STAT 525 FALL 2018

Chapter 16 Single-Factor Studies

Professor Min Zhang

One-Way ANOVA

- Response variable Y is again continuous
- Explanatory variable is *categorical*
 - Often called a <u>factor</u>
 - The possible values are its <u>levels</u>
- Approach is a generalization of the independent two-sample t-test (i.e., can be used when there are more than two treatments)

ANOVA vs. Regression

- One-way ANOVA a special case of regression using indicator variables
- Recall in comparing regression lines, indicator variables were used to describe differences in intercepts (i.e, means)
- Consider the linear model $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$ involving three groups where X_1 is the indicator for group 1 and X_2 is the indicator for group 2
 - Group 1 : $Y_i = \beta_0 + \beta_1 + \varepsilon_i = \mu_1 + \varepsilon_i$
 - Group 2 : $Y_i = \beta_0 + \beta_2 + \varepsilon_i = \mu_2 + \varepsilon_i$
 - Group 3 : $Y_i = \beta_0 + \varepsilon_i = \mu_3 + \varepsilon_i$
- Indicators remove "linear" structure among means

The Data / Notation

- Y is the response variable
- X is the factor with r levels. These levels are often called groups or treatments.
- Let Y_{ij} be the
 - $-j^{\text{th}}$ observation $(j = 1, 2, ..., n_i)$
 - in the i^{th} group (i = 1, 2, ..., r)

Example (Page 685)

- Kenton Food Company wants to test four different package designs for a new breakfast cereal
- Twenty "similar" stores were selected to be part of the experiment
- Package designs randomly and equally assigned to stores.
 Fire hit one store so it was dropped
- Y is the number of cases sold
- X is the package design with r = 4 levels
 - -i=1,2,3,4
 - $j = 1, 2, ..., n_i$ where $n_i = 5, 5, 4, 5$ respectively
 - will use n when n_i constant

The Data

data a1; infile 'u:\.www\datasets525\CH16TA01.TXT'; input cases design store; proc print; run; quit;

Obs	cases	design	store
1	11	1	1
2	17	1	2
3	16	1	3
4	14	1	4
5	15	1	5
6	12	2	1
7	10	2	2
8	15	2	3
9	19	2	4
10	11	2	5
11	23	3	1
12	20	3	2
13	18	3	3
14	17	3	4
15	27	4	1
16	33	4	2
17	22	4	3
18	26	4	4
19	28	4	5

Scatterplot

```
symbol1 v=circle i=none;
proc gplot data=a1;
    plot cases*design/frame;
run; quit;
```


The Model

- Same assumptions as regression except for the linear relationship between X and Y
- All observations are assumed independent
- All observations are normally distributed with
 - means which may depend on the levels of the factors
 - constant variance
- Often presented in terms of cell means or factor effects

The Cell Means Model

• Expressed numerically

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where μ_i is the theoretical mean of all observations at level i (or in cell i)

- The ε_{ij} are iid $N(0, \sigma^2)$ which implies the Y_{ij} are independent $N(\mu_i, \sigma^2)$
- Parameters

$$-\mu_1, \mu_2, ..., \mu_r$$

Primary Question

- Does the explanatory variable X help explain Y?
- Since the factor levels only affect the cell means we can similarly ask ...
- Does μ_i depend on *i*?
 - $H_0: \mu_1 = \mu_2 = \dots = \mu_r = \mu$
 - H_a : at least one μ_i different

Estimates / Inference

• Estimate μ_i by the sample mean of the observations at level i

$$\widehat{\mu}_i = \overline{Y}_i.$$

• For each level *i*, also estimate of the variance

$$s_i^2 = \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2 / (n_i - 1)$$

- These s_i^2 are combined to estimate σ^2
 - If n_i were constant, could compute s^2 by averaging the $s_i^2{\rm 's}$
 - More general formula pools s_i^2 using weights proportional to sample size (i.e., df)

$$s^{2} = \frac{\sum_{i=1}^{r} (n_{i} - 1)s_{i}^{2}}{\sum_{i=1}^{r} (n_{i} - 1)} = \frac{\sum_{i=1}^{r} (n_{i} - 1)s_{i}^{2}}{n_{T} - r}$$

where n_T is the total number of obs

ANOVA Table

- Similar ANOVA table construction
- Plug in $\overline{Y}_{i.}$ as fitted value

Source of Variation	df	SS
Model	r-1	$\sum_{i=1}^{r} n_i (\overline{Y}_{i.} - \overline{Y}_{})^2$
Error	$n_T - r$	$\sum_{i=1}^{r}\sum_{j=1}^{n_i}(Y_{ij}-\overline{Y}_{i.})^2$
Total	$n_T - 1$	$\sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2$

• Note that

$$\overline{Y}_{..} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} Y_{ij}/n_T \qquad \overline{Y}_{i.} = \sum_{j=1}^{n_i} Y_{ij}/n_i$$

- SSM = SS(B), aka the between-group variation;
- SSE = SS(W), aka the within-group variation.

