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Unequal Error Variances

• Consider Y = Xβ + ε where σ2(ε) = W−1

– Potentially correlated errors and unequal variances

• Special case: W = diag{w1, w2, · · · , wn}

– Heterogeneous variance or heteroscedasticity

– Homogeneous variance or homoscedasticity if w1 = w2 =

· · · = wn = 1/σ2

• Transformation of X or Y alone may unduly affect the rela-

tionship between X and Y

• Error variance is often a function of X or E[Y]
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Transformation Approach

• Consider a transformation based on W

W
1/2

Y = W
1/2

Xβ +W
1/2ε

↓

Yw = Xwβ + εw

• Can show E(εw) = 0 and σ2(εw) = I

• Generalized least squares: apply the least squares method to

Yw = Xwβ + εw

– It reduces to weighted least squares when W is a diagonal

matrix
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Weighted Least Squares

• The least squares method minimizes

Qw = (Yw −Xwβ)
′(Yw −Xwβ) = (Y −Xβ)′W(Y −Xβ)

– When W = diag{1/σ21,1/σ
2
2, · · · ,1/σ

2
n},

Qw =
n∑

i=1

1

σ2i
(Yi −X

′
iβ)

2

• By taking a derivative of Qw, obtain normal equations:

(X′
wXw)b = X

′
wYw → (X′

WX)b = X
′
WY

• Solution of the normal equations:

(X′
wXw)

−1
X

′
wYw → b = (X′

WX)−1
X

′
WY

– Can also be viewed as maximum likelihood estimator (MLE).
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Weighted Least Squares (Continued)

• Easy to do in SAS using the weight option

• Must determine optimal weights

• Optimal weights ∝ 1/variance

• Methods to determine weights

– Find relationship between the absolute residual and another variable
and use this as a model for the standard deviation

– Instead of the absolute residual, use the squared residual and find
function for the variance

– Use grouped data or approximately grouped data to estimate the
variance
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Example Page 427

• Interested in the relationship between diastolic blood pressure

and age

• Have measurements on 54 adult women

• Age range is 20 to 60 years old

• Issue:

– Variability increases as the mean increases

– Appears to be nice linear relationship

– Don’t want to transform X or Y and lose this

data a1;
infile ’U:\.www\datasets525\ch11ta01.txt’;
input age diast;

run; quit;
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/* Scatter Plot */
proc sort data=a1; by age;
symbol v=circle i=sm70;
proc gplot data=a1;

plot diast*age/frame;
run;
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/* Fit a Regular Regression */

proc reg data=a1;

model diast=age;

output out=a2 r=resid;

run;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2374.96833 2374.96833 35.79 <.0001
Error 52 3450.36501 66.35317

Corrected Total 53 5825.33333

Root MSE 8.14575 R-Square 0.4077

Dependent Mean 79.11111 Adj R-Sq 0.3963

Coeff Var 10.29659

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 56.15693 3.99367 14.06 <.0001
age 1 0.58003 0.09695 5.98 <.0001
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/* Residual Plot */
proc gplot data=a2;

plot resid*age;
run; quit;

• The error variance increases as age increases
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/* Find Pattern of Residuals vs Age */

data a2;

set a2;

absr=abs(resid);

sqrr=resid*resid;

proc gplot data=a2;

plot (resid absr sqrr)*age;

run;

abs(Residual) vs. Age Residual2 vs. Age
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Construction of Weights

• Assume abs(res) is linearly related to age

• Fit least squares model and estimate σi

proc reg data=a2;
model absr=age;
output out=a3 p=shat;

run;

• Take Weight as wi = 1/σ̂2i

data a3; set a3;
wt=1/(shat*shat);

proc reg data=a3;
model diast=age / clb;
weight wt;

run; quit;
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Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 83.34082 83.34082 56.64 <.0001
Error 52 76.51351 1.47141
Corrected Total 53 159.85432

Root MSE 1.21302 R-Square 0.5214
Dependent Mean 73.55134 Adj R-Sq 0.5122
Coeff Var 1.64921

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits
Intercept 1 55.56577 2.52092 22.04 <.0001 50.50718 60.62436
age 1 0.59634 0.07924 7.53 <.0001 0.43734 0.75534

• Not much difference in the estimates but a slight reduction in the stan-
dard deviations. Should not interpret R2 in this situation.

11-11



Ridge Regression as Multicollinearity Remedy

• Modification of least squares that overcomes multicollinearity

problem

• Recall least squares suffers because (X′X) is almost singular

thereby resulting in highly unstable parameter estimates

• Ridge regression results in biased but more stable estimates

• Consider the correlation transformation so the normal equa-

tions are given by rXXb = rY X. Since rXX difficult to invert,

we add a bias constant, c.

b
R = (rXX + cI)−1rY X
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Choice of c

• Key to approach is choice of c

• Common to use the ridge trace and VIF’s

– Ridge trace: simultaneous plot of p − 1 parameter estimates for dif-
ferent values of c ≥ 0. Curves may fluctuate widely when c close to
zero but eventually stabilize and slowly converge to 0.

