
Statistics 512: Applied Linear Models

Topic 8

Topic Overview

This topic will cover

• More on Multiple Comparisons / Confidence Intervals (§19.8 & §19.9)

• Two-Way ANOVA with Unequal Sample Sizes (§23)

• Three-Way ANOVA Example (§24)

Estimation of Factor Level Means (19.8)

• Still assume n constant across cells here.

• Point Estimates are µ̂i. = Ȳi.., µ̂.j = Ȳ.j., and µ̂i,j = Ȳi,j.

• These have associated variances (estimate by plugging in MSE): s2{Ȳi..} = MSE/bn,
s2{Ȳ.j.} = MSE/an, and s2{Ȳi,j.} = MSE/n.

• These may be used with t-critical values to form confidence intervals. The degrees of
freedom are those associated with the MSE: (n− 1)ab. It is not really appropriate to
look at µ̂i. or µ̂.j when there is serious interaction.

Computation

• Means can be obtained from proc means in SAS

• MSE for the model can be obtained from SAS as well

• Construct the CI using these values and the appropriate critical value. The critical
value can be from the t-distribution. Or it may be Tukey, Bonferroni, or Scheffe
adjusted as is appropriate.

Contrasts

• We can look at contrasts of means (on the same factor) including multiple comparisons
as we did in One-way ANOVA.

• When there is no interaction, for factor A the contrast L =
∑

ciµi. is estimated by
L̂ =

∑
ciȲi... An unbiased estimator of the variance is s2{L̂} = MSE

bn

∑
c2i .

• Using a t-critical value (use error d.f.) we may construct a CI for the contrast.
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• Factor B is analogous: the contrast L =
∑

cjµ.j is estimated by L̂ =
∑

cjȲ.j.. An

unbiased estimator of the variance is s2{L̂} = MSE
an

∑
c2j .

• If there is interaction, we may consider contrasts of the form L =
∑

cijµij, which

can be estimated by L̂ =
∑

cijȲij.. For these, s2{L̂} = MSE
n

∑
c2ij and CI’s may be

obtained using an appropriate critical value.

Multiple Comparisons

• The multiple comparison procedures with no interaction are the same as for one-way
ANOVA.

• Can use LSD, Tukey, Bonferroni, or Scheffe in SAS as appropriate in the means state-
ment.

Example

• Recall the bread sales example (nknw864.sas)

• Shelf height (A) has 3 levels

• Shelf width (B) has 2 levels

• There are 2 observations at each level (total 12 observations)

Find a 95% CI for the mean sales using the middle wide shelf

So we want a 95% CI for µ2,2. From SAS we have the means output and also MSE = 10.333.
We also had µ̂2,2 = Ȳ2,2. = 69. There are (n − 1)ab = 1(3)(2) = 6 degrees of freedom, and
if this is the only interval of interest we may use the t-distribution so that the critical value

is 2.447. Hence the CI is given by µ̂2,2 ± 2.447
(√

MSE/n
)
= 69 ± 2.447

(√
10.333/2

)
=

(63.44, 74.56).

Find a 95% CI for the difference in sales between the middle shelf and the top
shelf

Here we are averaging across width, looking at the contrast µ2. − µ1.. The marginal sample
means were 67 and 44 respectively, so our point estimate is 23. The variance of the point
estimate will be s2{L̂} = MSE

bn

∑
c2i =

19.33
2×2

(2) = 5.167. In this case perhaps we are looking
at all of the differences in means. It would then be appropriate to use a Tukey-adjusted
critical value. There are 3 comparisons so the degrees of freedom will be 3 and 6. We
have q(0.95; 3, 6) = 4.34 (from table B9) and so our critical value is 4.34/

√
2 = 3.07. The

confidence interval is (16.02, 29.98).
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Two-way ANOVA: Unbalanced Designs (Ch. 23)

From a data analysis point of view, the balanced design is the nicest. The “orthogonality”
of this design makes it the most straightforward to analyze and understand. (Complete
independence among factors.) However, there are times when equal sample sizes are not
possible. Here are some of the reasons this might be the case (there may be others):

1. The experiment planned for a balanced design, but because of dropouts some data is
unavailable (missing data).

2. The data were simply collected, not planned, and so the experimenter had no control
over the number of observations in each “treatment”.

