Lecture 6: Block Designs

Montgomery: Chapter 4

Nuisance Factor (may be present in experiment)

- Has effect on response but its effect is not of interest
- If unknown \rightarrow Protecting experiment through randomization
- If known (measurable) but uncontrollable \rightarrow Analysis of Covariance (Chapter 15 or 14 Section 3)
- If known and controllable \rightarrow Blocking

Penicillin Experiment

In this experiment, four penicillin manufacturing processes $(A, B, C$ and $D)$ were being investigated. Yield was the response. It was known that an important raw material, corn steep liquor, was quite variable. The experiment and its results were given below:

	blend 1	blend 2	blend 3	blend 4	blend 5
A	89_{1}	84_{4}	81_{2}	87_{1}	79_{3}
B	88_{3}	77_{2}	87_{1}	92_{3}	81_{4}
C	97_{2}	92_{3}	87_{4}	89_{2}	80_{1}
D	94_{4}	79_{1}	85_{3}	84_{4}	88_{2}

- Blend is a nuisance factor, treated as a block factor;
- (Complete) Blocking: all the treatments are applied within each block, and they are compared within blocks.
- Advantage: Eliminate blend-to-blend (between-block) variation from experimental error variance when comparing treatments.
- Cost: degree of freedom.

Randomized Complete Block Design

- b blocks each consisting of (partitioned into) a experimental units
- a treatments are randomly assigned to the experimental units within each block
- Typically after the runs in one block have been conducted, then move to another block.
- Typical blocking factors: day, batch of raw material etc.
- Results in restriction on randomization because randomization is only within blocks.
- Data within a block are dependent on each other. When $a=2$, randomized complete block design becomes paired two sample case.

Statistical Model

- b blocks and a treatments
- Statistical model is

$$
y_{i j}=\mu+\tau_{i}+\beta_{j}+\epsilon_{i j}\left\{\begin{array}{l}
i=1,2, \ldots, a \\
j=1,2, \ldots, b
\end{array}\right.
$$

$$
\begin{aligned}
& \mu \text { - grand mean } \\
& \tau_{i}-i \text { th treatment effect } \\
& \beta_{j}-j \text { th block effect } \\
& \epsilon_{i j} \sim \mathrm{~N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

- The model is additive because within a fixed block, the block effect is fixed; for a fixed treatment, the treatment effect is fixed across blocks. In other words, blocks and treatments do not interact.
- parameter constraints: $\sum_{i=1}^{a} \tau_{i}=0 ; \quad \sum_{j=1}^{b} \beta_{j}=0$

Estimates for Parameters

- Rewrite observation $y_{i j}$ as:

$$
y_{i j}=\bar{y}_{. .}+\left(\bar{y}_{i .}-\bar{y}_{. .}\right)+\left(\bar{y}_{. j}-\bar{y}_{. .}\right)+\left(y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y}_{. .}\right)
$$

- Compared with the model

$$
y_{i j}=\mu+\tau_{i}+\beta_{j}+\epsilon_{i j}
$$

- we have

$$
\begin{gathered}
\hat{\mu}=\bar{y}_{. .} \\
\hat{\tau}_{i}=\bar{y}_{i .}-\bar{y}_{. .} \\
\hat{\beta}_{j}=\bar{y}_{. j}-\bar{y}_{. .}+\bar{y}_{. .} \\
\hat{\epsilon}_{i j}=y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}
\end{gathered}
$$

Sum of Squares (SS)

- Can partition $\mathrm{SS}_{\mathrm{T}}=\sum \sum\left(y_{i j}-\bar{y}_{. .}\right)^{2}$ into

$$
\begin{array}{rlrl}
b \sum\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}+a \sum\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2}+\sum \sum\left(y_{i j}\right. & \left.-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y}_{. .}\right)^{2} \\
\mathrm{SS}_{\text {Treatment }} & =b \sum\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2} & =b \sum \hat{\tau}_{i}^{2} \quad \mathrm{df}=a-1 \\
\mathrm{SS}_{\text {Block }} & =a \sum\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2} & =a \sum \hat{\beta}_{j}^{2} \quad \mathrm{df}=b-1 \\
\mathrm{SS}_{\mathrm{E}} & =\sum \sum\left(y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y}_{. .}\right)^{2} & =\sum \sum \hat{\epsilon}_{i j}^{2} \quad \mathrm{df}=(a-1)(b .
\end{array}
$$

