
Statistics 512: Applied Linear Models

Topic 9

Topic Overview

This topic will cover

• One-Way Analysis of Covariance (ANCOVA) (§22)

• ANCOVA With More Than One Factor / Covariate (§22)

One-way Analysis of Covariance

ANCOVA is really “ANOVA with covariates” or, more simply, a combination of ANOVA and
regression used when you have some categorical factors and some quantitative predictors.
The predictors (X variables on which to perform regression) are called “covariates” in this
context. The idea is that often these covariates are not necessarily of primary interest, but
still their inclusion in the model will help explain more of the response, and hence reduce
the error variance.

Example: An Illustration of why ANCOVA can be important

Our response Y is the number of months a patient lives after being placed on one of three
different treatments available to treat an aggressive form of cancer. We could analyze these
treatments with a one-way ANOVA as follows:

At first glance, the treatment variable would appear to be important. In fact if we run the
one-way analysis of variance we get:
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Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1122.666667 561.333333 14.43 0.0051

Error 6 233.333333 38.888889

Corrected Total 8 1356.000000

Mean N trt

A 39.333 3 1

B 24.667 3 2

C 12.000 3 3

The analysis tells us that there is a big difference between the treatments. Treatment 1 is
clearly the best as people live longer. Suppose we put a large group of people on Treatment
1 expecting them to live 30+ months only to find that over half of them die prior to 25
months. What did we do wrong????

It turns out that we have neglected an important variable. We need to consider X, the
stage to which the cancer has progressed at the time treatment begins. We can see its effect
in the following plot:

There is clearly a linear relationship betweenX and Y , and we notice that the group assigned
to the first treatment were all in a lower stage of the disease, those assigned to treatment
2 were all in a mid-stage, and those assigned to treatment 3 were all in a late stage of the
disease. We would suspect looking at this plot to find the treatments are not all that different.

The following ANCOVA output leads to the same conclusion:

Sum of

Source DF Squares Mean Square F Value Pr > F

x 1 1297.234815 1297.234815 192.86 <.0001

trt 2 25.134378 12.567189 1.87 0.2478

Error 5 33.630807 6.726161
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Total 8 1356.000000

LSMEAN

trt y LSMEAN Number

1 20.3039393 1

2 23.6762893 2

3 32.0197715 3

Least Squares Means for Effect trt

t for H0: LSMean(i)=LSMean(j) / Pr > |t|

i/j 1 2 3

1 -0.85813 -1.56781

0.4300 0.1777

2 0.858127 -1.89665

0.4300 0.1164

3 1.567807 1.89665

0.1777 0.1164

So the stage of the cancer was what actually was affecting the lifetime - it really didn’t have
anything to do with the choice of treatment. It just happened that everyone on treatment
1 was in an earlier stage of the disease and so that made it look like there was a treatment
effect. And notice that if there was to be a difference, treatment 3 actually would have been
the best. So to give everyone treatment 1 on the basis of our original analysis could have
been a deadly mistake.

A Second Example

It is also possible to have a difference in means, but not be able to see it unless you first
adjust for a covariate. Imagine a similar disease/treatment situation (but different data).

Sum of

Source DF Squares Mean Square F Value Pr > F
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Model 2 1.5555556 0.7777778 0.04 0.9604

Error 6 114.6666667 19.1111111

Total 8 116.2222222

No significant differences between the treatments, right? WRONG! Consider now what
happens when we consider the covariate X = stage of disease:

Now we see that there is probably a difference in means. Again all the treatment 1’s were
in the early stages of the disease, all the treatment 2’s in the middle stages, and all the
treatment 3’s in the latter stages. But now treatment 3 would appear to be doing a better
job since it is keeping those at the advanced stage of cancer alive just as long as those in the
initial stages. If we look to the actual analysis:

Sum of

Source DF Squares Mean Square F Value Pr > F

x 1 6.97675624 6.97675624 1.11 0.3407

trt 2 77.76617796 38.88308898 6.18 0.0446

Error 5 31.4792880 6.2958576

Total 8 116.2222222

Note that X by itself was not significant. But we had to adjust for it before we could find the
differences in the treatments. The output below indicates that treatment 3 is significantly
better than the other two treatments. So this time the potentially deadly mistake would be
to assume they were equivalent and give out the cheapest (unless you were lucky and that
was treatment 3).