Expected Mean Squares (EMS)

- All means squares are random variables
- Can show $E(MSE) = \sigma^2$ (page 696)
- Can also show (page 697)

$$E(MSR) = \sigma^2 + \frac{\sum n_i (\mu_i - \mu_.)^2}{r - 1}$$

where $\mu_{\cdot} = \frac{\sum n_i \mu_i}{n_T}$

- If H_0 true, MSR unbiased estimate of σ^2
- In more complicated ANOVA models, EMS tell us how to construct F tests

Example (Page 685) - Use PROC GLM in SAS

```
/* GLM: Uses least squares method to fit general linear models, and */
/* provides regression, ANOVA, ANCOVA, MANCOVA, partial correlation */
proc glm data=a1;
    class design;
    model cases=design;
    means design;
    lsmeans design / stderr;
run; quit;
```

			Sum of			
Source	Γ)F	Squares	Mean Square	F Value	Pr > F
Model		3	588.2210526	196.0736842	18.59	<.0001
Error	1	.5	158.2000000	10.5466667		
Corrected	Total 1	.8	746.4210526			
R-Square	Coeff	Var	r Root M	SE cases M	ean	
0.788055	17.43	8042	3.2475	63 18.63	158	
Source	Γ	F	Type I SS	Mean Square	F Value	Pr > F
design		3	588.2210526	196.0736842	18.59	<.0001
Source	Γ)F	Type III SS	Mean Square	F Value	Pr > F
design		3	588.2210526	196.0736842	18.59	<.0001

The GLM Procedure

Level of		cases	
design	Ν	Mean	Std Dev
1	5	14.6000000	2.30217289
2	5	13.4000000	3.64691651
3	4	19.5000000	2.64575131
4	5	27.2000000	3.96232255
	Leas	t Squares Means Standa	rd
design	cases LSMEA	N Err	or Pr > t
1	14.600000	0 1.45235	44 <.000
2	13.400000	0 1.45235	44 <.000
3	19.500000	0 1.62378	16 <.000
4	27.200000	0 1.45235	44 <.000

- MEANS only uses the observations from a specific group
 - $4 \times 2.30^2 + 4 \times 3.65^2 + 3 \times 2.65^2 + 4 \times 3.96^2 = 158.24$. Except for rounding, this is equal to SSE.
 - -19-4=15, which is the df error in the ANOVA table.
- LSMEANS uses all the observations and least squares method

 $-SE_i = \sqrt{MSE/n_i}.$

Example (Page 685) - Use PROC MIXED in SAS

/* MIXED: generalizes the linear models in PROC GLM & fits linear mixed models */
proc mixed data=a1;
 class design;
 model cases=design;
 lsmeans design;
run; quit;

	Туре	3 Tests	of Fixe	ed Effects	
		Num	Den		
Effect		DF	DF	F Value	Pr > F
design		3	15	18.59	<.0001

	Least	: Squares Mea	ns		
		Standard			
design	Estimate	Error	DF	t Value	Pr > t
1	14.6000	1.4524	15	10.05	<.0001
2	13.4000	1.4524	15	9.23	<.0001
3	19.5000	1.6238	15	12.01	<.0001
4	27.2000	1.4524	15	18.73	<.0001

Scatterplot of Means

```
proc means data=a1;
  var cases; by design;
  output out=a2 mean=avcases;
```


The Factor Effects Model

- A reparameterization of the cell means model
- A very useful way of looking at more complicated ANOVA models (i.e., more than one factor)
- Null hypotheses are easier to state
- Expressed numerically

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

• Parameters

$$-\tau_1, \tau_2, ..., \tau_r$$
$$-\mu, \sigma^2$$

• Factor effects model has r+2 parameters while the cell means model has r+1 parameters

Model Identifiability

• Consider r = 3 with $\mu_1 = 10, \mu_2 = 0$, and $\mu_3 = 20$

$$- \mu = 0, \tau_1 = 10, \tau_2 = 0, \tau_3 = 20$$

$$- \mu = 10, \tau_1 = 0, \tau_2 = -10, \tau_3 = 10$$

- $\mu = 100, \tau_1 = -90, \tau_2 = -100, \tau_3 = -80$
- Factor effects model has non-unique solution
- Solution: put constraints on τ_i 's to reduce the parameters number by 1
- Examples of constraints
 - $-\tau_r = 0$ (SAS approach)
 - $-\sum \tau_i = 0$ (conceptual approach)
- Constraints get a bit more complicated when n_i not constant (pages 709-710) but with same concept

