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Montgomery: Chapter 11

1 Lecture 15 – Page 1



Statistics 514: Response Surface Methods Spring 2019

Response Surface Methodology

• Response y and factors x

• Factors influence response in unknown way

• Describe influence using model f(x)

• Objective is to find levels which maximize response

y = f(x1, x2, . . . , xk) + ǫ

– ǫ represents noise or error in response

• Call η = f(x1, x2, . . . , xk) the response surface

• Maximize response by maximizing response surface

• Contours - values of x such that η is constant
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1st and 2nd Order Approximations

• Use suitable approximation of f to maximize

– First order - Linear function of factors

y = β0 + β1x1 + . . . + βkxk + ǫ

– Second order - Quadratic function of factors

y = β0 +
∑

βixi +
∑

βiix
2

i +
∑∑

βijxixj + ǫ

• While two approximations unrealistic in general

• Often quite realistic in small region of surface

• Use sequential approach to find optimum

1. Response surface design determines {xi}

2. Least squares to estimate parameters

3. Use contours to move in optimal direction
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The Method of Steepest Ascent

• Move rapidly to general vicinity of optimum

• Use approximate model to move in proper direction

• Consider linear model: η̂ = β̂0 +
∑

β̂ixi

• Contours of xi and xj are series of parallel lines

• Move in direction which increase η̂ the quickest

Move perpendicular to contour lines

• Direction based on slope estimates β̂i and β̂j

• Often center points to make determination easier

• Choose step size for one of the variables (∆xj )

• Move others accordingly (Table 11.3)

∆xi =
β̂i

β̂j/∆xj
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Example

Consider Problem 11.1 in Montgomery. A chemical plant produces oxygen by liquefying air

and separating it into its component gases by fractional distillation. Current operating

conditions are Temp = -220
◦

C and pressure ratio of 1.2. Interested in maximizing the

purity of oxygen.

temp =
Temp + 220

5
pres =

Ratio− 1.2

.1

data purity;

input temp pres pure @@;

x1x1 = temp*temp;

x1x2 = temp*pres;

cards;

-1 -1 82.8 -1 1 83.5 1 -1 84.7 1 1 85.0

0 0 84.1 0 0 84.5 0 0 83.9 0 0 84.3

;

proc reg;

model pure = temp pres x1x1 x1x2; run;
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Dependent Variable: PURE

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 4 3.26000 0.81500 12.225 0.0335

Error 3 0.20000 0.06667

C Total 7 3.46000

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 84.200000 0.12909944 652.210 0.0001

TEMP 1 0.850000 0.12909944 6.584 0.0071

PRES 1 0.250000 0.12909944 1.936 0.1482

X1X1 1 -0.200000 0.18257419 -1.095 0.3534

X1X2 1 -0.100000 0.12909944 -0.775 0.4950
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A one degree change in temp is equivalent to a 1/5=.2 temp step once standardized. Thus

means we increase pressure by (.2)(.25/.85) = .059. The following table summarizes

moving in this direction and the observed purity (simulated results). It appears that a

maximum is reached around ten steps. Another linear approximation should be made

centered now at (-210,1.2590).

ŷij = 84.10 + .85xT + .25xP

Coded Natural

Variables Variables

Steps x1 x2 Temp Pres Response

0 0.0 0.000 -220 1.2 84.2

1 0.2 0.059 -219 1.2059 84.7

5 1.0 0.295 -215 1.2295 85.2

10 2.0 0.590 -210 1.2590 85.3

15 3.0 0.885 -205 1.2885 85.1

20 4.0 1.180 -200 1.3180 84.7
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Checking Linear Approximation

• Do Lack of Fit Test

– Use the center points to estimate pure error. Use SSInteraction or β̂12 (created by adding

x1x2 term in the model) to compute lack of fit error.

σ̂2 = (84.12 + · · · + 84.32 − 336.82/4)/3 = .2/3 = .0666

– If linear, there will be no interaction effect. β̂12 is simply half the estimated effect,

2β̂12 = .5(82.8 + 85.0− 83.5− 84.7) = −.2

– The SS12=(−.4)2/4 = .04. This is also the lack-of-fit SS. The F test is .04/.0666 = 0.6

and has a P-value of around .5.

• Compare average of center points to design points

– If there is no curvature, the average of the four design points should be equal to the average

of the center points. The difference between these two averages is an estimate of the pure

quadratic term β11 + β22. In this example, it is 336/4− 336.8/4 = −.2.