3. For reasons such as cost or ethics, it is not possible to examine all possible factor
combinations. (Complicated designs such as these will be examined in Stat 514)

4. Some factor levels may be more important or more prevalent than others, and the
experimenter wishes these to be more highly represented in the data.

As we will see, the reason for the unbalance may influence our interpretation of the results.

Data for two-way ANOVA

• Y , the response variable

• Factor A with levels i = 1 to a

• Factor B with levels j = 1 to b

• Yi,j,k is the kth observation for treatment (i, j), k = 1 to ni,j.

• Now (in Chapter 23) we do not have equal sample size (i.e. we have an unbalanced
design) in each treatment combination. This causes complications in our analysis.

KNNL Example

• KNNL page 954 (nknw892.sas)

• Y is the change in growth rates for children after a treatment

• A is gender, a = 2 levels: male, female

• B is bone development, b = 3 levels: severely, moderately, or mildly depressed

• ni,j = 3, 2, 2, 1, 3, 3 children in the groups
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Read and check the data

data hormone;

infile ’h:\System\Desktop\CH22TA01.DAT’;

input growth gender bone;

proc print data=hormone;

Obs growth gender bone

1 1.4 1 1

2 2.4 1 1

3 2.2 1 1

4 2.1 1 2

5 1.7 1 2

6 0.7 1 3

7 1.1 1 3

8 2.4 2 1

9 2.5 2 2

10 1.8 2 2

11 2.0 2 2

12 0.5 2 3

13 0.9 2 3

14 1.3 2 3

Prepare the data for a plot

data hormone; set hormone;

if (gender eq 1)*(bone eq 1) then gb=’1_Msev ’;

if (gender eq 1)*(bone eq 2) then gb=’2_Mmod ’;

if (gender eq 1)*(bone eq 3) then gb=’3_Mmild’;

if (gender eq 2)*(bone eq 1) then gb=’4_Fsev ’;

if (gender eq 2)*(bone eq 2) then gb=’5_Fmod ’;

if (gender eq 2)*(bone eq 3) then gb=’6_Fmild’;

Plot the data

title1 ’Plot of the data’;

symbol1 v=circle i=none c=black;

proc gplot data=hormone;

plot growth*gb;

4



Find the means

proc means data=hormone;

output out=means mean=avgrowth;

by gender bone;

Plot the means

title1 ’Plot of the means’;

symbol1 v=’M’ i=join c=black;

symbol2 v=’F’ i=join c=black;

proc gplot data=means;

plot avgrowth*bone=gender;
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Cell Means Model

Yi,j,k = µi,j + ϵi,j,k

where µi,j is the theoretical mean or expected value of all observations in cell (i, j).
the ϵi,j,k are iid N(0, σ2)
Yi,j,k ∼ N(µi,j, s

2), independent

Estimates

Estimate µi,j by the mean of the observations in cell (i, j), µ̂i,j = Ȳi,j,. =
∑

k Yi,j,k

ni,j
.

For each (i, j) combination, we can get an estimate of the variance s2i,j =
∑

k(Yi,j,k−Ȳi,j.)
2

ni,j−1
, as

long as ni,j ≥ 2.
We pool these to get an estimate of σ2.

Pooled Estimate of σ2

In general we pool the s2i,j, using weights proportional to the df, ni,j − 1.

The pooled estimate is s2 =
∑

i,j(ni,j−1)s2i,j∑
i,j(ni,j−1)

.

(Notice that if ni,j = 1 we cannot calculate si,j, but its weight is zero anyway).

Run proc glm

proc glm data=hormone;

class gender bone;

model growth=gender|bone/solution;

means gender*bone;

The syntax gender|bone is short for gender bone gender*bone. See SAS help on the “bar
operator” for more information.

Parameter Estimates

The solution option on the model statement gives parameter estimates for the glm param-
eterization.