– VIF’s tend to fall quickly as c moves away from zero and then change
only moderately after that

• Choose c where things tend to “stabilize”

• MODEL statement of PROC REG has option ridge=c
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SAS Commands

options nocenter ls=72;
goptions colors=(’none’);
data a1;

infile ’U:\.www\datasets525\ch07ta01.txt’;
input skinfold thigh midarm fat;

/* output parameter estimates into b */
proc reg data=a1 outest=b;

model fat=skinfold thigh midarm /ridge=0 to .1 by .001;
run;

symbol1 v=’’ i=sm5 l=1;
symbol2 v=’’ i=sm5 l=2;
symbol3 v=’’ i=sm5 l=3;
proc gplot;

plot (skinfold thigh midarm)*_ridge_ / overlay vref=0;
run; quit;
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Ridge Trace

/* Another Way to get the Ridge Trace Plot */
proc reg data=a1 outest=b;

model fat=skinfold thigh midarm /ridge=0 to .1 by .001;
plot / ridgeplot vref=0;

run;
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Connection to Penalized Least Squares (Optional)

• Can show that ridge parameter estimates can be obtained by

minimizing

Q = (Y −Xβ)′(Y −Xβ) + cβ′β

– cβ′β is an L2 norm penalty

– c determines the amount of penalty

– It provides shrinkage estimators

Connection to Bayesian Analysis (Optional)

• Assume the prior

β ∼ N(0, λ)

– λ determines c, indeed, c = σ2/λ.
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Robust Regression with Influential Cases

• Want procedure that is not sensitive to outliers

• Focus on parameters which minimizes

– sum of absolute values of residuals (LAR: Least Absolute Residuals)

– median of the squares of residuals (LMS: Least Median of Squares)

• Could also consider iterating through weighted LS where the

residual value is used to determine the weight (IRLS)

• See pages 439-449 for more details

• Both robust and ridge regression are limited by more difficult

assessments of precision (i.e., standard errors). Bootstrap-

ping is often used.
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Iteratively Reweighted Least Squares Using PROC NLIN

• PROC NLIN allows to define weights as a function

/* NOHALV: removes the restriction that the objective value must
decrease at every iteration */

PROC NLIN DATA=a1 NOHALV;
PARMS b0=0 b1=0;
MODEL diast = b0+b1*age;
resid = diast-MODEL.diast;
_WEIGHT_ = 1/(resid**2);

RUN; QUIT;

The NLIN Procedure

Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Model 1 1.877E23 1.877E23 1.81E23 <.0001
Error 52 54.0000 1.0385
Corrected Total 53 1.877E23

Approx
Parameter Estimate Std Error Approximate 95% Confidence Limits
b0 56.8462 3.8E-11 56.8462 56.8462
b1 0.5385 1.27E-12 0.5385 0.5385

Approximate Correlation Matrix
b0 b1

b0 1.0000000 -0.9999964
b1 -0.9999964 1.0000000
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Nonparametric Regression

• Helpful in exploring the nature of the response function

• i=sm## is one such approach

• All version have some sort of smoothing

• See pages 449-453 for more details

• Interesting theory but confidence intervals and significant

tests not fully developed
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Regression Trees

• Very powerful nonparametric regression approach

• Standard approach in area of “data mining”

• Basically partition the X space into rectangles

• Predicted value is mean of responses in rectangle
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Growing a Regression Tree

• Goal is to minimize SSE

• First split the data into two regions

• Find regions such that

SSE = SSE(R1) + SSE(R2)

is minimized

• Next split one of the current regions, etc.

• Number of splits based on “cost criteria”

• Trade off between minimizing SSE and complexity
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Evaluating Precision in Nonstandard Situations

• Standard methods for evaluating the precision of sample es-

timates may not be available or may only be approximately

applicable when the sample size is large

– Ridge regression

– Robust regression

• Bootstrapping provides estimates of the precision of sample

estimates

– Very important theoretical development that has had a

major impact on applied statistics

– Resampling idea: use the sample to generate a “popu-

lation” and generate new “samples” from such “popula-

tion”

– Use the pool of estimates from new “samples” to profile

sample estimates (i.e., parameters of “population”)
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Resampling Residuals (Fixed X sampling)

• Take the residuals {e1, e2, · · · , en} as the “population” of error

term ǫ

– Sample ǫ∗i from {e1, e2, · · · , en}

– Let Y ∗
i = b0 + b1Xi + ǫ∗i

– In the new “sample”, the i-th observation is (Xi, Y
∗
i )

– Assume constant error variances

• Useful when

– errors have unknown distribution (but constant variance),

and/or

– want to preserve predictors

• Examples of use:

– Ridge regression

• May sample ǫ∗ from a “parametric population” of residuals
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Resampling Pairs (Random X Sampling)

• Useful when

– Doubt about the adequacy of the regression function be-

ing fitted

– Unequal error variances

– Predictor variables cannot be regarded as fixed

• Take {(Xi, Yi) : i = 1,2, · · · , n} as the “population” of (X,Y )

– For the new “sample”, the i-th observation (X∗
i , Y

∗
i ) is

sampled from the “population” {(Xi, Yi) : i = 1,2, · · · , n}

• Examples of use:

– Weighted regression
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Bootstrap Inference

• A total of B new “samples” can be generated, with each

new “sample” providing an estimate of the parameter, say

b
(k)
1 for β1 from k-th new “sample”

– Use {b
(k)
1 : k = 1,2, · · · , B} to understand the population

property of b1

• Bias

Bias = E{b1} − β1 =⇒ B̂iasboot = b̄∗1 − b1

where b̄∗1 =
B∑

k=1
b
(k)
1 /B

• Variance

V ar = E{(b1 −E{b1})
2} =⇒ V̂arboot =

1

B

B∑

k=1

(b
(k)
1 − b̄∗1)

2
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Bootstrap Confidence intervals

• CI for β1 with unbiased estimator b1

(b∗1(α/2), b
∗
1(1− α/2))

– b∗1(α/2) is the (α/2)×100 percentile of {b
(k)
1 : k = 1,2, · · · , B}

– b∗1(1− α/2) is the (1−α/2)× 100 percentile of {b
(k)
1 : k =

1,2, · · · , B}

• Reflection Method: CI for β1 with biased estimator b1

(b1 − d2, b1 + d1)

– d1 = |b∗1(α/2)− b1|

– d2 = |b∗1(1− α/2)− b1|
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Example: Typographical Errors (4.12 on Page 173)

options nocenter; goptions colors=(none);

/* ----Read in initial data set and fit the model----*/
data a1;

infile ’U:\.www\datasets525\CH04PR12.txt’;
input y x;

proc reg;
model y=x / noint clb;
output out=a2 p=pred r=res;

run;
_____________________________________________________________________
Output from Proc Reg

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
x 1 18.02830 0.07948 226.82 <.0001

Variable DF 95% Confidence Limits
x 1 17.85336 18.20325
_____________________________________________________________________
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/* Resample Residuals */

/* Create a data set that contains 1000 copies of the predictor
variable and associated fitted value from the regression */

data pred; set a2;
do sample=1 to 1000;

output;
keep sample x pred;

end;
proc sort; by sample;
run;

/* Randomly sample (with replacement) the residuals => 1000 copies */
/* PROC SURVEYSELECT: Selecting random samples */
/* METHOD=URS: Select with equal probability & with replacement */
/* SAMPSIZE: Specifies the sample size */
/* REP: Number of samples (i.e., datasets) */
/* OUTHITS: Includes a separate observation in the output dataset for each

selection when the same unit is selected more than once */
/* ID: variables to be included in the output dataset, all by default */
proc surveyselect data=a2 method=urs sampsize=12 rep=1000 outhits out=res;

id res;
run;
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/* Merge the fitted values and the residuals, and generate new y */
data new;

merge pred res;
ynew = pred + res;

run;

/* Perform regression on each new sample and store parameter estimate
results in a dataset called parm */

/* The ods listing turns off the output going into the output window */
ods listing close;
proc reg data=new;

model ynew=x / noint;
by sample;

ods output ParameterEstimates=parm;
ods listing;

/* Generate histogram and approximate the density */
/* PCTLPRE: Specifies prefixes to create variables names for PCTLPTS */
/* PCTLPTS: Specifies percentiles to compute */
proc univariate noprint data=parm;

var Estimate;
histogram Estimate / kernel ;
output out=a4 mean=bmean std=bsterr pctlpre=perc_ pctlpts=2.5,5,95,97.5;

proc print data=a4; run; quit;
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------------------------------------------------------------------------------
Results from Bootstrapping

Obs bmean bsterr perc_2_5 perc_5 perc_95 perc_97_5
1 18.0348 0.076574 17.9038 17.9200 18.1747 18.1986

Bias = 18.0348-18.0283 = 0.0065 (quite small)

Percentile : (17.9038, 18.1986)
Reflection : (17.8580, 18.1475)
------------------------------------------------------------------------------

Histogram of {b(k)1 : k = 1,2, · · · ,1000}
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• The way to resample in the example is the easiest to imple-

ment

• But it is not a computationally efficient way to do resampling

• A more computationally efficient approach is implemented by

a SAS macro at http://support.sas.com/kb/24/982.html.
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Chapter Review

• Weighted least squares for unequal error variances

• Ridge regression for multicollinearity problem

• Robust regression for outliers / influential points

• Regression tree for nonparametric regression

• Evaluating precision in nonstandard situations using boot-

strapping
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