Consequences of Constraints

• Consider r = 3 with $n_i = n$

• Factor effects model with $\sum \tau_i = 0$

$$E(\overline{Y}_{..}) = \frac{3\mu + \sum \tau_i}{3} = \mu$$
$$E(\overline{Y}_{i.}) = \mu + \tau_i$$

– μ is the grand mean

- $-\tau_i$ is the effect of the i^{th} factor
- Factor effects model with $\tau_r = 0$

$$E(\overline{Y}_{3.}) = \mu$$
$$E(\overline{Y}_{1.} - \overline{Y}_{3.}) = \mu + \tau_1 - \mu = \tau_1$$

- μ is the mean of the $r^{\rm th}$ group
- τ_i is the difference between the means of group i and group r

- Different constraints result in different parameter / parameter estimates
- Many estimates, however, are the same regardless of constraint
 - $-\hat{\mu}+\hat{\tau}_1 = \text{trt 1 mean}$
 - $-\hat{\mu}+\hat{\tau}_3 = \text{trt 3 mean}$
 - $\hat{\tau}_1 \hat{\tau}_3$ = difference in trt 1 and trt 3

 $-\hat{\tau}_1 - \hat{\tau}_2 = \text{difference in trt 1 and trt 2}$

• These are primarily the ones of interest

Hypotheses

$$H_0: \mu_1 = \mu_2 = \dots = \mu_r = \mu$$

 H_a : at least one μ_i different

is translated into

 $H_0: \tau_1 = \tau_2 = \dots = \tau_r = 0$

 H_a : at least one $\tau_i \neq 0$

Regression Approach

• We can use multiple regression to produce results based on the factor effects model

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

- Consider the restriction $\sum \tau_i = 0$
- Because of this restriction there are r-1 regression coefficients /parameters

 $\sum \tau_i = 0 \rightarrow \tau_r = -\tau_1 - \tau_2 - \dots - \tau_{r-1}$

• Define k-th indicator variable $(k = 1, 2, \dots, r-1)$

$$X_{ijk} = \begin{cases} 1, & \text{factor level at } k, \text{ i.e., } i = k \\ -1, & \text{factor level at } r, \text{ i.e., } i = r \\ 0, & \text{otherwise} \end{cases}$$

• Multiple regression model

$$Y_{ij} = \beta_0 + \beta_1 X_{ij1} + \beta_2 X_{ij2} + \dots + \beta_{r-1} X_{ij,r-1} + \varepsilon_{ij}$$

- For level $i \ (1 \le i \le r-1)$
$$Y_{ij} = \beta_0 + \beta_i + \varepsilon_{ij}$$

- For level
$$r$$

$$Y_{ij} = \beta_0 - \beta_1 - \beta_2 - \dots - \beta_{r-1} + \varepsilon_{ij}$$

- When $n_i = n$, have shown $E(\overline{Y}_{..}) = \mu$
- Can show here that $E(\overline{Y}_{..}) = \beta_0$
- Likewise can show $\tau_i = \beta_i \ (1 \le i \le r-1)$

Example (Page 685)

• Since n_i not constant, the grand mean is not equal to the mean of the group means. Estimate of μ based on

$$\mu = \sum_i n_i \mu_i / n_T$$

```
proc means data=a1 noprint;
    class design;
    var cases;
    output out=a2 mean=mclass;
proc print data=a2; run; quit;
```

Jbs	design	_TYPE_	_FREQ_	mclass
1	•	0	19	18.6316
2	1	1	5	14.6000
3	2	1	5	13.4000
4	3	1	4	19.5000
5	4	1	5	27.2000

- The first value is the overall mean of the nineteen observations.
- The next four are the treatment means.
- The average of these four treatment means is 18.675.

```
/* Code Indicator Variables */
data a1; set a1;
    x1=(design eq 1)-(design eq 4);
    x2=(design eq 2)-(design eq 4);
    x3=(design eq 3)-(design eq 4);
proc print data=a1; run; quit;
```

Obs	cases	design	store	x1	x2	xЗ
1	11	1	1	1	0	0
2	17	1	2	1	0	0
3	16	1	3	1	0	0
4	14	1	4	1	0	0
5	15	1	5	1	0	0
6	12	2	1	0	1	0
7	10	2	2	0	1	0
8	15	2	3	0	1	0
9	19	2	4	0	1	0
10	11	2	5	0	1	0
11	23	3	1	0	0	1
12	20	3	2	0	0	1
13	18	3	3	0	0	1
14	17	3	4	0	0	1
15	27	4	1	-1	-1	-1
16	33	4	2	-1	-1	-1
17	22	4	3	-1	-1	-1
18	26	4	4	-1	-1	-1
19	28	4	5	-1	-1	-1

```
proc reg data=a1;
   model cases=x1 x2 x3;
run; quit;
```