– The SS is (4)(4)(−.2)2/(4 + 4) = .08. The F test is .08/.06666 = 1.33 and has a

P-value of around .3. This also suggests that the linear model is appropriate.
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Analysis of Second Order Model

• Due to curvature, determine stationary point

∂η̂

∂xi

= 0

• Stationary point may be minimum, maximum, or saddle point

• Use contours or canonical analysis to determine behavior

• Can write quadratic approximation as (page 440)

y = β0 + x
′

b+ x
′

Bx+ ǫ

• Solution is xs = −.5B−1
b

• Canonical analysis looks at eigenvalues and eigenvectors of B
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Example

Consider Problem 11.8 in Montgomery. An experimenter wants to optimize crystal growth

as a function of three variables x1, x2, and x3. The design used is a factorial with six

center points and six axial points (see Figure 11-20). We will use Proc RSREG which does

a quadratic response surface analysis.

data purity;

input x1 x2 x3 resp @@; cards;

-1 -1 -1 66 -1 -1 1 70 -1 1 -1 78

-1 1 1 60 1 -1 -1 80 1 -1 1 70

1 1 -1 100 1 1 1 75 -1.682 0 0 100

1.682 0 0 80 0 -1.682 0 68 0 1.682 0 63

0 0 -1.682 65 0 0 1.682 82 0 0 0 113

0 0 0 100 0 0 0 118 0 0 0 88

0 0 0 100 0 0 0 85

;

proc rsreg;

model resp=x1 x2 x3 / lackfit; run;
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Breaks Down Regression SS into Linear, Quadratic Terms

Degrees

of Type I Sum

Regression Freedom of Squares R-Square F-Ratio Prob > F

Linear 3 77.854973 0.0141 0.139 0.9341

Quadratic 3 3291.741253 0.5960 5.896 0.0139

Crossproduct 3 292.375000 0.0529 0.524 0.6757

Total Regress 9 3661.971227 0.6630 2.186 0.1194

**Appears to be a quadratic component but very little crossproduct

**Overall regression not significant but that’s not concern

**Would expect contours to be fairly circular

Does Lack of Fit Test

Degrees

of Sum of

Residual Freedom Squares Mean Square F-Ratio Prob > F

Lack of Fit 5 1001.645440 200.329088 1.166 0.4353

Pure Error 5 859.333333 171.866667

Total Error 10 1860.978773 186.097877

**No apparent lack of fit to quadratic model
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Gives the Parameter Estimates and Standard Errors

Deg of Parameter Standard T for H0:

Parameter Freedom Estimate Error Parameter=0

INTERCEPT 1 100.666301 5.563818 18.093

X1 1 1.271027 3.691248 0.344

X2 1 1.361082 3.691248 0.369

X3 1 -1.494042 3.691248 -0.405

X1*X1 1 -3.767908 3.592852 -1.049

X2*X1 1 2.875000 4.823094 0.596

X2*X2 1 -12.427833 3.592852 -3.459

X3*X1 1 -2.625000 4.823094 -0.544

X3*X2 1 -4.625000 4.823094 -0.959

X3*X3 1 -9.600102 3.592852 -2.672

12 Lecture 15 – Page 12



Statistics 514: Response Surface Methods Spring 2019

Performs Canonical Analysis

Degrees

of Sum of

Factor Freedom Squares Mean Square F-Ratio Prob > F

X1 4 347.989342 86.997336 0.467 0.7587

X2 4 2489.210554 622.302639 3.344 0.0553

X3 4 1585.399212 396.349803 2.130 0.1515

Canonical Analysis of Response Surface (based on coded data)

Critical Value

Factor Coded Uncoded

X1 0.154420 0.259735

X2 0.065908 0.110858

X3 -0.083251 -0.140028

Predicted value at stationary point 101.011413

Eigenvectors

Eigenvalues X1 X2 X3

-8.711273 0.941384 0.210046 -0.263964

-25.327160 0.330987 -0.424011 0.843008

-38.941204 -0.065147 0.880963 0.468679

Stationary point is a maximum.
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Response Surface Designs

• Want points sparse but give info over entire region

• Blocking is possible

• Designs can be built sequentially

• Provides internal estimate of error/lack of fit

• Orthogonal first order designs

– Minimize the variance of regression coefficients

– 2k Factorial (with center points)

– Fractional factorial of resolution III or higher

• Central composite designs (2nd order)

– 2k factorial

– Fractional factorial of resolution V or higher

– Add center points and 2k axial runs
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