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Goals of Regression Analysis

• Serve three purposes

– Describes an association between X and Y

∗ In some applications, the choice of which variable is X and which
is Y can be arbitrary

∗ Association generally does not imply causality

– In experimental settings, helps select X to control Y at the desired
level

– Predict a future value of Y at a specific value of X

• Always need to consider scope of the model
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Example: Leaning Tower of Pisa

• Annual measurements of its lean available

• Measured in tenths of a mm > 2.9 meters

• Prior to recent repairs, its lean was increasing over time

• Goals:

– To characterize lean over time

– To predict future observations
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The Data Set

Obs year lean

1 75 642

2 76 644

3 77 656

4 78 667

5 79 673

6 80 688

7 81 696

8 82 698

9 83 713

10 84 717

11 85 725

12 86 742

13 87 757

Data taken from Exercise 10.8, p698 in Moore and McCabe, Intro to the

Practice of Statistics, 3rd ed.
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The Data and Relationship

• Response/Dependent variable: lean (Y )

• Explanatory/Independent variable: year (X)

• Observe lean from 1975 - 1987

• Is there a relationship between Y and X?
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To Generate a Scatterplot in SAS

DATA a1; INPUT year lean @@;

CARDS;

75 642 76 644 77 656 78 667 79 673 80 688

81 696 82 698 83 713 84 717 85 725 86 742

87 757 102 .

;

PROC PRINT DATA=a1; WHERE lean NE .; RUN;

SYMBOL1 V=CIRCLE I=SM70;

PROC GPLOT DATA=a1;

PLOT lean*year / FRAME; WHERE lean NE .;

RUN;
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What is the Trend?

• Should always plot the data first!!!!!
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Linear Trend?

SYMBOL1 V=CIRCLE I=rl;

PROC GPLOT DATA=a1;

PLOT lean*year / FRAME; WHERE lean NE .;

RUN; QUIT;
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Straight Line Equation

• Straight line describes “curve” well

• Formula for a straight line

E[Y ] = β0 + β1X

– β0 is the intercept

– β1 in the slope

• Need to estimate β0 and β1

i.e. determine their plausible values from the data

• Will use method of least squares
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Simple Linear Regression Model

Yi = β0 + β1Xi + εi

• β0 is the intercept

• β1 is the slope

• εi is the ith random error term

– Mean 0 ←→ E(εi) = 0

– Variance σ2 ←→ Var(εi) = σ2

– Uncorrelated ←→ Cov(εi, εj) = 0, i 6= j
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Features of the Model

• Yi = deterministic term + random term

– deterministic term is β0 + β1Xi

– random term is εi

• Implies Yi is a random variable

– E(Yi) = β0 + β1Xi +0

→ E(Y ) = β0 + β1X (underlying relationship)

– Var(Yi) = 0+ σ2

→ variance the same regardless of Xi

– Cov(Yi, Yj) = Cov(εi, εj) = 0, i 6= j
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Estimation of Regression Function

• Consider deviation of Yi from E(Yi)

Yi − (β0 + β1Xi)

• Method of least squares

– Find estimators of β0, β1 which minimize

Q =

n
∑

i=1

[Yi − (β0 + β1Xi)]
2

– Deviations can be positive or negative

– Square deviations so contribution positive

– Calculus of solutions shown on pages 17-18
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Estimating the Slope

• β1 is the true unknown slope

– Defines change in E(Y ) for change in X

β1 =
∆E(Y )

∆X
−→∆E(Y ) = β1∆X

• b1 is the least squares estimate of β1

b1 =

n
∑

i=1
(Xi −X)(Yi − Y )

n
∑

i=1
(Xi −X)2

• When will b1 be negative?
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Estimating the Intercept

• β0 is the true unknown intercept

– Defines E(Y ) when X = 0

E(Y ) = β0 + β1 × 0 = β0

– Usually not of interest (scope of model)

• b0 is the least squares estimate of β0

b0 = Y − b1X

↓
Fitted line goes through (X,Y )
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Properties of Estimates

• Under the Gauss-Markov theorem, these least squares esti-

mators

– Are unbiased ←→ E(bl) = βl, l = 0,1

– Have minimum variance among all unbiased linear estimators

• In other words, these estimates are the most precise of any

estimator where

– bl is of the form
∑

kiYi

– E(bl) = βl
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Estimated Regression Line

• Using the estimated parameters, the fitted regression line is

Ŷi = b0 + b1Xi

where Ŷi is the estimated value at Xi

• Fitted value Ŷi is also an estimate of the mean response E[Yi]

• Extension of the Gauss-Markov theorem

– E(Ŷi) = E(Yi)

– Ŷi minimum variance among linear estimators
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Example: Leaning Tower of Pisa

Based on the following table

1. Obtain the least squares estimate of β0 and β1.

2. State the regression function

3. Obtain a point estimate for the year 2002 (X = 102)

4. State the expected change in lean over two years
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X Y X −X Y − Y (X −X)(Y − Y ) (X −X)2

