Answer Keys to Homework#9

Problem 1

	F	\mathbf{F}	R	R	
	a	b	\mathbf{c}	n	
Term	i	j	k	l	EMS
$ au_i$	0	b	с	n	$\sigma^2 + bn\sigma_{\tau\gamma}^2 + \frac{bcn\sum_{i=1}^a \tau_i^2}{a-1}$
eta_j	a	0	с	n	$\frac{\sigma^2 + bn\sigma_{\tau\gamma}^2 + \frac{bcn\sum_{i=1}^a \tau_i^2}{a-1}}{\sigma^2 + an\sigma_{\beta\gamma}^2 + \frac{acn\sum_{j=1}^a \beta_j^2}{b-1}}$
γ_k	a	b	1	n	$\sigma^2 + abn\sigma_{\gamma}^2$
$(\tau\beta)_{ij}$	0	0	с	n	$\sigma^2 + n\sigma_{\tau\beta\gamma}^2 + \frac{cn\sum_{i=1}^{a}(\tau\beta)_{ij}^2}{(a-1)(b-1)}$
$(\tau\gamma)_{ik}$	0	b	1	n	$\sigma^2 + bn\sigma_{ au\gamma}^2$
$(\beta\gamma)_{jk}$	a	0	1	n	$\sigma^2 + an\sigma^2_{\beta\gamma}$
$(\tau\beta\gamma)_{ijk}$	0	0	1	n	$\sigma^2 + n\sigma_{\tau\beta\gamma}^2$
$\epsilon_{(ijk)l}$	1	1	1	1	σ^2

(a) For the restricted model, we have the following EMS table.

The F-tests for the main effects are

Test ' H_0 : all τ_i are zero' vs. ' H_1 : at least one of τ_i is not zero' with $F_{\tau} = MSA/MSAC$, which follows $F_{a-1,(a-1)(c-1)}$ under the null hypothesis.

Test ' H_0 : all β_j are zero' vs. ' H_1 : at least one of β_j is not zero' with $F_{\beta} = MSB/MSBC$, which follows $F_{b-1,(b-1)(c-1)}$ under the null hypothesis.

Test ' H_0 : all γ_k are zero' vs. ' H_1 : at least one of γ_k is not zero' with $F_{\gamma} = MSC/MSE$, which follows $F_{c-1,abc(n-1)}$ under the null hypothesis.

(b) For the unrestricted model, we have the following EMS table.

	F	F	R	R	
	a	b	с	n	
Term	i	j	k	1	EMS
$ au_i$	0	b	с	n	$\sigma^2 + bn\sigma_{\tau\gamma}^2 + n\sigma_{\tau\beta\gamma}^2 + \frac{bcn\sum_{i=1}^a \tau_i^2}{a-1}$
β_j	a	0	с	n	$\sigma^2 + an\sigma^2 + n\sigma^2 + \frac{acn\sum_{j=1}^a \beta_j^2}{2}$
γ_k	a	b	1	n	$\frac{1}{\sigma^2 + abn\sigma_{\gamma}^2 + bn\sigma_{\tau\gamma}^2 + an\sigma_{\beta\gamma}^2 + n\sigma_{\tau\beta\gamma}^2}$
$(\tau\beta)_{ij}$	0	0	с	n	$\sigma^{2} + n\sigma_{\tau\beta\gamma}^{2} + \frac{cn\sum_{i=1}^{a}(\tau\beta)_{ij}^{2}}{(a-1)(b-1)}$
$(\tau\gamma)_{ik}$	1	b	1	n	$\sigma^2 + bn\sigma^2_{\tau\gamma} + n\sigma^2_{\tau\beta\gamma}$
$(\beta\gamma)_{jk}$	a	1	1	n	$\sigma^2 + an\sigma_{\beta\gamma}^2 + n\sigma_{\tau\beta\gamma}^2$
$(\tau\beta\gamma)_{ijk}$	1	1	1	n	$\sigma^2 + n\sigma_{\tau\beta\gamma}^2$
$\epsilon_{(ijk)l}$	1	1	1	1	σ^2

The F-tests for the main effects are

Test ' H_0 : all τ_i are zero' vs. ' H_1 : at least one of τ_i is not zero' with $F_{\tau} = MSA/MSAC$, which follows $F_{a-1,(a-1)(c-1)}$ under the null hypothesis.

Test ' H_0 : all β_j are zero' vs. ' H_1 : at least one of β_j is not zero' with $F_{\beta} = MSB/MSBC$, which follows $F_{b-1,(b-1)(c-1)}$ under the null hypothesis.

Test ' H_0 : all γ_k are zero' vs. ' H_1 : at least one of γ_k is not zero' with $F_{\gamma} = (MSC + MSABC)/(MSAC + MSABC)$

MSBC) (you may have a different approximate F-test here), which follows ${\cal F}_{p,q)}$ under the null hypothesis with

$$p = \frac{(MSC + MSABC)^2}{MSC^2/(c-1) + MSABC^2/((a-1)(b-1)(c-1))}$$

$$q = \frac{(MSAC + MSBC)^2}{MSAC^2/((a-1)(c-1)) + MSBC^2/((b-1)(c-1))}$$

Problem 2

(a) The reason is: (i) "batch" has four levels at each level of "process"; (ii) under the same level of "process", the levels of "batch" are comparable; (iii) under a level of "process", the levels of "batch" can be arbitrarily numbered (i.e., the levels of "batch" from different levels of "process" are not comparable).

(b) Ignored.

Problem 3

Note that certain variances terms are expected to be zero and thus dropped from the model. The EMS and F test are

Sourse	EMS	Test
A	$bc\sigma_A^2 + c\sigma_{AB}^2 + \sigma^2$	MS_A/MS_{AB}
В	$ac\sigma_B^2 + c\sigma_{AB}^2 + a\sigma_{BC}^2 + \sigma^2$	$(MS_B+MS_E)/(MS_{AB}+MS_{BC})$
\mathbf{C}	$ab\sigma_C^2 + a\sigma_{BC}^2 + \sigma^2$	$\mathrm{MS}_C/\mathrm{MS}_{BC}$
AB	$c\sigma_{AB}^2 + \sigma^2$	MS_{AB}/MS_E
BC	$a\sigma_{BC}^2 + \sigma^2$	$\mathrm{MS}_{BC}/\mathrm{MS}_{E}$