling band */
data a3; set a2;
whl = predicted - sqrt(2*FINV(1 - 0.05, 2, 25-2))*stdp;
whu = predicted + sqrt(2*FINV(1 - 0.05, 2, 25-2))*stdp;
run;

proc sort data=a3 out=a4; by size; run;

/* plot comparing the three confidence bands */
symbol1 v=circle i=none c=black; symbol2 v=none i=join c=green;
symbol3 v=none i=join c=red; symbol4 v=none i=join c=blue;
proc gplot data=a4;
plot hours*size=1 ucl*size=2 lcl*size =2 uclm*size=3

lclm*size=3 whl*size=4 whu*size=4 / overlay;
run;
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Confidence Band for the Toluca example

• Blue – 95% confidence band

• Red – 95% confidence interval for the mean

• Green – 95% confidence interval for the individual prediction
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ANOVA Approach to Regression

• A second way to test for linear association

• Equivalent to t-test in simple linear regression

• Will have a different use in multiple regression
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Partitioning Sums of Squares

• Organizes results arithmetically

• The total sum of squares in Y is defined

SSTO =
∑

(Yi − Y )2

• Can partition the total sum of squares into

– Model (explained by regression)

– Error (unexplained / residual)

∑

(Yi − Y )2 =
∑

(Yi − Ŷi + Ŷi − Y )2

=
∑

(Ŷi − Y )2 +
∑

(Yi − Ŷi)
2

SSTO = SSR + SSE
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Total Sum of Squares

• If we ignored Xh, the sample mean Y would be the best linear

unbiased predictor for the model

Yi = β0 + εi = µ+ εi

• SSTO is the sum of squared deviations for this estimated

model

– SAS calls it “Corrected Total” sum of squares

– “Corrected” means that the sample mean has been sub-

tracted off before squaring

– “Uncorrected total” sum of squares would be
∑

Y 2
i

• Sum of squares has n − 1 degrees of freedom because we

replace β0 with Y

• The total mean square is SSTO/(n − 1) and represents an

unbiased estimate of σ2 under the above model
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Model (or Regression) Sum of Squares

SSR =
∑

(Ŷi − Y )2

• Degrees of freedom is 1 due to the addition of the slope

• SSR large when Ŷi’s are different from Y (in other words,

when there is a linear trend)

• Can also express

SSR =
∑

(Ŷi − Y )2

=
∑

(b0 + b1Xi − b0 − b1X̄)2

= b21
∑

(Xi −X)2
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Error Sum of Squares

• Error sum of squares is equal to the sum of squared residuals

SSE =
∑

(Yi − Ŷi)
2 =

∑

e2i

• Degrees of freedom is n− 2 due to using (b0, b1) in place of

(β0, β1)

• SSE large when |residuals| are large

• Implies Yi’s vary substantially around line

• The MSE=SSE/(n−2) and represents an unbiased estimate

of σ2 when taking X into account
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ANOVA Table

• Table puts this all together

Source of
Variation df SS MS

Regression 1 b21
∑

(Xi −X)2 SSR/1
(Model)

Error n− 2
∑

(Yi − Ŷ )2 SSE/(n− 2)

Total n− 1
∑

(Yi − Y )2
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Expected Mean Squares

• All means squares are random variables

• Already showed E(MSE) = σ2

• What about the MSR?

E(MSR) = E(b21
∑

(Xi −X)2)

= E(b21)
∑

(Xi −X)2

= (Var(b1) + {E(b1)}2)
∑

(Xi −X)2

= σ2 + β2
1

∑

(Xi −X)2

• If β1 = 0, MSR unbiased estimate of σ2
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F Test

• Can use this structure to test H0 : β1 = 0

• Consider

F ⋆ =
MSR

MSE
=

SSR/dfR
SSE/dfE

• If β1 = 0 then F ⋆ should be near one

• Need sampling distribution of F ⋆ under H0?

• By Cochran’s Theorem (pg 70)

F ⋆ =

SSR
σ2

1
÷

SSE
σ2

n− 2

F ⋆ ∼ χ2
1

1
÷

χ2
n−2

n− 2
∼ F1,n−2
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• When H0 is false, MSR > MSE

• p-value = Pr(F(1, n− 2) > F ⋆)

• Reject when F ⋆ large, p-value small

• Recall t-test for H0 : β1 = 0

• Can show t2n−2 ∼ F1,n−2

• Obtain exactly the same result (p-value)
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Example: Toluca Company

data a1;

infile ’C:\Textdata\CH01TA01.txt’;

input size hours;

proc reg data=a1;

model hours=size;

id size;

run;
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Dependent Variable: hours

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 252378 252378 105.88 <.0001