Hence:

- $\mathrm{SS}_{\mathrm{T}}=\mathrm{SS}_{\text {Treatment }}+\mathrm{SS}_{\text {Block }}+\mathrm{SS}_{\mathrm{E}}$
- The Mean Squares are
$\mathrm{MS}_{\text {Treatment }}=\mathrm{SS}_{\text {Treatment }} /(a-1), \mathrm{MS}_{\text {Block }}=\operatorname{SS}_{\text {Block }} /(b-1)$, and $\mathrm{MS}_{\mathrm{E}}=\mathrm{SS}_{\mathrm{E}} /(a-1)(b-1)$.

Testing Basic Hypotheses

- $H_{0}: \tau_{1}=\tau_{2}=\ldots=\tau_{a}=0$ vs H_{1} : at least one is not
- Can show:

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{MS}_{\mathrm{E}}\right)=\sigma^{2} \\
& \mathrm{E}\left(\mathrm{MS}_{\text {Treatment }}\right)=\sigma^{2}+b \sum_{i=1}^{a} \tau_{i}^{2} /(a-1) \\
& \mathrm{E}\left(\mathrm{MS}_{\text {Block }}\right)=\sigma^{2}+a \sum_{j=1}^{b} \beta_{j}^{2} /(b-1)
\end{aligned}
$$

- Use F-test to test H_{0} :

$$
F_{0}=\frac{\mathrm{MS}_{\text {Treatment }}}{\mathrm{MS}_{\mathrm{E}}}=\frac{\mathrm{SS}_{\text {Treatment }} /(a-1)}{\mathrm{SS}_{\mathrm{E}} /((a-1)(b-1))}
$$

- Caution testing block effects
- Usually not of interest.
- Randomization is restricted: Differing opinions on F-test for testing blocking effects.
- Can use ratio $\mathrm{MS}_{\text {Block }} / \mathrm{MSE}$ to check if blocking successful.
- Block effects can be random effects. (considered fixed effects in this chapter)

Analysis of Variance Table

Source of	Sum of	Degrees of	Mean	F_{0}
Variation	Squares	Freedom	Square	
Blocks	$\mathrm{SS}_{\text {Block }}$	$b-1$	$\mathrm{MS}_{\text {Block }}$	
Treatment	$\mathrm{SS}_{\text {Treatment }}$	$a-1$	$\mathrm{MS}_{\text {Treatment }}$	F_{0}
Error	SS_{E}	$(b-1)(a-1)$	MS_{E}	
Total	SS_{T}	$a b-1$		
$\mathrm{SS}_{\mathrm{T}}=\sum \sum y_{i j}^{2}-y_{. .}^{2} / N$				
$\mathrm{SS}_{\text {Treatment }}=\frac{1}{b} \sum y_{i .}^{2}-y_{. .}^{2} / N$				
$\mathrm{SS}_{\text {Block }}=\frac{1}{a} \sum y_{. j}^{2}-y_{. .}^{2} / N$				
$\mathrm{SS}_{\mathrm{E}}=\mathrm{SS}_{\mathrm{T}}-\mathrm{SS}_{\text {Treatment }}-\mathrm{SS}_{\text {Block }}$				

Decision Rule: If $F_{0}>F_{\alpha, a-1,(b-1)(a-1)}$ then reject H_{0}

Example

An experiment was designed to study the performance of four different detergents in cleaning clothes. The following "cleanness" readings (higher=cleaner) were obtained with specially designed equipment for three different types of common stains. Is there a difference between the detergents?

