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One-Way ANOVA'

e Response variable Y is again continuous

e EXxplanatory variable is categorical

— Often called a factor

— T he possible values are its levels

e Approach is a generalization of the independent two-sample
t-test (i.e., can be used when there are more than two treat-

ments)
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ANOVA vs. Regression

e One-way ANOVA a special case of regression using indicator
variables

e Recall in comparing regression lines, indicator variables were
used to describe differences in intercepts (i.e, means)

e Consider the linear model Y; = 8o+ 81 X;1 + B2X;5+¢; involv-
ing three groups where X4 is the indicator for group 1 and
X5 is the indicator for group 2
— Group 1: Yi=00+ f1+¢e =p+e&

— Group 2 1 Y, = fo+ B2+ e = p2+ &
— Group 3 : Y =00+ ¢ =u3te;

e Indicators remove “linear” structure among means
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The Data / Notation

e Y iS the response variable

e X is the factor with » levels. These levels are often called
groups or treatments.

e Let Y;; be the
— 4t observation (j = 1,2, ...,n;)

— in the ¢th group (i =1,2,...,7)
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Example (Page 685)

e Kenton Food Company wants to test four different package
designs for a new breakfast cereal

e [Twenty “similar’ stores were selected to be part of the ex-
periment

e Package designs randomly and equally assigned to stores.
Fire hit one store so it was dropped

e Y is the number of cases sold

e X is the package design with r = 4 levels

—i=1,2,3,4
— j=1,2,..,n; where n; = 5,5,4,5 respectively

— will use n when n; constant
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T he Data

data al;
infile ’u:\.www\datasets525\CH16TAQ1.TXT’;
input cases design store;

proc print; run; quit;

Obs cases design store
1 11 1 1
2 17 1 2
3 16 1 3
4 14 1 4
5 15 1 5
6 12 2 1
7 10 2 2
8 15 2 3
9 19 2 4

10 11 2 5
11 23 3 1
12 20 3 2
13 18 3 3
14 17 3 4
15 27 4 1
16 33 4 2
17 22 4 3
18 26 4 4
19 28 4 5
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Scatterplot

symboll v=circle i=none;
proc gplot data=al;

plot cases*design/frame;
run; quit;
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The Model|

Same assumptions as regression except for the linear rela-

tionship between X and Y
All observations are assumed independent

All observations are normally distributed with

— means which may depend on the levels of the factors

— constant variance

Often presented in terms of cell means or factor effects
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T he Cell Means Model|

e EXpressed numerically

Yij = pi + €45

where u; is the theoretical mean of all observations at level ¢
(or in cell )

e The g;; are iid N(0,02) which implies the Y;; are independent
DJ(lLiaolz)

e Parameters

— K1, 12y .oy Ur

— 52
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Primary Question

e Does the explanatory variable X help explain Y7

e Since the factor levels only affect the cell means we can
similarly ask ...

e Does u; depend on 7

— Ho:pr=po=..=pr=p

— H, : at least one u; different
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Estimates / Inference

e Estimate u; by the sample mean of the observations at level
)

n; =Y,

e For each level ¢, also estimate of the variance
n;

s2= (Vi —Y;)?/(n;j—1)

=1
e These s? are combined to estimate o2

— If n; were constant, could compute 52 by averaging the
21
s7'S

— More general formula pools sz-2 using weights proportional
to sample size (i.e., df)

2 _ Zile (nz — 1)37;2 _ Zile (nz — 1)37;2
Z§:1 (n; —1) nr—r
where np is the total number of obs

S

16-10



ANOVA Table

e Similar ANOVA table construction

e Plug in Y, as fitted value

Source of

Variation df SS

Model r—1 Y ni(Y; —Y.)>2

Error np—r Yr_q Z?izl (Y;; —Y;)?

Total np—1 MI_13il, (Vi —Y)?

e Note that

- r o Ny o g

Y. =) > Yi/nr Y, = ) Yi/n
i=1j=1 j=1

e SSM = SS(B), aka the between-group variation;

e SSE = SS(W), aka the within-group variation.
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Expected Mean Squares (EMS)

e All means squares are random variables
e Can show E(MSE) = ¢2 (page 696)
e Can also show (page 697)

52 1 Sng(pi — p.)?

E(MSR) = :
S

where u, = —Znnjf“i

e If Hy true, MSR unbiased estimate of o2

e In more complicated ANOVA models, EMS tell us how to
construct F tests
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Example (Page 685) — Use PROC GLM in SAS

/* GLM: Uses least squares method to fit general linear models, and */
/% provides regression, ANOVA, ANCOVA, MANCOVA, partial correlation */
proc glm data=al;

class design;

model cases=design;

means design;

lsmeans design / stderr;
run; quit;

Sum of
source DF Squares Mean Square F Value Pr > F
Model 3 588.22105626 196.0736842 18.59 <.0001
Error 15 158.2000000 10.5466667