Error 23 54825 2383.71562

Cor Total 24 307203

Root MSE 48.82331 R-Square 0.8215

Dependent Mean 312.28000 Adj R-Sq 0.8138

Coeff Var 15.63447

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 62.36586 26.17743 2.38 0.0259

size 1 3.57020 0.34697 10.29 <.0001

• Note that 10.292 ≈ 105.88
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General Linear Test

• A third way to test for linear association

• Consider two models

– Full model : Yi = β0 + β1Xi + εi

– Reduced model : Yi = β0 + εi

• Will compare models using SSE’s

– Error sum of squares of the full model will be labeled SSE(F)

– Error sum of squares of the reduced model will be labeled SSE(R)

• Note: SSTO is the same under each model
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• Reduced model −→ H0 : β1 = 0

• Can be shown that SSE(F) ≤ SSE(R)

• Idea: more parameters provide better fit

• If SSE(F) not much smaller than SSE(R), full model doesn’t

better explain Y

F ⋆ =
(SSE(R)− SSE(F))/(dfR − dfF )

SSE(F)/dfF

=
(SSTO− SSE)/1

SSE/(n− 2)

• Same test as before, but will have a more general use in

multiple regression
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Descriptive Measures of Linear Association

• The degree of “linear association” is often the time of inter-

est

• In simple linear regression,

– Coefficient of determination R2

– Estimated Pearson’s correlation coefficient r
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Coefficient of Determination

• Defined as the proportion of total variation explained by the

model utilizing X

R2 =
SSR

SSTO
= 1− SSE

SSTO
• 0 ≤ R2 ≤ 1

– often multiplied by 100 and described as a percentage

• High R2 does not necessarily mean that

– we can make useful predictions

– regression line is a good fit

• Low R2 does not necessarily mean that

– X and Y are not related

• See page 75 for limitations of R2
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Pearson’s Correlation Coefficient

• Number between -1 and 1 which measures the strength of

the linear relationship between two variables, e.g.,

ρ = corr(X, Y ) =
cov(X,Y )

√

var(X)var(Y )

• In simple linear regression, ρ can be estimated by

r =

∑

(Xi −X)(Yi − Y )
√

∑

(Xi −X)2
∑

(Yi − Y )2
= b1

√

√

√

√

∑

(Xi −X)2
∑

(Yi − Y )2

– sign of r is the sign of the regression slope

• For simple linear regression can show that

r2 = b21

∑

(Xi −X)2
∑

(Yi − Y )2
=

SSR

SSTO
= R2

– Relationship not true in multiple regression

2-40



Normal Correlation Model

• Have assumed Xi’s are known constants

• Statistical inferences consider repeated sampling with fixed

X values

• What if this assumption is not appropriate?

• In other words, what if Xi’s are random?

• If interest still in relation between two variables can use cor-

relation model

• Normal correlation model uses bivariate normal distribution
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Bivariate Normal Distribution

• Consider random variables Y1 and Y2

• Distribution requires five parameters

– µ1 and σ1 are the mean and std dev of Y1

– µ2 and σ2 are the mean and std dev of Y2

– ρ12 is the coefficient of correlation

• Bivariate normal density and marginal distributions given on

page 79

• Marginal distributions are normal

• Conditional distributions are also normal
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Conditional Distribution

• Consider the distribution of Y1 given Y2

– Can show the distribution is normal

– The mean can be expressed
(

µ1 − µ2ρ12
σ1
σ2

)

+ ρ12
σ1
σ2

Y2 = α1|2 + β12Y2

– With constant variance σ21

(

1− ρ212

)

• Similar properties of normal error regression model

• Can use regression to make inference about Y1 given Y2
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What if X Random

• What if Xi’s are random samples from distribution g(·)?

• Previous regression results hold if:

– The conditional distributions of Yi given Xi are normal

and independent with conditional means β0 + β1Xi and

conditional variance σ2

– The Xi are independent and g(·) does not involve the

parameters β0, β1, and σ2
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Inference on ρ12

• Point estimate using Y = Y1 and X = Y2 given on p. 83

• Interest in testing H0 : ρ12 = 0

• Test statistic is

t∗ =
r12

√
n− 2

√

1− r212

• Same result as H0 : β = 0

• Can also form CI using Fisher z transformation or large sam-

ple approximation (p. 85)

• If X and Y nonnormal, can use Spearman’s correlation coef-

ficient (p. 87)
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Chapter Review

• Inference concerning β1

• Inference concerning β0

• Inference concerning prediction

• Analysis of Variance Approach to Regression

– Partitioning sums of squares

– Degrees of freedom

– Expected mean squares

• General linear test

• R2 and the correlation coefficient

• What if X random variable?
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