Lecture 13: Blocking and Confounding in 2^k Design

Montgomery: Chapter 7

Randomized Complete Block 2^k Design

- There are n blocks
- Within each block, all treatments (level combinations) are conducted.
- Run order in each block must be randomized
- Analysis follows general block factorial design
- When k is large, cannot afford to conduct all the treatments within each block.
 - Other blocking strategy should be considered.

	fac	tor		
A	B	C	D	original response
_	_	_		45
+	—	—	—	71
_	+	—	—	48
+	+	—	_	65
_	—	+	_	68
+	—	+	_	60
_	+	+	_	80
+	+	+	_	65
	—	—	+	43
+	—	_	+	100
	+	—	+	45
+	+	—	+	104
	—	+	+	75
+	—	+	+	86
	+	+	+	70
+	+	+	+	96

Filtration Rate Experiment (Revisited)

- Suppose there are two batches of raw material.
 - Each batch can be used for only 8 runs.
 - It is known these two batches are very different.
 - Blocking should be employed to eliminate this variability.
- How to select 8 treatments (level combinations, or runs) for each block?

2^2 Design with Two Blocks

- There are two factors (A, B) each with 2 levels
 - Two blocks (b_1 , b_2) each contain two runs (treatments)
 - Since b_1 and b_2 are interchangeable, there are three possible blocking scheme:

			blocking scheme					
A	B	response	1	2	3			
_	—	$y_{}$	b_1	b_1	b_2			
+	—	y_{+-}	b_1	b_2	b_1			
—	+	y_{-+}	b_2	b_1	b_1			
+	+	y_{++}	b_2	b_2	b_2			

Comparing Blocking Schemes

- Scheme 1:
 - block effect: $b = \bar{y}_{b_2} \bar{y}_{b_1} = \frac{1}{2}(-y_{--} y_{+-} + y_{-+} + y_{++})$
 - main effect: $B = \frac{1}{2}(-y_{--} y_{+-} + y_{-+} + y_{++})$

-B and b are not distinguishable, or, confounded.

- Scheme 2:
 - block effect: $b = \bar{y}_{b_2} \bar{y}_{b_1} = (-y_{--} + y_{+-} y_{-+} + y_{++})/2$
 - main effect: $A = (-y_{--} + y_{+-} y_{-+} + y_{++})/2$
 - -A and b are not distinguishable, or confounded.
- Scheme 3:
 - block effect: $b = \bar{y}_{b_2} \bar{y}_{b_1} = (y_{--} y_{+-} y_{-+} + y_{++})/2$
 - interaction: $AB = (y_{--} y_{+-} y_{-+} + y_{++})/2$
 - -AB and b become indistinguishable, or confounded.

2^k Design with Two Blocks via Confounding

- The reason for confounding: the block arrangement matches the contrast of some factorial effect.
- Confounding makes the effect **Inestimable**.
- Question: which scheme is the best (or causes the least damage)?
- Confound blocks with the effect (contrast) of the highest order
 - Block 1 consists of all treatments with the contrast coefficient equal to -1
 - Block 2 consists of all treatments with the contrast coefficient equal to 1

•	Example 1	1. Block 2^3	Design
---	-----------	----------------	--------

factorial effects (contrasts)											
Ι	А	В	С	AB	AC	BC	ABC				
1	-1	-1	-1	1	1	1	-1				
1	1	-1	-1	-1	-1	1	1				
1	-1	1	-1	-1	1	-1	1				
1	1	1	-1	1	-1	-1	-1				
1	-1	-1	1	1	-1	-1	1				
1	1	-1	1	-1	1	-1	-1				
1	-1	1	1	-1	-1	1	-1				
1	1	1	1	1	1	1	1				

– Defining relation: b = ABC:

Block 1: (---), (++-), (+-+), (-++)

Block 2: (+ - -), (- + -), (- - +), (+ + +)

• Example 2: For 2^4 design with factors: A, B, C, D, the defining contrast (optimal) for blocking factor (b) is

$$b = ABCD$$

• In general, the optimal blocking scheme for 2^k design with two blocks is given by $b = AB \dots K$, where A, B, \dots, K are the factors.

Analyze Unreplicated Block 2^k Experiment

Filtration Experiment (four factors: A, B, C, D):

- Use defining relation: b = ABCD
 - If a treatment satisfies ABCD = -1, it is allocated to block 1(b_1);
 - If ABCD = 1, it is allocated to block 2 (b_2).
- **ASSUME:** all the observations in block 2 will be reduced by 20 because of the poor quality of the second batch of material
 - The true block effect=-20

	fac	tor		blocks		
A	B C D		b = ABCD	response		
_	_	_	_	$1=b_2$	45-20=25	
+	_		_	-1= <i>b</i> ₁	71	
	+		_	-1= <i>b</i> ₁	48	
+	+	_	_	1= b_2	65-20=45	
		+	_	-1= <i>b</i> ₁	68	
+		+	_	1= b_2	60-20=40	
—	+	+	—	1= b_2	80-20=60	
+	+	+	_	-1= <i>b</i> ₁	65	
		_	+	-1= <i>b</i> ₁	43	
+		_	+	1= b_2	100-20=80	
	+	_	+	1= b_2	45-20=25	
+	+	_	+	-1= <i>b</i> ₁	104	
		+	+	1= b_2	75-20=55	
+	—	+	+	-1= <i>b</i> ₁	86	
—	+	+	+	-1=b ₁	70	
+	+	+	+	$1 = b_2$	96-20=76	

