
STAT 525 FALL 2018

Chapter 16
Single-Factor Studies

Professor Min Zhang



One-Way ANOVA

• Response variable Y is again continuous

• Explanatory variable is categorical

– Often called a factor

– The possible values are its levels

• Approach is a generalization of the independent two-sample

t-test (i.e., can be used when there are more than two treat-

ments)
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ANOVA vs. Regression

• One-way ANOVA a special case of regression using indicator

variables

• Recall in comparing regression lines, indicator variables were

used to describe differences in intercepts (i.e, means)

• Consider the linear model Yi = β0+β1Xi1+β2Xi2+εi involv-

ing three groups where X1 is the indicator for group 1 and

X2 is the indicator for group 2

– Group 1 : Yi = β0 + β1 + εi = µ1 + εi

– Group 2 : Yi = β0 + β2 + εi = µ2 + εi

– Group 3 : Yi = β0 + εi = µ3 + εi

• Indicators remove “linear” structure among means
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The Data / Notation

• Y is the response variable

• X is the factor with r levels. These levels are often called

groups or treatments.

• Let Yij be the

– jth observation (j = 1,2, ..., ni)

– in the ith group (i = 1,2, ..., r)
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Example (Page 685)

• Kenton Food Company wants to test four different package

designs for a new breakfast cereal

• Twenty “similar” stores were selected to be part of the ex-

periment

• Package designs randomly and equally assigned to stores.

Fire hit one store so it was dropped

• Y is the number of cases sold

• X is the package design with r = 4 levels

– i = 1,2,3,4

– j = 1,2, .., ni where ni = 5,5,4,5 respectively

– will use n when ni constant
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The Data

data a1;
infile ’u:\.www\datasets525\CH16TA01.TXT’;
input cases design store;

proc print; run; quit;

Obs cases design store
1 11 1 1
2 17 1 2
3 16 1 3
4 14 1 4
5 15 1 5
6 12 2 1
7 10 2 2
8 15 2 3
9 19 2 4
10 11 2 5
11 23 3 1
12 20 3 2
13 18 3 3
14 17 3 4
15 27 4 1
16 33 4 2
17 22 4 3
18 26 4 4
19 28 4 5
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Scatterplot

symbol1 v=circle i=none;
proc gplot data=a1;

plot cases*design/frame;
run; quit;

16-6



The Model

• Same assumptions as regression except for the linear rela-

tionship between X and Y

• All observations are assumed independent

• All observations are normally distributed with

– means which may depend on the levels of the factors

– constant variance

• Often presented in terms of cell means or factor effects
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The Cell Means Model

• Expressed numerically

Yij = µi + εij

where µi is the theoretical mean of all observations at level i

(or in cell i)

• The εij are iid N(0, σ2) which implies the Yij are independent

N(µi, σ
2)

• Parameters

– µ1, µ2, ..., µr

– σ2
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Primary Question

• Does the explanatory variable X help explain Y ?

• Since the factor levels only affect the cell means we can

similarly ask ...

• Does µi depend on i?

– H0 : µ1 = µ2 = ... = µr = µ

– Ha : at least one µi different
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Estimates / Inference

• Estimate µi by the sample mean of the observations at level

i

µ̂i = Y i.

• For each level i, also estimate of the variance

s2i =

ni
∑

j=1

(Yij − Y i.)
2/(ni − 1)

• These s2i are combined to estimate σ2

– If ni were constant, could compute s2 by averaging the

s2i ’s

– More general formula pools s2i using weights proportional

to sample size (i.e., df)

s2 =

∑r
i=1 (ni − 1)s2i
∑r

i=1 (ni − 1)
=

∑r
i=1 (ni − 1)s2i

nT − r

where nT is the total number of obs
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ANOVA Table

• Similar ANOVA table construction

• Plug in Y i. as fitted value

Source of
Variation df SS

Model r − 1
∑r

i=1 ni(Y i. − Y ..)2

Error nT − r
∑r

i=1

∑ni
j=1 (Yij − Y i.)

