STAT 525 FALL 2018

Chapter 1 Linear Regression with One Predictor

Professor Min Zhang

Goals of Regression Analysis

- Serve three purposes
 - Describes an association between \boldsymbol{X} and \boldsymbol{Y}
 - * In some applications, the choice of which variable is X and which is Y can be arbitrary
 - * Association generally does not imply causality
 - In experimental settings, helps select \boldsymbol{X} to control \boldsymbol{Y} at the desired level
 - Predict a future value of Y at a specific value of X
- Always need to consider scope of the model

Example: Leaning Tower of Pisa

- Annual measurements of its lean available
- Measured in tenths of a mm > 2.9 meters
- Prior to recent repairs, its lean was increasing over time
- Goals:
 - To characterize lean over time
 - To **predict** future observations

The Data Set

Obs	year	lean		
1	75	642		
2	76	644		
3	77	656		
4	78	667		
5	79	673		
6	80	688		
7	81	696		
8	82	698		
9	83	713		
10	84	717		
11	85	725		
12	86	742		
13	87	757		

Data taken from Exercise 10.8, p698 in Moore and McCabe, *Intro to the Practice of Statistics*, 3rd ed.

The Data and Relationship

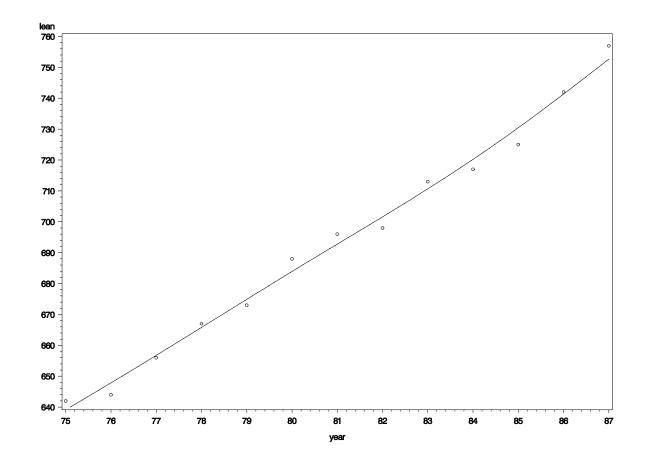
- Response/Dependent variable: lean (Y)
- Explanatory/Independent variable: year (X)
- Observe lean from 1975 1987
- Is there a relationship between Y and X?

To Generate a Scatterplot in SAS

```
DATA a1; INPUT year lean @0;
CARDS;
75 642 76 644 77 656 78 667 79 673 80 688
81 696 82 698 83 713 84 717 85 725 86 742
87 757 102 .
;
PROC PRINT DATA=a1; WHERE lean NE .; RUN;
SYMBOL1 V=CIRCLE I=SM70;
PROC GPLOT DATA=a1;
    PLOT lean*year / FRAME; WHERE lean NE .;
RUN;
```

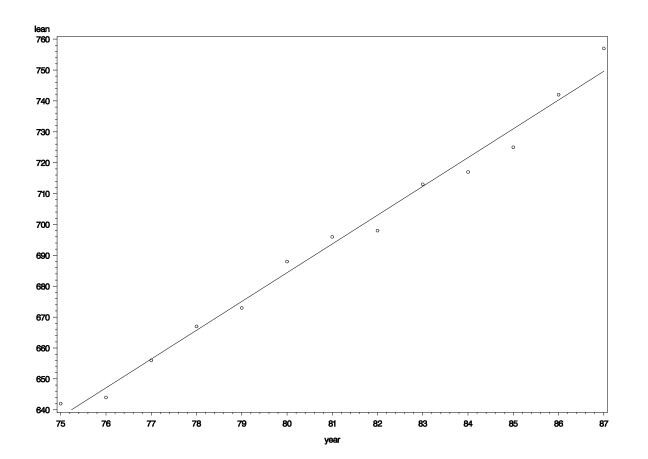
What is the Trend?