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 0.900000000 B 0.23273733 3.87 0.0048

gender 1 -0.000000000 B 0.36799004 -0.00 1.0000

gender 2 0.000000000 B . . .

bone 1 1.500000000 B 0.46547467 3.22 0.0122

bone 2 1.200000000 B 0.32914029 3.65 0.0065

bone 3 0.000000000 B . . .

gender*bone 1 1 -0.400000000 B 0.59336610 -0.67 0.5192

gender*bone 1 2 -0.200000000 B 0.52041650 -0.38 0.7108
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gender*bone 1 3 0.000000000 B . . .

gender*bone 2 1 0.000000000 B . . .

gender*bone 2 2 0.000000000 B . . .

gender*bone 2 3 0.000000000 B . . .

These constraints are (as we have seen before)

• Last level of each main effect is zero

• Interaction terms with a or b are zero

These can be rearranged to get the cell means in the usual way.

ANOVA Summary

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 4.47428571 0.89485714 5.51 0.0172

Error 8 1.30000000 0.16250000

Corrected Total 13 5.77428571

Note DF and SS add as usual.

Type I and Type III SS

In our previous ANOVA example, Type I and Type III SS were identical. This was true
because the fact that the sample sizes were all the same made the variables completely
orthogonal.
When sample sizes are unequal, the SS do not break down in the usual way. The various SS
that we can calculate will not necessarily add up to the SSM.
SAS actually has four types of SS (I, II, III, IV) it can calculate. It does ss1 and ss3 by
default but you can also ask for ss2 and ss4.
We will focus on Type I and Type III in ANOVA.

Type I

Recall that Type I SS refer to the difference in SS when variables are added sequentially in
the model, i.e. SS(A), SS(B|A), SS(A×B|A,B). Type I weights each observation equally,
with the result that the treatments are weighted in proportion to their ni,j.

Type II

Recall from regression that Type II SS referred to the difference in SSM when a variable is
included last in the model or not (i.e., SS(A|B,A×B), SS(B|A,A×B), SS(A×B|A,B)).
Type II also weights each observation equally, with the result that the treatments are
weighted in proportion to their ni,j.
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Type III

The ANOVA Type III SS are similar to the Type II SS, in that the other variables are
assumed to already be in the model (this variable included last). Type III SS adjust for
the cells having different ni,j, by weighting each treatment equally, so that the observations
are weighted differently. Therefore, when the sample sizes are unequal, Type III SS are
more informative about the treatments than Type I . The Type III SS are calculated using
regression with indicator variables to do the ANOVA, and to calculate the SSM for the full
and reduced models. In Sections 23.2-3, KNNL are discussing Type III SS (they don’t call
them that; the type numbers are a SAS convention).

Type IV

Type IV SS are like Type III, except that Type IV additionally take into account possibly
empty cells (ni,j = 0). If there are empty cells, then Type IV SS are preferred. See KNNL
Section 23.4 about empty cells.

Output Type I

Source DF Type I SS Mean Square F Value Pr > F

bone 2 4.30628571 2.15314286 13.25 0.0029

gender 1 0.09257143 0.09257143 0.57 0.4720

bone*gender 2 0.07542857 0.03771429 0.23 0.7980

SSG+ SSB + SSGB = 4.47429 = SSM

Output Type III

Source DF Type III SS Mean Square F Value Pr > F

bone 2 4.18971429 2.09485714 12.89 0.0031

gender 1 0.12000000 0.12000000 0.74 0.4152

bone*gender 2 0.07542857 0.03771429 0.23 0.7980

SSG+ SSB + SSGB = 4.38514 ̸= SSM

Type I vs Type III

• SS for Type I add up to total SS.

• SS for Type III do not necessarily add to SSM .

• Type I and Type III are the same for the interaction because it is the last term in the
model, but the Type I and Type III analysis for the main effects are not necessarily
the same.

• Different hypotheses are being examined with the two types.
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• Most people prefer the Type III analysis.

• This can be misleading if the sample sizes differ greatly.

• Contrasts can provide some insight by showing us what is actually being calculated.

Using Contrasts to illustrate exactly what is being calculated with
Type I and Type III SS

It would not be necessary to construct these contrasts in a typical analysis. But for illus-
tration purposes, we are going to construct specific constrasts in terms of the cell means /
factor effects parameters and show that they come out to the Type I and Type III SS, which
should help you understand Type I/III SS better.

Contrast for A×B

• This is the same for Type I and Type III.

• Null hypothesis is that the profiles are parallel; see plot for interpretation: the difference
between the factor levels for bone is the same whether gender is 1 or 2.