	Stain 1	Stain 2	Stain 3
Detergent 1	45	43	51
Detergent 2	47	46	52
Detergent 3	48	50	55
Detergent 4	42	37	49

$$
\sum \sum y_{i j}=565 \text { and } \sum \sum y_{i j}^{2}=26867
$$

$$
y_{1 .}=139, y_{2 .}=145, y_{3 .}=153 \text { and } y_{4 .}=128 ; y_{.1}=182, y_{.2}=176, \text { and } y .3=207
$$

$\mathrm{SS}_{\mathrm{T}}=26867-565^{2} / 12=265$
$\mathrm{SS}_{\mathrm{Trt}}=\left(139^{2}+145^{2}+153^{2}+128^{2}\right) / 3-565^{2} / 12=111$
$\mathrm{SS}_{\text {Block }}=\left(182^{2}+176^{2}+207^{2}\right) / 4-565^{2} / 12=135$
$\mathrm{SS}_{\mathrm{E}}=265-111-135=19 ; \quad F_{0}=(111 / 3) /(19 / 6)=11.6 ;$ P-value <0.01

Checking Assumptions (Diagnostics)

- Assumptions
- Model is additive (no interaction between treatment effects and block effects) (additivity assumption)
- Errors are independent and normally distributed
- Constant variance
- Checking normality:
- Histogram, QQ plot of residuals, Shapiro-Wilk Test.
- Checking constant variance
- Residual Plot: Residuals vs $\hat{y}_{i j}$
- Residuals vs blocks
- Residuals vs treatments

Checking Assumptions (Continued)

- Additivity
- Residual Plot: residuals vs $\hat{y}_{i j}$
- If residual plot shows curvilinear pattern, interaction between treatment and block likely exists
- Interaction: block effects can be different for different treatments
- Formal test: Tukey's One-degree Freedom Test of Non-additivity
- If interaction exists, usually try transformation to eliminate interaction

Treatments Comparison

- Multiple Comparisons/Contrasts
- procedures (methods) are similar to those for Completely Randomized Design (CRD)
n is replaced by b in all formulas
Degrees of freedom error is $(b-1)(a-1)$
- Example : Comparison of Detergents
- Tukey's Method ($\alpha=.05$)

$$
\begin{aligned}
& q_{\alpha}(a, d f)=q_{\alpha}(4,6)=4.896 . \\
& C D=\frac{q_{\alpha}(4,6)}{\sqrt{2}} \sqrt{\operatorname{MSE}\left(\frac{1}{b}+\frac{1}{b}\right)}=4.896 \sqrt{\frac{19}{6 * 3}}=5.001
\end{aligned}
$$

Comparison of Treatment Means			
Treatments			
4	1	2	3
42.67	46.33	48.33	51.00
A	A		
	B	B	B

Using SAS

```
options nocenter ls=78;
goptions colors=(none);
symbol1 v=circle; axis1 offset=(5);
data wash;
    input stain soap y @@;
    cards;
1 1 4 45 1 2 2 47 1 3 3 48 1 4 42 2 1 43 2 2 4 46 2 3 3 50 2 4 37 3 1 1 51 3 2
52 3 3 55 3 4 49;
proc glm;
    class stain soap;
    model y = soap stain;
    means soap / alpha=0.05 tukey lines;
    output out=diag r=res p=pred;
proc univariate noprint normal;
    qqplot res / normal (L=1 mu=0 sigma=est);
    histogram res /normal (L=1 mu=0 sigma=est) kernel(L=2 K=quadratic);
```

```
run;
proc gplot;
    plot res*soap / haxis=axis1;
    plot res*stain / haxis=axisl;
    plot res*pred;
run;
```


Output

Dependent Variable: y

Source	DF	Squares
Model	5	246.0833333
Error	6	18.8333333
Corrected Total	11	264.9166667