LSMEAN

trt y LSMEAN Number

1 -3.5873786 1

2 11.9844660 2

3 26.2695793 3

Least Squares Means for Effect trt

t for H0: LSMean(i)=LSMean(j) / Pr > |t|
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Dependent Variable: y

i/j 1 2 3

1 -3.11551 -3.49022

0.0581 0.0390

2 3.115508 -3.3454

0.0581 0.0454

3 3.490225 3.345401

0.0390 0.0454

Notice that the lsmean estimate for the mean of Y with treatment 1 is negative. That’s
meant to be the mean of Y for an “average” stage of cancer (X̄ = 5.3) given trt 1. Since all
trt 1 patients had x < 3.5 this is an unreasonable extrapolation. The interpretation breaks
down (it would imply they were dead before treatment began) but the point is made that
adjusting for covariates can seriously change your results.

Warning: As these examples illustrate, although ANCOVA is a powerful tool and can be
very helpful, it cannot completely compensate for a flawed experimental design. In these
two experiments we really haven’t a clue how trt 1 behaves in late stage patients, or how trt
3 behaves in early stage patients. It would be foolish not to do another experiment with a
proper design.

Data for one-way ANCOVA

• Yi,j is the jth observation on the response variable in the ith group

• Xi,j is the jth observation on the covariate in the ith group

• i = 1, . . . , r levels (groups) of factor

• j = 1, . . . , ni observations for level i

KNNL Example (page 926)

(nknw1020.sas)
Y is the number of cases of crackers sold during promotion period
Factor is the type of promotion (r = 3)

• Customers sample crackers in store

• Additional shelf space

• Special display shelves

ni = 5 different stores per type
The covariate X is the number of cases of crackers sold in the preceding period.
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Data

data crackers;

infile ’h:\System\Desktop\CH25TA01.DAT’;

input cases last treat store;

proc print data=crackers;

Obs cases last treat store

1 38 21 1 1

2 39 26 1 2

3 36 22 1 3

4 45 28 1 4

5 33 19 1 5

6 43 34 2 1

7 38 26 2 2

8 38 29 2 3

9 27 18 2 4

10 34 25 2 5

11 24 23 3 1

12 32 29 3 2

13 31 30 3 3

14 21 16 3 4

15 28 29 3 5

Plot the data

title1 ’Plot of the data’;

symbol1 v=’1’ i=none c=black;

symbol2 v=’2’ i=none c=black;

symbol3 v=’3’ i=none c=black;

proc gplot data=crackers;

plot cases*last=treat;
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Basic Ideas Behind ANCOVA

• Covariates (sometimes called concomitant variables) can reduce the MSE, thereby
increasing power for testing. Baseline or pretest values are often used as covariates.

• A covariate can adjust for differences in characteristics of subjects in the treatment
groups. It should be related ONLY to the response variable and not to the treatment
variables (factors).

• We assume that the covariate will be linearly related to the response and that the
relationship will be the same for all levels of the factor (no interaction between covariate
and factor).

Plot of the data with lines

title1 ’Plot of the data with lines’;

symbol1 v=’1’ i=rl c=black;

symbol2 v=’2’ i=rl c=black;

symbol3 v=’3’ i=rl c=black;

proc gplot data=crackers;

plot cases*last=treat;

Cell Means Model

• Yi,j = µi + β1(Xi,j − X̄..) + ϵi,j

• As usual the ϵi,j are iid N(0, σ2).

• Yi,j ∼ N(µi + β(Xi,j − X̄..), σ
2) independent

7



• For each i, we have a simple linear regression in which the slopes are the same, but the
intercepts may differ (i.e. different means once covariate has been “adjusted” out).

Parameters and Estimates

• The parameters of the model are µi for i = 1 to r; β1, and σ2

• We use multiple regression methods to estimate the µi and β1

• We use the residuals from the model to estimate σ2 (using the MSE)

Factor Effects Model for one-way ANCOVA

• Yi,j = µ+ αi + θ1(Xi,j − X̄..) + ϵi,j

• ϵi,j ∼iid N(0, σ2)

• The usual constraints are
∑

αi = 0 (or in SAS αa = 0)

• Note the deliberate use of θ instead of β for the slope to avoid confusion with a factor
B

Interpretation of model

• Expected value of a Y with level i and Xi,j = x is µ+ αi + θ1(x− X̄..)

• Expected value of a Y with level i′ and Xi′,j = x is µ+ αi′ + θ1(x− X̄..)