• H0 : µ1,2 − µ1,1 = µ2,2 − µ2,1 and µ1,3 − µ1,2 = µ2,3 − µ2,2

• Written with contrasts this is: H0 : L1 = µ1,1 − µ1,2 − µ2,1 + µ2,2 = 0 and L2 =
µ1,2 − µ1,3 − µ2,2 + µ2,3 = 0

• In terms of the factor effects parameters these are (µ’s, α’s and β’s cancel):

L1 = (αβ)1,1 − (αβ)1,2 − (αβ)2,1 + (αβ)2,2

L2 = (αβ)1,2 − (αβ)1,3 − (αβ)2,2 + (αβ)2,3

• Recall that SAS interpretes the coefficients in the contrast in terms of the factor effects
parameters.

A×B contrast statement

contrast ’gender*bone Type I and III’

gender*bone 1 -1 0 -1 1 0,

gender*bone 0 1 -1 0 -1 1;
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Type III Contrast for gender

• Null hypothesis is that the average for males and females is the same. For Type III each
treatment mean has the same weight regardless of the sample size, so some observations
are weighted more heavily than others.

H0 : µ1,1 + µ1,2 + µ1,3 = µ2,1 + µ2,2 + µ2,3,

i.e.,

H0 : L = 0, where L = µ1,1 + µ1,2 + µ1,3 − µ2,1 − µ2,2 − µ2,3

• In the hypothesis, all cell means are weighted equally (ignore different sample sizes).

Write L in terms of the factor effects:

µ1,1 = µ+ α1 + β1 + (αβ)1,1
µ1,2 = µ+ α1 + β2 + (αβ)1,2
µ1,3 = µ+ α1 + β3 + (αβ)1,3

−µ2,1 = −(µ+ α2 + β1 + (αβ)2,1)
−µ2,2 = −(µ+ α2 + β2 + (αβ)2,2)
−µ2,3 = −(µ+ α2 + β3 + (αβ)2,3)

L = 3α1 − 3α2 + (αβ)1,1 + (αβ)1,2 + (αβ)1,3 − (αβ)2,1 − (αβ)2,2 − (αβ)2,3

Contrast statement: gender Type III

contrast ’gender Type III’

gender 3 -3

gender*bone 1 1 1 -1 -1 -1;

Type I Contrast for gender

• Null hypothesis is that the average for males and females is the same.

• For Type I each treatment is weighted by its sample size because each observation is weighted
equally.

• Note that the data are actually balanced for gender; that is, there are the same number of
males (3+ 2+2) as females (1+ 3+3) so we can work with the sum instead of the averages.
(Or we could just divide everything by 7.)

H0 :
3µ1,1+2µ1,2+2µ1,3

7 =
µ2,1+3µ2,2+3µ2,3

7 ; i.e.,

H0 : L = 3µ1,1 + 2µ1,2 + 2µ1,3 − (µ2,1 + 3µ2,2 + 3µ2,3) = 0

Write L in terms of the factor effects:
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3µ1,1 = 3(µ+ α1 + β1 + (αβ)1,1)
2µ1,2 = 2(µ+ α1 + β2 + (αβ)1,2)
2µ1,3 = 2(µ+ α1 + β3 + (αβ)1,3)
−µ2,1 = −(µ+ α2 + β1 + (αβ)2,1)
−3µ2,2 = −3(µ+ α2 + β2 + (αβ)2,2)
−3µ2,3 = −3(µ+ α2 + β3 + (αβ)2,3)

L = (7α1 − 7α2) + (2β1 − β2 − β3) + 3(αβ)1,1+
2(αβ)1,2 + 2(αβ)1,3 − (αβ)2,1 − 3(αβ)2,2 − 3(αβ)2,3

Contrast statement: gender Type I

contrast ’gender Type I’

gender 7 -7

bone 2 -1 -1

gender*bone 3 2 2 -1 -3 -3;

We could do the same thing for bone (work out the details yourself). The answers are as
follows.