75 642 -6 -51.6923 310.1538 36
76 644 -5 -49.6923 248.4615 25
77 656 -4 -37.6923 150.7692 16
78 667 -3 -26.6923 80.0769 9
79 673 -2 -20.6923 41.3846 4
80 688 -1 -5.6923 5.6923 1
81 696 0 2.3077 0 0
82 698 1 4.3077 4.3077 1
83 713 2 19.3077 38.6154 4
84 717 3 23.3077 69.9231 9
85 725 4 31.3077 125.2308 16
86 742 5 48.3077 241.5385 25
87 757 6 63.3077 379.8462 36

∑

1053 9018 0 0 1696 182
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Answers

1. Obtain the least squares estimate of β0 and β1.

b1 =
1696

182
= 9.3187 −→ b0 =

9018

13
− 9.3187

1053

13
= −61.1224

2. State the regression function

Ŷi = −61.1224+ 9.3187Xi

3. Obtain a point estimate for the year 2002 (X = 102)

(Ŷ |X = 102) = −61.1224+ 9.3187(102) = 889.3850

4. State the expected change in lean over two years

Since the slope is 9.3187, a two unit increase in X results in a 2 ×
9.3187 = 18.6374 increase in lean
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Residuals

• The residual is the difference between the observed and fitted

value

ei = Yi − Ŷi

• This is not the error term εi = Yi − E(Yi)

• The ei is observable while εi is not

• Residuals are highly useful in assessing the appropriateness

of the model
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Properties of Residuals

(1)
∑

ei = 0

(2)
∑

e2i is minimized

(3)
∑

Yi =
∑

Ŷi

(4)
∑

Xiei = 0

(5)
∑

Ŷiei = 0

These properties follow directly from the least squares criterion

and normal equations (pg 23-24)
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Estimation of Error Variance

• In single population (i.e., ignoring X)

s2 =

∑

(Yi − Y )2

n− 1

– Unbiased estimate of σ2

– One df lost by using Y in place of µ

• In regression model

s2 =

∑

(Yi − Ŷi)
2

n− 2

– Unbiased estimate of σ2

– Two df lost by using (b0, b1) in place of (β0, β1)

– Also known as the mean square error (MSE)
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PROC REG in SAS: Leaning Tower of Pisa

PROC REG DATA=a1;

MODEL lean=year / CLB P R;

OUTPUT OUT=a2 P=pred R=resid;

ID year;

RUN;

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 1 15804 15804 904.12 <.0001
Error 11 192.28571 17.48052
Corrected Total 12 15997

Root MSE 4.18097 R-Square 0.9880
Dependent Mean 693.69231 Adj R-Sq 0.9869
Coeff Var 0.60271

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits
Intercept 1 -61.12088 25.12982 -2.43 0.0333 -116.43124 -5.81052
year 1 9.31868 0.30991 30.07 <.0001 8.63656 10.00080
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Output Statistics
Dep Var Predicted Std Error Std Error

Obs year lean Value Mean Predict Residual Residual
1 75 642.0000 637.7802 2.1914 4.2198 3.561
2 76 644.0000 647.0989 1.9354 -3.0989 3.706
3 77 656.0000 656.4176 1.6975 -0.4176 3.821
4 78 667.0000 665.7363 1.4863 1.2637 3.908
5 79 673.0000 675.0549 1.3149 -2.0549 3.969
6 80 688.0000 684.3736 1.2003 3.6264 4.005
7 81 696.0000 693.6923 1.1596 2.3077 4.017
8 82 698.0000 703.0110 1.2003 -5.0110 4.005
9 83 713.0000 712.3297 1.3149 0.6703 3.969
10 84 717.0000 721.6484 1.4863 -4.6484 3.908
11 85 725.0000 730.9670 1.6975 -5.9670 3.821
12 86 742.0000 740.2857 1.9354 1.7143 3.706
13 87 757.0000 749.6044 2.1914 7.3956 3.561
14 102 . 889.3846 6.6107 . .
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PROC GPLOT DATA=a2;

PLOT resid*year / FRAME VREF=0;

WHERE lean NE .;

RUN; QUIT;
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Normal Error Regression Model

Yi = β0 + β1Xi + εi, εi
iid∼ N(0, σ2)

• β0 is the intercept

• β1 is the slope

• εi is the ith random error term

– εi ∼ N(0, σ2)←− NEW

– Uncorrelated −→ independent error terms

• Defines distribution of random variable Y

Yi
ind∼ N(β0 + β1Xi, σ

2)
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Comments

• The least square estimates are unbiased without the

normality assumption

• The normality assumption greatly simplifies the theory of

analysis

• The normality assumption makes it easy to construct confi-

dence intervals / perform hypothesis tests

• Most inferences are only sensitive to large departures from

normality

• See pages 26-27 for more details
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Maximum Likelihood Estimation

• Assumption of Normality gives us more choices of methods

for parameter estimation

Yi ∼ N(β0 + β1Xi, σ
2)

↓
fi =

1√
2πσ2

exp
{

− 1
2σ2(Yi − β0 − β1Xi)

2
}

• Likelihood function L = f1 × f2 × · · · × fn

(i.e. the joint probability distribution of the observations,

viewed as function of parameters)

• Find β0, β1 and σ2 which maximizes L

• Obtain similar estimators b0 and b1 for β0 and β1, but slightly

different estimators for σ2 (see HW#1)
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Chapter Review

• Description of Linear Regression Model

• Least Squares & Parameter Estimation

• Fitted Regression Line

• Normality Assumption

• PROC REG in SAS: First Touch
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