• Of note is that the difference αi − αi′ does NOT depend on the value of x.

proc glm data=crackers;

class treat;

model cases=last treat/solution clparm;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 607.8286915 202.6095638 57.78 <.0001

Error 11 38.5713085 3.5064826

Corrected Total 14 646.4000000

R-Square Coeff Var Root MSE cases Mean

0.940329 5.540120 1.872560 33.80000

Source DF Type I SS Mean Square F Value Pr > F

last 1 190.6777778 190.6777778 54.38 <.0001

treat 2 417.1509137 208.5754568 59.48 <.0001

Source DF Type III SS Mean Square F Value Pr > F

last 1 269.0286915 269.0286915 76.72 <.0001
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treat 2 417.1509137 208.5754568 59.48 <.0001

Standard

Parameter Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept 4.37659064 B 2.73692149 1.60 0.1381 -1.64733294 10.40051421

last 0.89855942 0.10258488 8.76 <.0001 0.67277163 1.12434722

treat 1 12.97683073 B 1.20562330 10.76 <.0001 10.32327174 15.63038972

treat 2 7.90144058 B 1.18874585 6.65 <.0001 5.28502860 10.51785255

treat 3 0.00000000 B . . . . .

The estimate for the common slope is θ̂1 = 0.9, and notice that its confidence interval
contains 1 (we’ll use that later). The option ‘clparm’ can be used to get confidence intervals
on the parameters. Note, however, that only CI’s for unbiased estimates (in this case the
slope for last) are appropriate.

Interpretation

• The expected value of Y with level i of factor A and X = x is µ+ αi + θ1(x− X̄..).

• So µ+ αi is the expected value of Y when X is equal to the average covariate value

• This is commonly the level of X where the treatment means are calculated (for this to
be interpretable, need to make sure this level of X is reasonable for each level of the
factor)

LSMEANS

• The L(least)S(square) means can be used to obtain these estimates

• All other categorical values are set at an equal mix for all levels (i.e., average over the
other factors)

• All continuous values are set at their overall means

Interpretation for KNNL example

• Y is cases of crackers sold under a particular promotion scenario

• X is the cases of crackers sold during the last period

• The LSMEANS are the estimated number cases of crackers that would be sold with a
given treatment for a store with average cracker sales during the previous period
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LSMEANS Statement

proc glm data=crackers;

class treat;

model cases=last treat;

lsmeans treat/stderr tdiff pdiff cl;

• STDERR gets the standard errors for the means (in the first part of the output)

• TDIFF requests the matrix of statistics (with p-values) that will do pairwise compar-
isons. You can use this along with ADJUST = TUKEY (or BON, SCHEFFE, DUNNETT) to
apply multiple comparison procedures.

• PDIFF requests only the matrix of p-values for the pairwise comparisons (may use
ADJUST)

• CL gets confidence limits for the means. When used in conjunction with PDIFF, it also
provides confidence limits for the pairwise differences using whatever adjustment you
specify.

Least Squares Means

Standard LSMEAN

treat cases LSMEAN Error Pr > |t| Number

1 39.8174070 0.8575507 <.0001 1

2 34.7420168 0.8496605 <.0001 2

3 26.8405762 0.8384392 <.0001 3

Least Squares Means for Effect treat

t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: cases

i/j 1 2 3

1 4.129808 10.76359

0.0017 <.0001

2 -4.12981 6.646871

0.0017 <.0001

3 -10.7636 -6.64687

<.0001 <.0001

treat cases LSMEAN 95% Confidence Limits

1 39.817407 37.929951 41.704863

2 34.742017 32.871927 36.612107

3 26.840576 24.995184 28.685968

Least Squares Means for Effect treat

Difference

Between 95% Confidence Limits for

i j Means LSMean(i)-LSMean(j)

1 2 5.075390 2.370456 7.780324

1 3 12.976831 10.323272 15.630390

2 3 7.901441 5.285029 10.517853
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NOTE: To ensure overall protection level, only probabilities associated with pre-planned

comparisons should be used.

From this output we see that the means (adjusted for covariate) are significantly different for
each treatment and so the first treatment is superior. Allowing food sampling in the store
appears to increase sales. Without the covariate we would not see this, as treatments 1 and
2 would test to be equivalent.