Bone Type III

H0 :
µ1,1+µ2,1

2
= µ1,2+µ2,2

2
= µ1,3+µ2,3

2

L1 = µ1,1 − µ1,2 + µ2,1 − µ2,2 = 2β1 − 2β2 + αβ1,1 − αβ1,2 + αβ2,1 − αβ2,2

L2 = µ1,2 − µ1,3 + µ2,2 − µ2,3 = 2β2 − 2β3 + αβ1,2 − αβ1,3 + αβ2,2 − αβ2,3

H0 : L1 = 0 and L2 = 0.

contrast ’bone Type III’

bone 2 -2 0

gender*bone 1 -1 0 1 -1 0,

bone 0 2 -2

gender*bone 0 1 -1 0 1 -1;

Bone Type I

H0 :
3µ1,1+µ2,1

4
= 2µ1,2+3µ2,2

5
= 2µ1,3+3µ2,3

5

L1 = 15µ1,1 − 8µ1,2 + 5µ2,1 − 12µ2,2

= 7α1 − 7α2 + 20β1 − 20β2 + 15αβ1,1 − 8αβ1,2 + 5αβ2,1 − 12αβ2,2

L2 = 2µ1,2 − 2µ1,3 + 3µ2,2 − 3µ2,3

= 5β2 − 5β3 + 2αβ1,2 − 2αβ1,3 + 3αβ2,2 − 3αβ2,3

contrast ’bone Type I’

gender 7 -7
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bone 20 -20 0

gender*bone 15 -8 0 5 -12 0,

bone 0 5 -5

gender*bone 0 2 -2 0 3 -3;

Contrast output

Contrast DF Contrast SS F Value Pr > F

gender Type III 1 0.12000000 0.74 0.4152

gender Type I 1 0.00285714 0.02 0.8978

bone Type III 2 4.18971429 12.89 0.0031

bone Type I 2 4.30628571 13.25 0.0029

gender*bone Type I/III 2 0.07542857 0.23 0.7980

Only bone is significant. Notice that the contrast SS match the appropriate Type I or III
SS above. So these contrasts help clarify exactly what hypothesis is being tested by each
SS.

Source DF Type I SS Mean Square F Value Pr > F

gender 1 0.00285714 0.00285714 0.02 0.8978

bone 2 4.39600000 2.19800000 13.53 0.0027

gender*bone 2 0.07542857 0.03771429 0.23 0.7980

Source DF Type III SS Mean Square F Value Pr > F

gender 1 0.12000000 0.12000000 0.74 0.4152

bone 2 4.18971429 2.09485714 12.89 0.0031

gender*bone 2 0.07542857 0.03771429 0.23 0.7980

Type I bone does not exactly match the contrast but it is close (4.396 vs. 4.306). This is
because bone is second in the model. With bone listed first, the Type I SS for bone exactly
matches the contrast.

Source DF Type I SS Mean Square F Value Pr > F

bone 2 4.30628571 2.15314286 13.25 0.0029

gender 1 0.09257143 0.09257143 0.57 0.4720

bone*gender 2 0.07542857 0.03771429 0.23 0.7980

Remember: in a typical analysis, you would not do all these contrast statements. These
only served the purpose of illustrating what the Type I and III SS actually mean.

Analytical Strategy

First examine interactions
Some options when the interaction is significant and important:

• Interpret the plot of means (interaction plot)

• Run A at each level of B and/or B at each level of A
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• Run as a one-way with ab levels

• Use contrasts

Some options when the interaction is not significant:

• Use contrasts for main effects

• Rerun without the interaction

• Use a multiple comparison procedure for the main effects

Example without interaction

proc glm data=hormone;

class gender bone;

model growth=gender bone/solution;

means gender bone/ tukey lines;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 4.39885714 1.46628571 10.66 0.0019

Error 10 1.37542857 0.13754286

Corrected Total 13 5.77428571

R-Square Coeff Var Root MSE growth Mean

0.761801 22.57456 0.370868 1.642857

Source DF Type I SS Mean Square F Value Pr > F

gender 1 0.00285714 0.00285714 0.02 0.8883

bone 2 4.39600000 2.19800000 15.98 0.0008

Source DF Type III SS Mean Square F Value Pr > F

gender 1 0.09257143 0.09257143 0.67 0.4311

bone 2 4.39600000 2.19800000 15.98 0.0008

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 0.968571429 B 0.18572796 5.22 0.0004

gender 1 -0.171428571 B 0.20896028 -0.82 0.4311

gender 2 0.000000000 B . . .

bone 1 1.260000000 B 0.25931289 4.86 0.0007

bone 2 1.120000000 B 0.23455733 4.77 0.0008

bone 3 0.000000000 B . . .