Corrected Total 18 746.4210526

R-Square Coeff Var Root MSE cases Mean
0.788055 17.43042 3.247563 18.63158
source DF Type I SS Mean Square F Value Pr > F
design 3 588.2210626 196.0736842 18.59 <.0001
Source DF Type III SS Mean Square F Value Pr > F
design 3 588.2210626 196.0736842 18.59 <.0001
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The GLM Procedure

Level of = -——————m——- cases——————————---
design N Mean Std Dev
1 5 14.6000000 2.30217289
2 5 13.4000000 3.64691651
3 4 19.5000000 2.64575131
4 5 27.2000000 3.96232255
Least Squares Means
Standard
design cases LSMEAN Error Pr > |t]
1 14.6000000 1.4523544 <.0001
2 13.4000000 1.4523544 <.0001
3 19.5000000 1.6237816 <.0001
4 27.2000000 1.4523544 <.0001

e MEANS only uses the observations from a specific group

— 4 x 230244 x3.6524+3x 2652+ 4 x 3.962 = 158.24. Except for
rounding, this is equal to SSE.

— 19 -4 =15, which is the df error in the ANOVA table.

e LSMEANS uses all the observations and least squares method

— B = /MSE/n.
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Example (Page 685) — Use PROC MIXED in SAS

/* MIXED: generalizes the linear models in PROC GLM & fits linear mixed models */
proc mixed data=al;

class design;

model cases=design;

lsmeans design;
run; quit;

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
design 3 15 18.59 <.0001

Least Squares Means

Standard
design Estimate Error DF t Value Pr > |t
1 14.6000 1.4524 15 10.05 <.0001
2 13.4000 1.4524 15 9.23 <.0001
3 19.5000 1.6238 15 12.01 <.0001
4 27.2000 1.4524 15 18.73 <.0001
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Scatterplot of Means

proc means data=al;
var cases; by design;
output out=a2 mean=avcases;

symboll v=circle i=join;
proc gplot data=a2;

plot avcases*design/frame;
run; quit;

aveoi

25 4
z'.r—z
zs—;
25 3
24.—2
zs—i
22-;
21—2
zu—z
1n-§
15—2
17—2
15—2

daclgn
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T he Factor Effects Model|

A reparameterization of the cell means model

A very useful way of looking at more complicated ANOVA
models (i.e., more than one factor)

Null hypotheses are easier to state

Expressed numerically

Yij = p+ 7+ &5
Parameters

i 7-1,7-2, ceey T

— p, 02

Factor effects model has r+2 parameters while the cell means
model has r + 1 parameters
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Model Identifiability

e Consider r = 3 with pu1 = 10, u> = 0, and p3z = 20
— u=0,717 =10, = 0,73 = 20
— 1 =10,71 =0, = —10,73 = 10
— pu=100,77 = —-90,7>» = —100,73 = —80

e Factor effects model has non-unique solution
e Solution: put constraints on 7;'s to reduce the parameters number by 1

e Examples of constraints

— 7. = 0 (SAS approach)
— > 7 = 0 (conceptual approach)

e Constraints get a bit more complicated when n; not constant (pages
709-710) but with same concept
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Consequences of Constraints

e Consider r =3 with n; =n

e Factor effects model with > 7, =0

EY;) = pt+m

— 1 is the grand mean

— 7, is the effect of the ith factor

e Factor effects model with - = 0

E(Y3)
E(Y1.—-Y3)

7
pt+T1—p=T1

— 4 is the mean of the rth group

— 1; IS the difference between the means of group ¢ and
group r
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e Different constraints result in different parameter / parame-
ter estimates

e Many estimates, however, are the same regardless of con-
straint

— pu+ 71 = trt 1 mean
— pu+ 73 = trt 3 mean
— 71 — 73 = difference in trt 1 and trt 3

— 71 — 7o = difference in trt 1 and trt 2

e [ hese are primarily the ones of interest
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Hypotheses

Ho:pp =po=..=pur=pn

H, : at least one u; different

is translated into

HoZleTQZ...:Tr:O

H, :at least one 1;, # 0

16-21



Regression Approach |

e \We can use multiple regression to produce results based on
the factor effects model

Yij = p+ 7+ &5
e Consider the restriction > 7, =0

e Because of this restriction there are r — 1 regression coeffi-
cients /parameters

Y1 =0—>T7=—T1 —T0 — ... — Tp_1

e Define k-th indicator variable (k=1,2,---,r — 1)

1, factor level at k, i.e., 1 = k
Xijk =< —1, factor level at r, i.e., 1 =17r
O, otherwise
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e Multiple regression model

Yij = Bo + P1Xij1 + BoXijo + oo + Br—1Xijr—1 T €45
— Forlevel 1 (1<i<r—1)
Yii = Bo + Bi +€ij
— For level r
Yij = Bo—0B1—P2—...—Br-1+¢&
e When n; = n, have shown E(Y ) = pu
e Can show here that E(Y.) = Bp

e Likewise can show 7, =03; (1 <i<r—1)
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Example (Page 685)

e Since n; not constant, the grand mean is not equal to the mean of the
group means. Estimate of u based on

p=> mnipi/nr
7

proc means data=al noprint;
class design;
var cases;
output out=a2 mean=mclass;
proc print data=a2; run; quit;