Prepare data for plot

title1 ’Plot of the data with the model’;

proc glm data=crackers;

class treat;

model cases=last treat;

output out=crackerpred p=pred;

data crackerplot; set crackerpred;

drop cases pred;

if treat eq 1 then do

cases1=cases;

pred1=pred;

output; end;

if treat eq 2 then do

cases2=cases;

pred2=pred;

output; end;

if treat eq 3 then do

cases3=cases;

pred3=pred;

output; end;

proc print data=crackerplot;

Obs last treat store cases1 pred1 cases2 pred2 cases3 pred3

1 21 1 1 38 36.2232 . . . .

2 26 1 2 39 40.7160 . . . .

3 22 1 3 36 37.1217 . . . .

4 28 1 4 45 42.5131 . . . .

5 19 1 5 33 34.4261 . . . .

6 34 2 1 . . 43 42.8291 . .

7 26 2 2 . . 38 35.6406 . .

8 29 2 3 . . 38 38.3363 . .

9 18 2 4 . . 27 28.4521 . .

10 25 2 5 . . 34 34.7420 . .

11 23 3 1 . . . . 24 25.0435

12 29 3 2 . . . . 32 30.4348

13 30 3 3 . . . . 31 31.3334

14 16 3 4 . . . . 21 18.7535

15 29 3 5 . . . . 28 30.4348
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Code for plot

symbol1 v=’1’ i=none c=black;

symbol2 v=’2’ i=none c=black;

symbol3 v=’3’ i=none c=black;

symbol4 v=none i=rl c=black;

symbol5 v=none i=rl c=black;

symbol6 v=none i=rl c=black;

proc gplot data=crackerplot;

plot (cases1 cases2 cases3 pred1 pred2 pred3)*last/overlay;

Prepare data for plot without covariate

title1 ’No covariate’;

proc glm data=crackers;

class treat;

model cases=treat;

output out=nocov p=pred;

run;

symbol1 v=circle i=none c=black;

symbol2 v=none i=join c=black;

proc gplot data=nocov;

plot (cases pred)*treat/overlay;
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Diagnostics and remedies

• Examine the data and residuals (check the three standard assumptions)

• Check the same-slope assumption

• Look for outliers that are influential

• Transform if needed, consider Box-Cox

• Examine variances (standard deviations). Look at MSE for models run separately on
each treatment group (use a BY statement in PROC REG or GLM)

Check for equality of slopes

title1 ’Check for equal slopes’;

proc glm data=crackers;

class treat;

model cases=last treat last*treat;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 614.8791646 122.9758329 35.11 <.0001

Error 9 31.5208354 3.5023150

Total 14 646.4000000

R-Square Coeff Var Root MSE cases Mean

0.951236 5.536826 1.871447 33.80000

Source DF Type I SS Mean Square F Value Pr > F
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last 1 190.6777778 190.6777778 54.44 <.0001

treat 2 417.1509137 208.5754568 59.55 <.0001

last*treat 2 7.0504731 3.5252366 1.01 0.4032

Source DF Type III SS Mean Square F Value Pr > F

last 1 243.1412380 243.1412380 69.42 <.0001

treat 2 1.2632832 0.6316416 0.18 0.8379

last*treat 2 7.0504731 3.5252366 1.01 0.4032

Analysis using differences

Recall that the CI for the slope included 1. So it is not unreasonable to assume a model
that looks like

Yi,j = µ+ αi +Xi,j + ϵi,j where ϵi,j ∼ N(0, σ2)

This is the same as considering the one-way ANOVA model

Yi,j −Xi,j = µ+ αi + ϵi,j where ϵi,j ∼ N(0, σ2)

and so we can treat Yi,j −Xi,j as our response variable. This corresponds to the increase in
sales over the previous period.

data crackerdiff;

set crackers;

casediff = cases - last;

proc glm data=crackerdiff;

class treat;

model casediff = treat;

means treat / tukey;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 440.4000000 220.2000000 62.91 <.0001

Error 12 42.0000000 3.5000000

Total 14 482.4000000

R-Square Coeff Var Root MSE casediff Mean

0.912935 21.25942 1.870829 8.800000

Mean N treat

A 15.000 5 1

B 9.600 5 2

C 1.800 5 3

We see that the R2 is about 0.03 less, but this is because the point estimate for slope was
not exactly 1. We do get the same overall results - namely we conclude that treatment 1 is
overall best. So this is a perfectly appropriate way to do the analysis in this case.
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Two-way ANCOVA Example

• KNNL Problem 22.15 (nknw1038.sas)

• Y is offer made by a dealer on a used car (units $100)

• Factor A is the age of person selling the car (young, middle, elderly)