• Should always plot the data first!!!!!



Linear Trend?

```
SYMBOL1 V=CIRCLE I=rl;
PROC GPLOT DATA=a1;
     PLOT lean*year / FRAME; WHERE lean NE .;
RUN; QUIT;
```



Straight Line Equation

- Straight line describes "curve" well
- Formula for a straight line

$$E[Y] = \beta_0 + \beta_1 X$$

- β_0 is the intercept
- β_1 in the slope
- Need to estimate β_0 and β_1 i.e. determine their plausible values from the data
- Will use method of least squares

Simple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- β_0 is the intercept
- β_1 is the slope
- ε_i is the i^{th} random error term
 - Mean $0 \leftrightarrow E(\varepsilon_i) = 0$
 - Variance $\sigma^2 \leftrightarrow \operatorname{Var}(\varepsilon_i) = \sigma^2$
 - Uncorrelated \leftrightarrow Cov $(\varepsilon_i, \varepsilon_j) = 0, i \neq j$

Features of the Model

- Y_i = deterministic term + random term
 - deterministic term is $\beta_0 + \beta_1 X_i$
 - random term is ε_i
- Implies Y_i is a random variable

$$- E(Y_i) = \beta_0 + \beta_1 X_i + 0$$

 $\rightarrow E(Y) = \beta_0 + \beta_1 X$ (underlying relationship)

$$- \operatorname{Var}(Y_i) = 0 + \sigma^2$$

 \rightarrow variance the same regardless of X_i

$$-\operatorname{Cov}(Y_i,Y_j)=\operatorname{Cov}(\varepsilon_i,\varepsilon_j)=0,\ i\neq j$$

Estimation of Regression Function

• Consider deviation of Y_i from $E(Y_i)$

$$Y_i - (\beta_0 + \beta_1 X_i)$$

- Method of least squares
 - Find estimators of β_0, β_1 which minimize

$$Q = \sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 X_i)]^2$$

- Deviations can be positive or negative
- Square deviations so contribution positive
- Calculus of solutions shown on pages 17-18

Estimating the Slope

• β_1 is the true unknown slope

- Defines change in E(Y) for change in X

$$\beta_1 = \frac{\Delta E(Y)}{\Delta X} \longrightarrow \Delta E(Y) = \beta_1 \Delta X$$

• b_1 is the least squares estimate of β_1

$$b_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

• When will b_1 be negative?

Estimating the Intercept

• β_0 is the true unknown intercept

- Defines E(Y) when X = 0

$$E(Y) = \beta_0 + \beta_1 \times 0 = \beta_0$$

Usually not of interest (scope of model)

• b_0 is the least squares estimate of β_0

$$b_0 = \overline{Y} - b_1 \overline{X}$$
 \downarrow
Fitted line goes through $(\overline{X}, \overline{Y})$

Properties of Estimates

- Under the <u>Gauss-Markov</u> theorem, these least squares estimators
 - Are unbiased $\leftrightarrow E(b_l) = \beta_l, \ l = 0, 1$
 - Have minimum variance among all unbiased linear estimators
- In other words, these estimates are the most precise of any estimator where
 - b_l is of the form $\sum k_i Y_i$

$$- E(b_l) = \beta_l$$

Estimated Regression Line

• Using the estimated parameters, the fitted regression line is

$$\widehat{Y}_i = b_0 + b_1 X_i$$

where \hat{Y}_i is the estimated value at X_i

- Fitted value \hat{Y}_i is also an estimate of the mean response $E[Y_i]$
- Extension of the Gauss-Markov theorem
 - $E(\hat{Y}_i) = E(Y_i)$
 - \hat{Y}_i minimum variance among linear estimators

Example: Leaning Tower of Pisa

Based on the following table

- 1. Obtain the least squares estimate of β_0 and β_1 .
- 2. State the regression function
- 3. Obtain a point estimate for the year 2002 (X = 102)
- 4. State the expected change in lean over two years