Obs design _TYPE_ _FREQ_ mclass
1 . 0 19 18.6316
2 1 1 5 14.6000
3 2 1 5 13.4000
4 3 1 4 19.5000
5 4 1 5 27.2000

e T he first value is the overall mean of the nineteen observations.
e T he next four are the treatment means.

e T he average of these four treatment means is 18.675.
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/* Code Indicator Variables
data al; set al;
x1=(design eq 1)-(design
x2=(design eq 2)-(design
x3=(design eq 3)-(design
proc print data=al; run; quit;

Obs

0O NO Ok WN -

e e e e e ol
O 0O NOO P WD OO

cases

11
17
16
14
15
12
10
15
19
11
23
20
18
17
27
33
22
26
28

*/

eq 4)
eq 4)
eq 4)

design

1
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.
b
.
b

’

store
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X
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ol
N

QOO FrRrRFrRPrRFRPRFPLPRFRLROOOODO

ol
w

P PP OOO0OO0O0O0O0OO0OO0oOOo
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proc reg data=al;

model cases=x1 x2 x3;

run; quit;

Analysis of Variance

Sum of
Source DF Squares
Model 3 b588.22105 196
Error 15 158.20000 10
Corrected Total 18 746.42105
Root MSE 3.24756 R-S
Dependent Mean 18.63158 Adj
Coeff Var 17.43042
Parameter Es
Parameter Standard
Variable DF Estimate Error
Intercept 1 18.67500 0.74853
x1 1 -4.07500 1.27081
X2 1 -5.27500 1.27081
x3 1 0.82500 1.37063

Mean

Square F Value Pr > F

.07368
. 54667

quare
R-Sq

timates

t Value
24.95
-3.21
-4.15

0.60

e T he mean of the means is 18.675
e [ he treatment means are 18.675 —4.075 = 14.6, 18.675 —-5.275 = 13.4,

18.675 + 0.825 = 19.5, and 18.675+ 4.075 + 5.275 — 0.825 = 27.2

e [ he same output as from PROC GLM before

18.59 <.0001

0.7881
0.7457

Pr > |t]
<.0001
0.0059
0.0009
0.5562

16-26



SAS Regression Approach

e Constructs the following r indicator variables

(1 ifi=k
Xijk = { 0 otherwise

e Because of the intercept (column of 1's) there is complete
dependence (X’X doesn't have an inverse)

1=c1 X1+ X4+ ...4 X,

e SAS computes generalized inverse in its place

e Many generalized inverses each corresponding to a different
constraint (constraint here is 7, = 0)
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Example (Page 685)

proc glm data=al;

class design;

model cases=design / xpx inverse solution;
run; quit;

The X’X Matrix

Int di d2 d3 d4
Int 19 5 5 4 5
di 5 5 0] 0 0
d2 5 0] 5 0 0
d3 4 0] 0 4 0
d4 5 0 0 0 5
cases 354 73 67 78 136

X’X Generalized Inverse (g2)

Int di d2 d3 d4
Int 0.2 -0.2 -0.2 -0.2 0
di -0.2 0.4 0.2 0.2 0
d2 -0.2 0.2 0.4 0.2 0
d3 -0.2 0.2 0.2 0.45 0
d4 0] 0] 0 0] 0
cases 27.2 -12.6 -13.8 -7.7 0

cases
354
73

67

78
136
7342

cases
27.

-12.

-13.

1568.
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Source
Model
Error

Corrected Total

R-Square
0.788055

Source
design

Source
design

Parameter
Intercept

design
design
design
design

DF Squares Mean Square F Value Pr > F
3 588.2210526 196.0736842 18.59 <.0001
15 158.2000000 10.5466667
18 746.4210526
Coeff Var Root MSE cases Mean
17.43042 3.247563 18.63158
DF Type I SS Mean Square F Value Pr > F
3 588.2210526 196.0736842 18.59 <.0001
DF Type III SS Mean Square F Value Pr > F
3 588.22105626 196.0736842 18.59 <.0001
Standard
Estimate Error Value Pr > |t
27.20000000 B 1.45235441 18.73 <.0001
1 -12.60000000 B 2.05393930 -6.13 <.0001
2 -13.80000000 B 2.05393930 -6.72 <.0001
3 -=7.70000000 B 2.17853162 -3.53 0.0030
4 0.00000000 B

NOTE: The X’X matrix has

Sum of

been found to be singular, and a

generalized inverse was used to solve the normal
equations. Terms whose estimates are followed by the
letter ’B’ are not uniquely estimable.
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Interpretation

e (Generalized Inverse Matrix of the form

(X'X)~ (X' X)~X'Y
Y'X(X'X)~ Y'Y - YX(XX)"XY

e Parameter estimates in upper right corner and SSE in lower
right corner

e [ he intercept is estimated by the mean in group 4 and the

other b;’s are the differences between the means of group 1
and group 4
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Chapter Reviewl

e One Way ANOVA

— Cell means model

— Factor effects model

e Regression Approach to ANOVA
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