2

Total nT − 1
∑r

i=1

∑ni
j=1 (Yij − Y )2

• Note that

Y .. =
r
∑

i=1

ni
∑

j=1

Yij/nT Y i. =

ni
∑

j=1

Yij/ni

• SSM = SS(B), aka the between-group variation;

• SSE = SS(W ), aka the within-group variation.
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Expected Mean Squares (EMS)

• All means squares are random variables

• Can show E(MSE) = σ2 (page 696)

• Can also show (page 697)

E(MSR) = σ2 +

∑

ni(µi − µ.)2

r − 1

where µ. =
∑

niµi
nT

• If H0 true, MSR unbiased estimate of σ2

• In more complicated ANOVA models, EMS tell us how to

construct F tests
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Example (Page 685) – Use PROC GLM in SAS

/* GLM: Uses least squares method to fit general linear models, and */
/* provides regression, ANOVA, ANCOVA, MANCOVA, partial correlation */
proc glm data=a1;

class design;
model cases=design;
means design;
lsmeans design / stderr;

run; quit;

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 3 588.2210526 196.0736842 18.59 <.0001
Error 15 158.2000000 10.5466667
Corrected Total 18 746.4210526

R-Square Coeff Var Root MSE cases Mean
0.788055 17.43042 3.247563 18.63158

Source DF Type I SS Mean Square F Value Pr > F
design 3 588.2210526 196.0736842 18.59 <.0001

Source DF Type III SS Mean Square F Value Pr > F
design 3 588.2210526 196.0736842 18.59 <.0001
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The GLM Procedure

Level of ------------cases------------
design N Mean Std Dev
1 5 14.6000000 2.30217289
2 5 13.4000000 3.64691651
3 4 19.5000000 2.64575131
4 5 27.2000000 3.96232255

Least Squares Means
Standard

design cases LSMEAN Error Pr > |t|
1 14.6000000 1.4523544 <.0001
2 13.4000000 1.4523544 <.0001
3 19.5000000 1.6237816 <.0001
4 27.2000000 1.4523544 <.0001

• MEANS only uses the observations from a specific group

– 4 × 2.302 + 4 × 3.652 + 3 × 2.652 + 4 × 3.962 = 158.24. Except for
rounding, this is equal to SSE.

– 19− 4 = 15, which is the df error in the ANOVA table.

• LSMEANS uses all the observations and least squares method

– SEi =
√

MSE/ni.
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Example (Page 685) – Use PROC MIXED in SAS

/* MIXED: generalizes the linear models in PROC GLM & fits linear mixed models */
proc mixed data=a1;

class design;
model cases=design;
lsmeans design;

run; quit;

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
design 3 15 18.59 <.0001

Least Squares Means
Standard

design Estimate Error DF t Value Pr > |t|
1 14.6000 1.4524 15 10.05 <.0001
2 13.4000 1.4524 15 9.23 <.0001
3 19.5000 1.6238 15 12.01 <.0001
4 27.2000 1.4524 15 18.73 <.0001
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Scatterplot of Means

proc means data=a1;
var cases; by design;
output out=a2 mean=avcases;

symbol1 v=circle i=join;
proc gplot data=a2;

plot avcases*design/frame;
run; quit;
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The Factor Effects Model

• A reparameterization of the cell means model

• A very useful way of looking at more complicated ANOVA

models (i.e., more than one factor)

• Null hypotheses are easier to state

• Expressed numerically

Yij = µ+ τi + εij

• Parameters

– τ1, τ2, ..., τr

– µ, σ2

• Factor effects model has r+2 parameters while the cell means

model has r +1 parameters
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Model Identifiability