Tukey Comparisons

Mean N bone

A 2.1000 4 1

A
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A 2.0200 5 2

B 0.9000 5 3

Multiple Comparisons in an Unbalanced Setting

• Standard Errors for similar comparisons will now be DIFFERENT (e.g. if we look at
all the differences of the form µi. − µi′., their variances will not be the same).

• See pages 961 and 962 for the various formulas. They now have ni,j’s all over the place.

• Everything else (formation of CI’s, use of Multiple Comparison critical values, etc) still
applies.

Three-way ANOVA

Data for three-way ANOVA

• Y , the response variable

• Factor A with levels i = 1 to a

• Factor B with levels j = 1 to b

• Factor C with levels k = 1 to c

• Yi,j,k,ℓ is the ℓth observation in cell (i, j, k), ℓ = 1 to ni,j,k

• A balanced design has ni,j,k = n

Cell Means Model

Yi,j,k,ℓ = µi,j,k + ϵi,j,k,ℓ

• µi,j,k is the theoretical mean or expected value of all observations in cell (i, j, k).

• ϵi,j,k,ℓ ∼iid N(0, σ2)

• Yi,j,k,ℓ ∼ N(µi,j,k, σ
2) are independent
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Estimates

• Estimate µi,j,k by the mean of the observations in cell (i, j, k), Ȳi,j,k. =
1
n

∑
ℓ Yi,j,k,ℓ.

• For each (i, j, k) combination, we can get an estimate of the variance σ2
i,j,k:

s2i,j,k =

∑
ℓ(Yi,j,k,ℓ − Ȳi,j,k.)

2

ni,j,k − 1
.

• Combine these to get an estimate of σ2, since we assume they are all equal. In general
we pool the s2i,j, using weights proportional to the df , ni,j − 1. The pooled estimate is
obtained using weights proportional to degrees of freedom as usual:

s2 =

∑
i,j,k(ni,j,k − 1)s2i,j,k∑

i,j,k(ni,j,k − 1)
=

∑
i,j,k(ni,j,k − 1)s2i,j,k

nT − abc
= MSE

Factor Effects Model

Yi,j,k = µ+ αi + βj + γk + (αβ)i,j + (αγ)i,k + (βγ)j,k + (αβγ)i,j,k + ϵi,j,k,ℓ

• µ is the overall (grand) mean

• αi, βj, γk are the main effects of factors A, B, and C

• (αβ)i,j, (αγ)i,k, (βγ)j,k are the two-way (first order) interactions

• (αβγ)i,j,k is the three-way (second-order) interaction

• An extension of the usual constraints applies.

ANOVA table

Sources of model variation include

• the three main effects

• the three two-way interactions

• the (one) three-way interaction.

With balanced data the SS and df add to the model SS and df .
Always have Model + Error = Total.
Each effect is tested by an F -statistic with MSE in the denominator.
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Analytical Strategy

First examine interactions
Some options when one or more interactions are significant

• Interpret the plot of means

• Run analyses for each level of one factor, eg run A|B by C (lsmeans with slice option)

• Run as a one-way with abc levels

• Define a composite factor by combining two factors, eg AB with ab levels

• Use contrasts

Some options when no interactions are significant

• Use contrasts

• Rerun without the interactions

• Use a multiple comparison procedure for the main effects

KNNL Example

• KNNL page 1018 (nknw943.sas)

• Y is exercise tolerance, minutes until fatigue on a bicycle test

• A is gender, a = 2 levels: male = 1, female = 2

• B is percent body fat, b = 2 levels: low = 1, high = 2

• C is smoking history, c = 2 levels: light = 1, heavy = 2

• n = 3 persons aged 25-35 per (i, j, k) cell

Read and check the data

data exercise;

infile ’h:\System\Desktop\CH23TA04.DAT’;

input extol gender fat smoke;

16



Define variable for a plot

This is just to set a unique identifier for each treatment. There are other ways to do this.