R-Square	Coeff Var
0.928908	3.762883

Root MSE
1.771691
Mean Squar
49.216666
3.138888
Y Mean
47.08333

Source
soap
stain
DF
Type I SS
3
2135.1666667

Mean Square
36.9722222
67.5833333
21.53
0.0018

Source
soap
stain

DF	Type III SS
3	110.9166667
2	135.1666667

Mean Square	F Value	Pr $>F$
36.9722222	11.78	0.0063
67.5833333	21.53	0.0018

```
Tukey's Studentized Range (HSD) Test for res
    Alpha
        0.05
    Error Degrees of Freedom 6
    Error Mean Square
    3.138889
    Critical Value of Studentized Range 4.89559
    Minimum Significant Difference 5.007
Means with the same letter are not significantly different.
        Tukey Grouping Mean N soap
        A 51.000 3 3
        A
        A 48.333 3 2
        A
        B A 46.333 1
        B
        B 42.667 3 4
```


Tukey's Test for Non-additivity

- Additivity assumption (or no interaction assumption) is crucial for block designs or experiments.
- To check the interaction between block and treatment fully needs $(a-1)(b-1)$ degree of freedom. It is not affordable when without replicates.
- Instead consider a special type of interaction. Assume following model (pages 190-193 or pages 178-181)

$$
y_{i j}=\mu+\tau_{i}+\beta_{j}+\gamma \tau_{i} \beta_{j}+\epsilon_{i j}
$$

- $H_{0}: \gamma=0$ vs $H_{1}: \gamma \neq 0$

Sum of Squares caused by possible interaction:

$$
\mathrm{SS}_{N}=\frac{\left[\sum_{i} \sum_{j} y_{i j} y_{i .1} y_{. j}-y_{. .}\left(\mathrm{SS}_{\mathrm{Trt}}+\mathrm{SS}_{\mathrm{Blk}}+y_{. .}^{2} / a b\right)\right]^{2}}{a b \mathrm{SS}_{\mathrm{Trt}} \mathrm{SS}_{\mathrm{Blk}}} d f=1
$$

Remaining error SS: $\mathrm{SS}_{\mathrm{E}}^{\prime}=\mathrm{SS}_{\mathrm{E}}-\mathrm{SS}_{\mathrm{N}}, \quad d f=(a-1)(b-1)-1$
Test Statistic:

$$
F_{0}=\frac{\mathrm{SS}_{N} / 1}{\mathrm{SS}_{\mathrm{E}}^{\prime} /[(a-1)(b-1)-1]} \sim F_{1,(a-1)(b-1)-1}
$$

- Decision rule: Reject H_{0} if $F_{0}>F_{\alpha, 1(a-1)(b-1)-1}$.

A Convenient Procedure to Calculate $\mathbf{S S}_{\mathbf{N}}, \mathbf{S S}^{\prime}{ }_{\mathbf{E}}$ and F_{0}

1 Fit additive model $y_{i j}=\mu+\tau_{i}+\beta_{j}+\epsilon_{i j}$
2 Obtain $\hat{y}_{i j}$ and $q_{i j}=\hat{y}_{i j}^{2}$
3 Fit the model $y_{i j}=\mu+\tau_{i}+\beta_{j}+q_{i j}+\epsilon_{i j}$
Use the test for $q_{i j}$ in the ANOVA table with type III SS and ignore the tests for the treatment and block factors.

Example 5-2 from Montgomery

- Impurity in chemical product is affected by temperature and pressure. We will assume temperature is a blocking factor. The data is shown below. We will test for non-additivity.

$$
\begin{aligned}
& \qquad \begin{array}{cccccc}
\text { Temp } & 25 & 30 & 35 & 40 & 45 \\
\cline { 2 - 7 } 100 & 5 & 4 & 6 & 3 & 5 \\
125 & 3 & 1 & 4 & 2 & 3 \\
150 & 1 & 1 & 3 & 1 & 2 \\
\hline & \\
\mathrm{SS}_{\mathrm{N}}=0.0985, \mathrm{SS}_{\mathrm{E}}^{\prime}=1.9015, F_{0}=.36, P-\text { value }=0.566 \\
\text { Do Not Reject, there appears to be no interaction between block and } \\
\text { treatment. }
\end{array} .
\end{aligned}
$$