• Consider r = 3 with µ1 = 10, µ2 = 0, and µ3 = 20

– µ = 0, τ1 = 10, τ2 = 0, τ3 = 20

– µ = 10, τ1 = 0, τ2 = −10, τ3 = 10

– µ = 100, τ1 = −90, τ2 = −100, τ3 = −80

• Factor effects model has non-unique solution

• Solution: put constraints on τi’s to reduce the parameters number by 1

• Examples of constraints

– τr = 0 (SAS approach)

–
∑

τi = 0 (conceptual approach)

• Constraints get a bit more complicated when ni not constant (pages
709-710) but with same concept
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Consequences of Constraints

• Consider r = 3 with ni = n

• Factor effects model with
∑

τi = 0

E(Y ..) =
3µ+

∑

τi
3

= µ

E(Y i.) = µ+ τi

– µ is the grand mean

– τi is the effect of the ith factor

• Factor effects model with τr = 0

E(Y 3.) = µ

E(Y 1. − Y 3.) = µ+ τ1 − µ = τ1

– µ is the mean of the rth group

– τi is the difference between the means of group i and

group r
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• Different constraints result in different parameter / parame-

ter estimates

• Many estimates, however, are the same regardless of con-

straint

– µ̂+ τ̂1 = trt 1 mean

– µ̂+ τ̂3 = trt 3 mean

– τ̂1 − τ̂3 = difference in trt 1 and trt 3

– τ̂1 − τ̂2 = difference in trt 1 and trt 2

• These are primarily the ones of interest
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Hypotheses

H0 : µ1 = µ2 = ... = µr = µ

Ha : at least one µi different

is translated into

H0 : τ1 = τ2 = ... = τr = 0

Ha : at least one τi 6= 0
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Regression Approach

• We can use multiple regression to produce results based on

the factor effects model

Yij = µ+ τi + εij

• Consider the restriction
∑

τi = 0

• Because of this restriction there are r − 1 regression coeffi-

cients /parameters

∑

τi = 0 → τr = −τ1 − τ2 − ...− τr−1

• Define k-th indicator variable (k = 1,2, · · · , r − 1)

Xijk =











1, factor level at k, i.e., i = k
−1, factor level at r, i.e., i = r
0, otherwise

16-22



• Multiple regression model

Yij = β0 + β1Xij1 + β2Xij2 + ...+ βr−1Xij,r−1 + εij

– For level i (1 ≤ i ≤ r − 1)

Yij = β0 + βi + εij

– For level r

Yij = β0 − β1 − β2 − ...− βr−1 + εij

• When ni = n, have shown E(Y ..) = µ

• Can show here that E(Y ..) = β0

• Likewise can show τi = βi (1 ≤ i ≤ r − 1)
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Example (Page 685)

• Since ni not constant, the grand mean is not equal to the mean of the
group means. Estimate of µ based on

µ =
∑

i

niµi

/

nT

proc means data=a1 noprint;
class design;
var cases;
output out=a2 mean=mclass;

proc print data=a2; run; quit;

Obs design _TYPE_ _FREQ_ mclass

1 . 0 19 18.6316
2 1 1 5 14.6000
3 2 1 5 13.4000
4 3 1 4 19.5000
5 4 1 5 27.2000

• The first value is the overall mean of the nineteen observations.

• The next four are the treatment means.

• The average of these four treatment means is 18.675.

16-24



/* Code Indicator Variables */
data a1; set a1;

x1=(design eq 1)-(design eq 4);
x2=(design eq 2)-(design eq 4);
x3=(design eq 3)-(design eq 4);

proc print data=a1; run; quit;

Obs cases design store x1 x2 x3
1 11 1 1 1 0 0
2 17 1 2 1 0 0
3 16 1 3 1 0 0
4 14 1 4 1 0 0
5 15 1 5 1 0 0
6 12 2 1 0 1 0
7 10 2 2 0 1 0
8 15 2 3 0 1 0
9 19 2 4 0 1 0