data exercise;

set exercise;

gfs = 100*gender + 10*fat + smoke;

proc print data=exercise;

Obs extol gender fat smoke gfs

1 24.1 1 1 1 111

2 29.2 1 1 1 111

3 24.6 1 1 1 111

4 20.0 2 1 1 211

5 21.9 2 1 1 211

6 17.6 2 1 1 211

7 14.6 1 2 1 121

8 15.3 1 2 1 121

9 12.3 1 2 1 121

10 16.1 2 2 1 221

11 9.3 2 2 1 221

12 10.8 2 2 1 221

13 17.6 1 1 2 112

14 18.8 1 1 2 112

15 23.2 1 1 2 112

16 14.8 2 1 2 212

17 10.3 2 1 2 212

18 11.3 2 1 2 212

19 14.9 1 2 2 122

20 20.4 1 2 2 122

21 12.8 1 2 2 122

22 10.1 2 2 2 222

23 14.4 2 2 2 222

24 6.1 2 2 2 222

Plot the data

proc sort data=exercise;

by gender fat smoke;

title1 ’Plot of the data’;

symbol1 v=circle i=none c=black;

proc gplot data=exercise;

plot extol*gfs/ haxis = 111 112 121 122 211 212 221 222;
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Find the means

proc means data=exercise;

output out=exer2 mean=avextol;

by gender fat smoke;

Make a two-variable combination of fat and smoke

This is helpful for plotting.

data exer2;

set exer2;

fs = fat*10 + smoke;

proc print data=exer2;

Obs gender fat smoke avextol fs

1 1 1 1 25.9667 11

2 1 1 2 19.8667 12

3 1 2 1 14.0667 21

4 1 2 2 16.0333 22

5 2 1 1 19.8333 11

6 2 1 2 12.1333 12

7 2 2 1 12.0667 21

8 2 2 2 10.2000 22

Plot the means

proc sort data=exer2; by fs;

title1 ’Plot of the means’;

symbol1 v=’M’ i=join c=black;

symbol2 v=’F’ i=join c=black;
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proc gplot data=exer2;

plot avextol*fs=gender / haxis = 11 12 21 22;

From this plot it appears that gender probably doesn’t interact too much with the other
variables.

Note: Interaction plots in the 3-variable model take the form of putting 2-factor combi-
nations on the X-axis with separate lines for the third factor.

proc glm data=exercise;

class gender fat smoke;

model extol=gender|fat|smoke / solution;

means gender*fat*smoke;

Recall that gender|fat|smoke is short for gender fat smoke gender*fat gender*smoke
fat*smoke gender*fat*smoke.

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 1 2

fat 2 1 2

smoke 2 1 2

Number of observations 24

Dependent Variable: extol

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 7 588.5829167 84.0832738 9.01 0.0002

Error 16 149.3666667 9.3354167

Corrected Total 23 737.9495833
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R-Square Coeff Var Root MSE extol Mean

0.797592 18.77833 3.055391 16.27083

Source DF Type I SS Mean Square F Value Pr > F

gender 1 176.5837500 176.5837500 18.92 0.0005

fat 1 242.5704167 242.5704167 25.98 0.0001

gender*fat 1 13.6504167 13.6504167 1.46 0.2441

smoke 1 70.3837500 70.3837500 7.54 0.0144

gender*smoke 1 11.0704167 11.0704167 1.19 0.2923

fat*smoke 1 72.4537500 72.4537500 7.76 0.0132

gender*fat*smoke 1 1.8704167 1.8704167 0.20 0.6604

All main effects are significant. Gender and fat appear to have bigger effects than smoke.
The two-way interaction between fat and smoke is also significant.

SAS Parameter Estimates

Solution option on the model statement gives parameter estimates for the glm parameter-
ization.
These are as we have seen before; any main effect or interaction with a subscript of a, b, or
c is zero.
These can be used to reproduce the cell means in the usual way.