Lecture 13 – Page 11

SAS File for Block Filtration Experiment

```
data filter;
  do D = -1 to 1 by 2; do C = -1 to 1 by 2;
    do B = -1 to 1 by 2; do A = -1 to 1 by 2;
      input y @@; output;
    end; end;
  end; end;
 cards;
25 71 48 45 68 40 60 65 43 80 25 104 55 86 70 76
;
data inter;
  set filter;
 AB=A*B; AC=A*C; AD=A*D; BC=B*C; BD=B*D; CD=C*D;
 ABC=AB*C; ABD=AB*D; ACD=AC*D; BCD=BC*D; block=ABC*D;
proc glm data=inter;
  class A B C D AB AC AD BC BD CD ABC ABD ACD BCD block;
 model y=block A B C D AB AC AD BC BD CD ABC ABD ACD BCD; run;
```

```
proc reg outest=effects data=inter;
  model y=A B C D AB AC AD BC BD CD ABC ABD ACD BCD block; run;
data effect2; set effects; drop y intercept __RMSE_;
proc transpose data=effect2 out=effect3;
data effect4; set effect3; effect=col1*2;
proc sort data=effect4; by effect;
proc print data=effect4;
data effect5; set effect4; where __NAME__^='block';
proc print data=effect5; run;
proc rank data=effect5 normal=blom;
  var effect; ranks neff;
symbol1 v=circle;
```

proc gplot; plot effect*neff=_NAME_; run; quit;

SAS Output: ANOVA Table

Source	DF	Squares	Mean Square	F Value	Pr > F
Model	15	7110.937500	474.062500	•	•
Error		0	0.00000	•	
Co Total	15	7110.937500			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
block	1	1387.562500	1387.562500	•	•
A	1	1870.562500	1870.562500	•	•
В	1	39.062500	39.062500	•	•
С	1	390.062500	390.062500	•	•
D	1	855.562500	855.562500	•	•
AB	1	0.062500	0.062500	•	
AC	1	1314.062500	1314.062500		
AD	1	1105.562500	1105.562500		
BC	1	22.562500	22.562500	•	
BD	1	0.562500	0.562500		
CD	1	5.062500	5.062500		
ABC	1	14.062500	14.062500		
ABD	1	68.062500	68.062500		
ACD	1	10.562500	10.562500		•
BCD	1	27.562500	27.562500		

• Proportion of variance explained by blocks

$$\frac{1387.5625}{7110.9375} = 19.5\%$$

• Similarly proportion of variance can be calculated for other effects.

Obs	_NAME_	COL1	effect
1	block	-9.3125	-18.625
2	AC	-9.0625	-18.125
3	BCD	-1.3125	-2.625
4	ACD	-0.8125	-1.625
5	CD	-0.5625	-1.125
6	BD	-0.1875	-0.375
7	AB	0.0625	0.125
8	ABC	0.9375	1.875
9	BC	1.1875	2.375
10	В	1.5625	3.125
11	ABD	2.0625	4.125
12	С	4.9375	9.875
13	D	7.3125	14.625
14	AD	8.3125	16.625
15	А	10.8125	21.625

- Factorial effects are exactly the same as those from the original data (why?)
- Blocking effect: $\bar{y}_{b_2} \bar{y}_{b_1} = -18.625 = -20 + 1.375$
 - Caused by confounding between $b \ (= -20)$ and $ABCD \ (\approx 1.375)$.

SAS Output: QQ plot Without Blocking Effect

• Significant effects are:

2^k Design with Four Blocks

- Need two 2-level blocking factors to generate 4 different blocks.
- Confound each blocking factors with a high order factorial effect.
- The interaction between these two blocking factors matters.
- The interaction will be confounded with another factorial effect.
- Optimal blocking scheme has least confounding severity.
- Example: factors are A, B, C, D and the blocking factors are b_1 and b_2

А	В	С	D	AB	AC	• • • • • •	CD	ABC	ABD	ACD	BCD	ABCD				
-1	-1	-1	-1	1	1		1	-1	-1	-1	-1	1				
1	-1	-1	-1	-1	-1		1	1	1	1	-1	-1	k	51	b2	blocks
-1	1	-1	-1	-1	1		1	1	1	-1	1	-1	-	-1	-1	1
1	1	-1	-1	1	-1		1	-1	-1	1	1	1		1	-1	2
•	•	•	•	•	•		•	•	•	•	•	•	-	-1	1	3
•	•	•	•	•	•		•	•	•	•	•	•		1	1	4
•	•	•	•	•	•		•	•	•	•	•	•				
-1	-1	1	1	1	-1		1	1	1	-1	-1	1				
1	1	1	1	-1	1		1	-1	-1	1	-1	-1				
-1	-1	1	1	-1	-1		1	-1	-1	-1	1	-1				
1	1	1	1	1	1		1	1	1	1	1	1				

Possible blocking schemes:

• Scheme 1:

– Defining relations: $b_1 = ABC$, $b_2 = ACD$; induce confounding

$$b_1b_2 = ABC * ACD = A^2BC^2D = BD$$

• Scheme 2:

– Defining relations: $b_1 = ABCD$, $b_2 = ABC$, induce confounding

$$b_1b_2 = ABCD * ABC = D$$

• Which is better?

$2^k\ \mathrm{Design}\ \mathrm{with}\ 2^p\ \mathrm{Blocks}$

- k factors: $A, B, \dots K$, and p is usually much less than k.
- p blocking factors: b_1 , b_2 ,... b_p with levels -1 and 1
- Confound blocking factors with p chosen high-order factorial effects, i.e., b_1 =effect1, b_2 =effect2, etc.(p defining relations)
- These p defining relations induce another $2^p p 1$ confounding.
- Treatment combinations with the same values of $b_1,...b_p$ are allocated to the same block. Within each block.
- Each block consists of 2^{k-p} treatment combinations (runs)
- Given k and p, optimal schemes are tabulated, e.g., Montgomery Table 7.9, or Wu & Hamada Appendix 3A