10 11 2 5 0 1 0
11 23 3 1 0 0 1
12 20 3 2 0 0 1
13 18 3 3 0 0 1
14 17 3 4 0 0 1
15 27 4 1 -1 -1 -1
16 33 4 2 -1 -1 -1
17 22 4 3 -1 -1 -1
18 26 4 4 -1 -1 -1
19 28 4 5 -1 -1 -1
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proc reg data=a1;
model cases=x1 x2 x3;

run; quit;

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 3 588.22105 196.07368 18.59 <.0001
Error 15 158.20000 10.54667
Corrected Total 18 746.42105

Root MSE 3.24756 R-Square 0.7881
Dependent Mean 18.63158 Adj R-Sq 0.7457
Coeff Var 17.43042

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 18.67500 0.74853 24.95 <.0001
x1 1 -4.07500 1.27081 -3.21 0.0059
x2 1 -5.27500 1.27081 -4.15 0.0009
x3 1 0.82500 1.37063 0.60 0.5562

• The mean of the means is 18.675

• The treatment means are 18.675− 4.075 = 14.6, 18.675− 5.275 = 13.4,
18.675+ 0.825 = 19.5, and 18.675+ 4.075+ 5.275− 0.825 = 27.2

• The same output as from PROC GLM before
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SAS Regression Approach

• Constructs the following r indicator variables

Xijk =

{

1 if i = k
0 otherwise

• Because of the intercept (column of 1’s) there is complete

dependence (X′X doesn’t have an inverse)

1 = c1X1 + c2X2 + ...+ crXr

• SAS computes generalized inverse in its place

• Many generalized inverses each corresponding to a different

constraint (constraint here is τr = 0)

16-27



Example (Page 685)

proc glm data=a1;
class design;
model cases=design / xpx inverse solution;

run; quit;

The X’X Matrix

Int d1 d2 d3 d4 cases
Int 19 5 5 4 5 354
d1 5 5 0 0 0 73
d2 5 0 5 0 0 67
d3 4 0 0 4 0 78
d4 5 0 0 0 5 136
cases 354 73 67 78 136 7342

X’X Generalized Inverse (g2)

Int d1 d2 d3 d4 cases
Int 0.2 -0.2 -0.2 -0.2 0 27.2
d1 -0.2 0.4 0.2 0.2 0 -12.6
d2 -0.2 0.2 0.4 0.2 0 -13.8
d3 -0.2 0.2 0.2 0.45 0 -7.7
d4 0 0 0 0 0 0
cases 27.2 -12.6 -13.8 -7.7 0 158.2
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Sum of
Source DF Squares Mean Square F Value Pr > F
Model 3 588.2210526 196.0736842 18.59 <.0001
Error 15 158.2000000 10.5466667
Corrected Total 18 746.4210526

R-Square Coeff Var Root MSE cases Mean
0.788055 17.43042 3.247563 18.63158

Source DF Type I SS Mean Square F Value Pr > F
design 3 588.2210526 196.0736842 18.59 <.0001

Source DF Type III SS Mean Square F Value Pr > F
design 3 588.2210526 196.0736842 18.59 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 27.20000000 B 1.45235441 18.73 <.0001
design 1 -12.60000000 B 2.05393930 -6.13 <.0001
design 2 -13.80000000 B 2.05393930 -6.72 <.0001
design 3 -7.70000000 B 2.17853162 -3.53 0.0030
design 4 0.00000000 B . . .

NOTE: The X’X matrix has been found to be singular, and a
generalized inverse was used to solve the normal
equations. Terms whose estimates are followed by the
letter ’B’ are not uniquely estimable.
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Interpretation

• Generalized Inverse Matrix of the form

[

(X′X)− (X′X)−X′Y

Y′X(X′X)− Y′Y −Y′X(X′X)−X′Y

]

• Parameter estimates in upper right corner and SSE in lower

right corner

• The intercept is estimated by the mean in group 4 and the

other bi’s are the differences between the means of group i

and group 4
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Chapter Review

• One Way ANOVA

– Cell means model

– Factor effects model

• Regression Approach to ANOVA
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