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 10.2 B 1.76403105 5.78 <.0001

gender 1 5.83333333 B 2.49471664 2.34 0.0327

gender 2 0.0 B . . .

fat 1 1.93333333 B 2.49471664 0.77 0.4497

fat 2 0.0 B . . .

gender*fat 1 1 1.9 B 3.52806211 0.54 0.5976

gender*fat 1 2 0.0 B . . .

gender*fat 2 1 0.0 B . . .

gender*fat 2 2 0.0 B . . .

smoke 1 1.86666667 B 2.49471664 0.75 0.4652

smoke 2 0.0 B . . .

gender*smoke 1 1 -3.83333333 B 3.52806211 -1.09 0.2933

gender*smoke 1 2 0.0 B . . .

gender*smoke 2 1 0.0 B . . .

gender*smoke 2 2 0.0 B . . .

fat*smoke 1 1 5.83333333 B 3.52806211 1.65 0.1177

fat*smoke 1 2 0.0 B . . .

fat*smoke 2 1 0.0 B . . .

fat*smoke 2 2 0.0 B . . .

gender*fat*smoke 1 1 1 2.23333333 B 4.98943328 0.45 0.6604

gender*fat*smoke 1 1 2 0.0 B . . .

gender*fat*smoke 1 2 1 0.0 B . . .

gender*fat*smoke 1 2 2 0.0 B . . .

gender*fat*smoke 2 1 1 0.0 B . . .

gender*fat*smoke 2 1 2 0.0 B . . .

gender*fat*smoke 2 2 1 0.0 B . . .

gender*fat*smoke 2 2 2 0.0 B . . .
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We can get the zero-sum constraints in the usual way (see the file nknw943.sas for the code).

Obs gender fat smoke mu alpha beta gamma alphabeta alphagamma betagamma abc

1 1 1 1 16.2708 2.7125 3.17917 1.7125 0.75417 -0.67917 1.7375 0.27917

4 1 1 2 16.2708 2.7125 3.17917 -1.7125 0.75417 0.67917 -1.7375 -0.27917

7 1 2 1 16.2708 2.7125 -3.17917 1.7125 -0.75417 -0.67917 -1.7375 -0.27917

10 1 2 2 16.2708 2.7125 -3.17917 -1.7125 -0.75417 0.67917 1.7375 0.27917

13 2 1 1 16.2708 -2.7125 3.17917 1.7125 -0.75417 0.67917 1.7375 -0.27917

16 2 1 2 16.2708 -2.7125 3.17917 -1.7125 -0.75417 -0.67917 -1.7375 0.27917

19 2 2 1 16.2708 -2.7125 -3.17917 1.7125 0.75417 0.67917 -1.7375 0.27917

22 2 2 2 16.2708 -2.7125 -3.17917 -1.7125 0.75417 -0.67917 1.7375 -0.27917

Notice from the parameter estimates that βγ is about the same size as γ. This makes it
pretty hard to interpret the main effect of smoke.

title1 ’Mean over gender vs smoke’;

symbol1 v=L i=join;

symbol2 v=H i=join;

proc gplot data=BCdat;

plot muBC*smoke=fat;

Looking at this plot, it appears that smoking decreases tolerance for those of low body fat,
but makes almost no difference for those at the high body fat.

Example Approach

Since there appears to be a fat by smoke interaction, let’s run a two-way ANOVA (no
additional interaction) using the fat × smoke variable and gender. This will consider the
four fs categories separately.
We will also use the interaction plot to describe the interaction.
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proc glm data=exercise;

class gender fs;

model extol=gender fs;

means gender fs/tukey;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 561.9916667 140.4979167 15.17 <.0001

Error 19 175.9579167 9.2609430

Corrected Total 23 737.9495833

Source DF Type I SS Mean Square F Value Pr > F

gender 1 176.5837500 176.5837500 19.07 0.0003

fs 3 385.4079167 128.4693056 13.87 <.0001

Notice that the SS for gender is the same as before. Also, the SS now shown for fs is
the sum of the SS for fat, smoke, and fat× smoke in the original model. The SS for the
remaining interaction terms has now been incorporated into the error term. SSE has gone
up, but MSE has actually gone down a little.

Different means for gender

Mean N gender

A 18.983 12 1

B 13.558 12 2

(Well, we knew that since gender was significant)

Tukey comparisons for fs

Mean N fs

A 22.900 6 11

B 16.000 6 12

B

B 13.117 6 22

B

B 13.067 6 21

Category fs = 1 is the low body fat and light smoking history group. The other three groups
were not significantly different from each other.
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