SAS Code

```
options nocenter ls=75;
data impurity;
input trt blk y @@;
cards;
```



```
4
;
proc glm;
class blk trt;
model y=blk trt;
output out=one r=res p=pred;
data two;
set one;
q=pred*pred;
proc glm data=two;
class blk trt;
model y=blk trt q/ss3; run;
```


Output

From the first model statement:

Sum of					
Source	DF	Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	6	34.93333333	5.82222222	23.29	0.0001
Error	8	2.00000000	0.25000000		
Corrected Total	14	36.93333333			
Source	DF	Type I SS	Mean Square	F Value	$\operatorname{Pr}>\mathrm{F}$
blk	2	23.33333333	11.66666667	46.67	<.0001
trt	4	11.60000000	2.90000000	11.60	0.0021

Output

Sum of							
Source	DF	Squares	Mean Square	F	Value	$\mathrm{Pr}>$	
Model	7	35.03185550	5.00455079		18.42	0.000	
Error	7	1.90147783	0.27163969				
Corrected Total	14	36.93333333					
Source	DF	Type III SS	Mean Square	F	Value	$\mathrm{Pr}>$	F
blk	2	1.25864083	0.62932041		2.32	0.1690	XXX
trt	4	1.09624963	0.27406241		1.01	0.4634	XXX
q	1	0.09852217	0.09852217		0.36	0.5660	

XXX: not meaningful for testing blocks and treatments

RCBD with Replicates

- a treatments $(i=1,2, \ldots, a)$
- b blocks $(j=1,2, \ldots, b)$
- n observations for each treatment in each block $(l=1,2, \ldots, n)$

$$
y_{i j l}=\mu+\tau_{i}+\beta_{j}+\epsilon_{i j l}\left\{\begin{array}{l}
i=1,2, \ldots, a \\
j=1,2, \ldots, b \\
l=1,2, \ldots, n
\end{array}\right.
$$

- Similar assumptions as before. $N=a b n$ and many more degree of freedom to get around. It allows interaction (but we have to be really careful about the possible interaction)

Assume no interaction between Ttr and Blk: ANOVA

Source of	Sum of	Degrees of	Mean	F
Variation	Squares	Freedom	Square	
Blocks	SS $_{\text {Block }}$	$b-1$	$\mathrm{MS}_{\text {Block }}$	
Treatment	$\mathrm{SS}_{\text {Treatment }}$	$a-1$	$\mathrm{MS}_{\text {Treatment }}$	F_{0}
Error	SS_{E}	$a b n-b-a+1$	MS_{E}	
Total	SS_{T}	$a b n-1$		

For multiple comparison, $d f_{E}$ becomes $a b n-a-b+1$ and the number of replicates for a fixed treatment now is $b n$ instead of n. Hence, the formulas need to be modified accordingly.

Do not assume no interaction between Trt and Blk: ANOVA

- Assess additivity (no interaction) by Sum of Squares due to interaction $\mathrm{SS}_{\text {Trt*Bik }}$.
- Interaction and error are not confounded; their SS's are separated

Source of	Sum of	Degrees of	Mean	F
Variation	Squares	Freedom	Square	
Blocks	$\mathrm{SS}_{\text {Block }}$	$b-1$	$\mathrm{MS}_{\text {Block }}$	
Treatment	$\mathrm{SS}_{\text {Treatment }}$	$a-1$	$\mathrm{MS}_{\text {Treatment }}$	F_{0}
Blk*Trt	$\mathrm{SS}_{\mathrm{Blk} * \mathrm{Trt}}$	$(b-1)(a-1)$	$\mathrm{MS}_{\mathrm{Blk} * \mathrm{Trt}}$	
Error	SS_{E}	$a b(n-1)$	MS_{E}	
Total	SS_{T}	$a b n-1$		

- Usually, we do not want to see large (significant) $\mathrm{SS}_{\mathrm{Blk} * \operatorname{Trt}}$ because this will (1) affect the interpretation of the results and (2) the prediction of the fitted model. Sometimes, transformation is considered to eliminate interaction.