		Anal	lysis of Var	iance			
			Sum of	Mean			
Source		DF	Squares	Square	F	Value	Pr > F
Model		3	588.22105	196.07368		18.59	<.0001
Error		15	158.20000	10.54667			
Corrected	Total	18	746.42105				
Root MSE			3.24756	R-Square		0.7881	
Dependent	Mean		18.63158	Adj R-Sq		0.7457	
Coeff Var			17.43042				

Parameter Estimates

rarameter Estimates						
	Parameter	Standard				
DF	Estimate	Error	t Value	Pr > t		
1	18.67500	0.74853	24.95	<.0001		
1	-4.07500	1.27081	-3.21	0.0059		
1	-5.27500	1.27081	-4.15	0.0009		
1	0.82500	1.37063	0.60	0.5562		
	DF 1 1 1	Parameter DF Estimate 1 18.67500 1 -4.07500 1 -5.27500 1 0.82500	ParameterStandardDFEstimateError118.675000.748531-4.075001.270811-5.275001.2708110.825001.37063	Parameter Standard DF Estimate Error t Value 1 18.67500 0.74853 24.95 1 -4.07500 1.27081 -3.21 1 -5.27500 1.27081 -4.15 1 0.82500 1.37063 0.60		

- The mean of the means is 18.675
- The treatment means are 18.675 4.075 = 14.6, 18.675 5.275 = 13.4, 18.675 + 0.825 = 19.5, and 18.675 + 4.075 + 5.275 0.825 = 27.2
- The same output as from PROC GLM before

SAS Regression Approach

• Constructs the following r indicator variables

 $X_{ijk} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$

• Because of the intercept (column of 1's) there is complete dependence (X'X doesn't have an inverse)

$$1 = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \dots + c_r \mathbf{X}_r$$

- SAS computes generalized inverse in its place
- Many generalized inverses each corresponding to a different constraint (constraint here is $\tau_r = 0$)

Example (Page 685)

proc glm data=a1; class design; model cases=design / xpx inverse solution; run; quit;

The X'X Matrix

	Int	d1	d2	d3	d4	cases
Int	19	5	5	4	5	354
d1	5	5	0	0	0	73
d2	5	0	5	0	0	67
d3	4	0	0	4	0	78
d4	5	0	0	0	5	136
cases	354	73	67	78	136	7342

X'X Generalized Inverse (g2)

	${\tt Int}$	d1	d2	d3	d4	cases
Int	0.2	-0.2	-0.2	-0.2	0	27.2
d1	-0.2	0.4	0.2	0.2	0	-12.6
d2	-0.2	0.2	0.4	0.2	0	-13.8
d3	-0.2	0.2	0.2	0.45	0	-7.7
d4	0	0	0	0	0	0
cases	27.2	-12.6	-13.8	-7.7	0	158.2

Sum of												
Source			DF		S	quares	Mean	Squ	are	F	Value	Pr > F
Model			3	58	38.2	210526	196.	0736	842		18.59	<.0001
Error			15	15	58.20	000000	10.	5466	667			
Corrected	Τc	otal	18	74	46.42	210526						
R-Square		Coe	eff Va	ar		Root M	SE	cas	es Me	ear	ı	
0.788055		17.43042 3.247563 18.63158										
Source			DF		Тур	e I SS	Mean	Squ	are	F	Value	Pr > F
design			3	58	38.2	210526	196.	0736	842		18.59	<.0001
Source			DF	Ty	/pe :	III SS	Mean	Squ	are	F	Value	Pr > F
design			3	58	38.2	210526	196.	0736	842		18.59	<.0001
Standard												
Parameter			Estir	nate	Э	E	rror	t	Value	9	Pr >	t
Intercept		27.	2000	0000) B	1.4523	5441		18.73	3	<.0	001
design	1	-12.	60000	0000) B	2.0539	3930		-6.13	3	<.0	001
design	2	-13.	80000	0000) B	2.0539	3930		-6.72	2	<.0	001
design	3	-7.	70000	000) B	2.1785	3162		-3.53	3	0.0	030
design	4	0.	00000	000	ЭВ	•			•		•	

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Interpretation

• Generalized Inverse Matrix of the form

$$egin{bmatrix} (\mathrm{X}'\mathrm{X})^- & (\mathrm{X}'\mathrm{X})^-\mathrm{X}'\mathrm{Y}\ \mathrm{Y}'\mathrm{X}(\mathrm{X}'\mathrm{X})^- & \mathrm{Y}'\mathrm{Y}-\mathrm{Y}'\mathrm{X}(\mathrm{X}'\mathrm{X})^-\mathrm{X}'\mathrm{Y} \end{bmatrix}$$

- Parameter estimates in upper right corner and SSE in lower right corner
- The intercept is estimated by the mean in group 4 and the other b_i 's are the differences between the means of group i and group 4

Chapter Review

- One Way ANOVA
 - Cell means model
 - Factor effects model
- Regression Approach to ANOVA