X	Y	$X - \overline{X}$	$Y - \overline{Y}$	$(X - \overline{X})(Y - \overline{Y})$	$(X - \overline{X})^2$
75	642	-6	-51.6923	310.1538	36
76	644	-5	-49.6923	248.4615	25
77	656	-4	-37.6923	150.7692	16
78	667	-3	-26.6923	80.0769	9
79	673	-2	-20.6923	41.3846	4
80	688	-1	-5.6923	5.6923	1
81	696	0	2.3077	0	0
82	698	1	4.3077	4.3077	1
83	713	2	19.3077	38.6154	4
84	717	3	23.3077	69.9231	9
85	725	4	31.3077	125.2308	16
86	742	5	48.3077	241.5385	25
87	757	6	63.3077	379.8462	36
\sum 1053	9018	0	0	1696	182

Answers

1. Obtain the least squares estimate of β_0 and β_1 .

$$b_1 = \frac{1696}{182} = 9.3187 \longrightarrow b_0 = \frac{9018}{13} - 9.3187 \frac{1053}{13} = -61.1224$$

2. State the regression function

$$\hat{Y}_i = -61.1224 + 9.3187X_i$$

3. Obtain a point estimate for the year 2002 (X = 102)

 $(\hat{Y}|X = 102) = -61.1224 + 9.3187(102) = 889.3850$

4. State the expected change in lean over two years

Since the slope is 9.3187, a two unit increase in X results in a $2 \times$ 9.3187 = 18.6374 increase in lean

Residuals

• The *residual* is the difference between the observed and fitted value

$$e_i = Y_i - \hat{Y}_i$$

- This is <u>**not**</u> the error term $\varepsilon_i = Y_i E(Y_i)$
- The e_i is observable while ε_i is not
- Residuals are highly useful in assessing the appropriateness of the model

Properties of Residuals

(1) $\sum e_i = 0$ (2) $\sum e_i^2$ is minimized (3) $\sum Y_i = \sum \hat{Y}_i$ (4) $\sum X_i e_i = 0$ (5) $\sum \hat{Y}_i e_i = 0$

These properties follow directly from the least squares criterion and normal equations (pg 23-24)

Estimation of Error Variance

• In single population (i.e., ignoring X)

$$s^{2} = \frac{\sum (Y_{i} - \overline{Y})^{2}}{n-1}$$

- Unbiased estimate of σ^2
- One df lost by using \overline{Y} in place of μ
- In regression model

$$s^2 = \frac{\sum (Y_i - \hat{Y}_i)^2}{n - 2}$$

- Unbiased estimate of σ^2
- Two df lost by using (b_0, b_1) in place of (β_0, β_1)
- Also known as the mean square error (MSE)

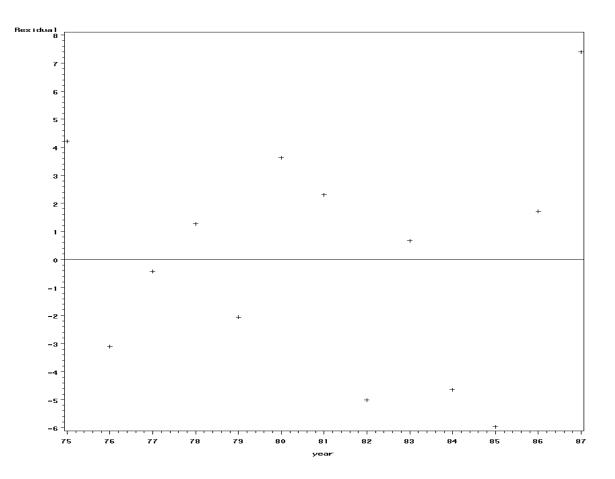
PROC REG in SAS: Leaning Tower of Pisa

```
PROC REG DATA=a1;
MODEL lean=year / CLB P R;
OUTPUT OUT=a2 P=pred R=resid;
ID year;
RUN;
```