• Factor B is gender of the person selling the car (male, female)

• Covariate is overall sales volume for the dealer

• This was a planned experiment using the same medium-priced, six-year old car

Plot data without covariate

data cash;

infile ’H:\System\Desktop\CH25PR15.DAT’;

input offer age gender rep sales;

*Look at the model without covariate;

data cashplot; set cash;

if age=1 and gender=1 then factor = ’1_youngmale’;

if age=2 and gender=1 then factor = ’2_midmale’;

if age=3 and gender=1 then factor = ’3_eldmale’;

if age=1 and gender=2 then factor = ’4_youngfemale’;

if age=2 and gender=2 then factor = ’5_midfemale’;

if age=3 and gender=2 then factor = ’6_eldfemale’;

symbol1 v=circle h=2;

title1 ’Plot of Offers against Factor Combinations w/o Covariate’;

proc gplot data=cashplot;

plot offer*factor;
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We appear to have differences based on age: namely it appears that dealers may offer less
money to the young and elderly. This is backed up by the following two-way ANOVA model
output:

proc glm data=cash;

class age gender;

model offer = age|gender;

means age gender /tukey;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 327.2222222 65.4444444 27.40 <.0001

Error 30 71.6666667 2.3888889

Corrected Total 35 398.8888889

R-Square Coeff Var Root MSE offer Mean

0.820334 6.561523 1.545603 23.55556

Source DF Type I SS Mean Square F Value Pr > F

age 2 316.7222222 158.3611111 66.29 <.0001

gender 1 5.4444444 5.4444444 2.28 0.1416

age*gender 2 5.0555556 2.5277778 1.06 0.3597

Mean N age

A 27.7500 12 2

B 21.5000 12 1

B

B 21.4167 12 3

Now let’s consider the covariate:

symbol1 v=A h=1 c=black;

symbol2 v=B h=1 c=black;

symbol3 v=C h=1 c=black;

symbol4 v=D h=1 c=black;

symbol5 v=E h=1 c=black;

symbol6 v=F h=1 c=black;

title ’Plot of Offers vs Sales by Factor’;

proc gplot data=cashplot;

plot offer*sales=factor;
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Notice that there seems to be an increasing effect of sales, with the data dividing into two
clusters. The top cluster is the middle-age group. We conduct the two-way ANCOVA:

proc glm data=cash;

class age gender;

model offer=sales age|gender;

lsmeans age gender /tdiff pdiff cl adjust=tukey;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 6 390.5947948 65.0991325 227.62 <.0001

Error 29 8.2940941 0.2860032

Corrected Total 35 398.8888889

R-Square Coeff Var Root MSE offer Mean

0.979207 2.270346 0.534793 23.55556

Source DF Type I SS Mean Square F Value Pr > F

sales 1 157.3659042 157.3659042 550.22 <.0001

age 2 231.5192596 115.7596298 404.75 <.0001

gender 1 1.5148664 1.5148664 5.30 0.0287

age*gender 2 0.1947646 0.0973823 0.34 0.7142

Source DF Type III SS Mean Square F Value Pr > F

sales 1 63.3725725 63.3725725 221.58 <.0001

age 2 232.4894513 116.2447257 406.45 <.0001

gender 1 1.5452006 1.5452006 5.40 0.0273

age*gender 2 0.1947646 0.0973823 0.34 0.7142

Notice that using the covariate allows us to see a significant effect of gender which we could
not see before. Age and sales are also both significant. Note also the much-reduced MSE
(was 2.4 without covariate (i.e. s = $155), now is 0.29 (i.e. s = $53)). Look at the
comparisons for age:
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LSMEAN

age offer LSMEAN Number

1 21.4027214 1

2 27.2370766 2

3 22.0268687 3

Least Squares Means for Effect age

t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: offer

i/j 1 2 3

1 -26.507 -2.79334

<.0001 0.0241

2 26.50696 22.55522

<.0001 <.0001

3 2.793336 -22.5552

0.0241 <.0001

The effect we saw previously regarding age is still there - in addition it appears that the dealer
offers young people even less money than the elderly, since groups 1 and 3 are significantly
different.

H0:LSMean1=LSMean2

gender offer LSMEAN t Value Pr > |t|

1 23.7646265 2.32 0.0273

2 23.3464846

We also see that the dealers offer slightly less money to women than men. The difference in
means is very small ($42) but the standard error is so small that this is significant.
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