Analysis of Variance						
		Sum of	Mean			
Source	DF	Squares	Square	F Value	Pr > F	
Model	1	15804	15804	904.12	<.0001	
Error	11	192.28571	17.48052			
Corrected To	tal 12	15997				
Root MSE 4.18097 R-Square 0.9880						
Dependent Me	an 693.6923	Adj R-Sq	0.9869			
Coeff Var	0.6027	'1				
	Parameter Estimates					
	Parameter	: Standard				
Variable DF	Estimate	e Error t	: Value Pr	> t	95% Confidence Limits	S
Intercept 1	-61.12088	3 25.12982	-2.43	0.0333	-116.43124 -5.81052	2
year 1	9.31868	0.30991	30.07	<.0001	8.63656 10.00080	С

			Output	Statistics		
		Dep Var	Predicted	Std Error		Std Error
Obs	year	lean	Value	Mean Predict	Residual	Residual
1	75	642.0000	637.7802	2.1914	4.2198	3.561
2	76	644.0000	647.0989	1.9354	-3.0989	3.706
3	77	656.0000	656.4176	1.6975	-0.4176	3.821
4	78	667.0000	665.7363	1.4863	1.2637	3.908
5	79	673.0000	675.0549	1.3149	-2.0549	3.969
6	80	688.0000	684.3736	1.2003	3.6264	4.005
7	81	696.0000	693.6923	1.1596	2.3077	4.017
8	82	698.0000	703.0110	1.2003	-5.0110	4.005
9	83	713.0000	712.3297	1.3149	0.6703	3.969
10	84	717.0000	721.6484	1.4863	-4.6484	3.908
11	85	725.0000	730.9670	1.6975	-5.9670	3.821
12	86	742.0000	740.2857	1.9354	1.7143	3.706
13	87	757.0000	749.6044	2.1914	7.3956	3.561
14	102	•	889.3846	6.6107	•	•

```
PROC GPLOT DATA=a2;
PLOT resid*year / FRAME VREF=0;
WHERE lean NE .;
RUN; QUIT;
```



Normal Error Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad \varepsilon_i \stackrel{iid}{\sim} \mathsf{N}(0, \sigma^2)$$

- β_0 is the intercept
- β_1 is the slope
- ε_i is the i^{th} random error term

$$- \varepsilon_i \sim N(0, \sigma^2) \longleftarrow NEW$$

- Uncorrelated \longrightarrow independent error terms
- \bullet Defines distribution of random variable Y

$$Y_i \stackrel{ind}{\sim} \mathsf{N}(\beta_0 + \beta_1 X_i, \sigma^2)$$

<u>Comments</u>

- The least square estimates are unbiased without the normality assumption
- The normality assumption greatly simplifies the theory of analysis
- The normality assumption makes it easy to construct confidence intervals / perform hypothesis tests
- Most inferences are only sensitive to large departures from normality
- See pages 26-27 for more details

Maximum Likelihood Estimation

• Assumption of Normality gives us more choices of methods for parameter estimation

$$Y_i \sim \mathsf{N}(\beta_0 + \beta_1 X_i, \sigma^2)$$

$$\downarrow$$

$$f_i = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(Y_i - \beta_0 - \beta_1 X_i)^2\right\}$$

- Likelihood function L = f₁ × f₂ × ··· × f_n
 (i.e. the joint probability distribution of the observations, viewed as function of parameters)
- Find β_0 , β_1 and σ^2 which maximizes L
- Obtain similar estimators b_0 and b_1 for β_0 and β_1 , but slightly different estimators for σ^2 (see HW#1)

Chapter Review

- Description of Linear Regression Model
- Least Squares & Parameter Estimation
- Fitted Regression Line
- Normality Assumption
- PROC REG in SAS: First Touch