
Statistics 512: Applied Linear Models

Topic 7

Topic Overview

This topic will cover

• Two-Way Analysis of Variance (ANOVA) (§19)

• Interactions (§19)

• One Case Per Treatment (§20)

Chapter 19: Two-way ANOVA

The response variable Y is continuous.

There are now two categorical explanatory variables (factors). Call them factor A and
factor B instead of X1 and X2. (We will have enough subscripts as it is!)

Data for Two-way ANOVA

• Y , the response variable

• Factor A with levels i = 1 to a

• Factor B with levels j = 1 to b

• A particular combination of levels is called a treatment or a cell. There are ab treat-
ments.

• Yi,j,k is the kth observation for treatment (i, j), k = 1 to n

In Chapter 19, we for now assume equal sample size in each treatment combination (ni,j =
n > 1; nT = abn). This is called a balanced design. In later chapters we will deal with
unequal sample sizes, but it is more complicated.

Notation

For Yi,j,k the subscripts are interpreted as follows:

• i denotes the level of the factor A

• j denotes the level of the factor B
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• k denotes the kth observation in cell or treatment (i, j)

i = 1, . . . , a levels of factor A
j = 1, . . . , b levels of factor B
k = 1, . . . , n observations in cell (i, j)

KNNL Example

• KNNL page 832 (nknw817.sas)

• response Y is the number of cases of bread sold.

• factor A is the height of the shelf display; a = 3 levels: bottom, middle, top.

• factor B is the width of the shelf display; b = 2 levels: regular, wide.

• n = 2 stores for each of the 3× 2 = 6 treatment combinations (nT = 12)

Read the data

data bread;

infile ’h:\System\Desktop\CH19TA07.DAT’;

input sales height width;

proc print data=bread;

Obs sales height width

1 47 1 1

2 43 1 1

3 46 1 2

4 40 1 2

5 62 2 1

6 68 2 1

7 67 2 2

8 71 2 2

9 41 3 1

10 39 3 1

11 42 3 2

12 46 3 2

Model Assumptions

We assume that the response variable observations are independent, and normally distributed
with a mean that may depend on the levels of the factors A and B, and a variance that does
not (is constant).
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Cell Means Model

Yi,j,k = µi,j + ϵi,j,k where

• µi,j is the theoretical mean or expected value of all observations in cell (i, j).

• the ϵi,j,k are iid N(0, σ2)

• Yi,j,k ∼ N(µi,j, σ
2), independent

There are ab+ 1 parameters of the model: µi,j, for i = 1 to a and j = 1 to b; and σ2.

Parameter Estimates

• Estimate µi,j by the mean of the observations in cell (i, j), Ȳi,j. =
∑

k Yi,j,k

n
.

• For each (i, j) combination, we can get an estimate of the variance σ2
i,j: s

2
i,j =

∑
k(Yi,j,k−Ȳi,j.)

2

n−1
.

• Combine these to get an estimate of σ2, since we assume they are all equal.

• In general we pool the s2i,j, using weights proportional to the df , ni,j − 1.

• The pooled estimate is s2 =
∑

i,j(ni,j−1)s2i,j∑
i,j(ni,j−1)

=
∑

i,j(ni,j−1)s2i,j
nT−ab

.

• Here, ni,j = n, so s2 =
∑

s2i,j
ab

= MSE.

Investigate with SAS

Note we are including an interaction term which is denoted as the product of A and B. It is
not literally the product of the levels, but it would be if we used indicator variables and did
regression. Using proc reg we would have had to create such a variable with a data step.
In proc glm we can simply include A*B in the model statement, and it understands we want
the interaction included.

proc glm data=bread;

class height width;

model sales=height width height*width;

means height width height*width;

The GLM Procedure

Class Level Information

Class Levels Values

height 3 1 2 3

width 2 1 2

Number of observations 12
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means statement height

The GLM Procedure

Level of ------------sales------------

height N Mean Std Dev

1 4 44.0000000 3.16227766

2 4 67.0000000 3.74165739

3 4 42.0000000 2.94392029

means statement width

Level of ------------sales------------

width N Mean Std Dev

1 6 50.0000000 12.0664825

2 6 52.0000000 13.4313067

means statement height × width

Level of Level of ------------sales------------

height width N Mean Std Dev

1 1 2 45.0000000 2.82842712

1 2 2 43.0000000 4.24264069

2 1 2 65.0000000 4.24264069

2 2 2 69.0000000 2.82842712

3 1 2 40.0000000 1.41421356

3 2 2 44.0000000 2.82842712

Code the factor levels and plot

(We’re just doing this for a nice plot; it is not necessary for the analysis.)

data bread;

set bread;

if height eq 1 and width eq 1 then hw=’1_BR’;

if height eq 1 and width eq 2 then hw=’2_BW’;

if height eq 2 and width eq 1 then hw=’3_MR’;

if height eq 2 and width eq 2 then hw=’4_MW’;

if height eq 3 and width eq 1 then hw=’5_TR’;

if height eq 3 and width eq 2 then hw=’6_TW’;

title2 ’Sales vs. treatment’;

symbol1 v=circle i=none;

proc gplot data=bread;

plot sales*hw;
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Put the means in a new dataset

proc means data=bread;

var sales;

by height width;

output out=avbread mean=avsales;

proc print data=avbread;

Obs height width _TYPE_ _FREQ_ avsales

1 1 1 0 2 45

2 1 2 0 2 43

3 2 1 0 2 65

4 2 2 0 2 69

5 3 1 0 2 40

6 3 2 0 2 44

Plot the means

Recall the plotting syntax to get two separate lines for the two width levels. We can also do
a plot of sales vs width with three lines for the three heights.

This type of plot is called an “interaction plot” for reasons that we will see later.

symbol1 v=square i=join c=black;

symbol2 v=diamond i=join c=black;

symbol3 v=circle i=join c=black;

proc gplot data=avbread;

plot avsales*height=width;

plot avsales*width=height;
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The Interaction plots

Questions

Does the height of the display affect sales? If yes, compare top with middle, top with bottom,
and middle with bottom.
Does the width of the display affect sales?
Does the effect of height on sales depend on the width?
Does the effect of width on sales depend on the height?
If yes to the last two, that is an interaction.
Notice that these questions are not straightforward to answer using the cell means model.

Factor Effects Model

For the one-way ANOVA model, we wrote µi = µ+ τi where τi was the factor effect. For the
two-way ANOVA model, we have µi,j = µ+ αi + βj + (αβ)i,j, where

• µ is the overall (grand) mean - it is µ.. in KNNL

• αi is the main effect of Factor A

• βj is the main effect of Factor B

• (αβ)i,j is the interaction effect between A and B.

Note that (αβ)i,j is the name of a parameter all on its own and does not refer to the product
of α and β.
Thus the factor effects model is Yi,j,k = µ+ αi + βj + (αβ)i,j + ϵi,j,k.
A model without the interaction term, i.e. µi,j = µ+ αi + βj, is called an additive model.

Parameter Definitions

The overall mean is µ = µ.. =
∑

i,j µi,j

ab
under the zero-sum constraint (or µ = µab under the

“last = 0 constraint”).
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The mean for the ith level of A is µi. =
∑

j µi,j

b
, and the mean for the jth level of B is

µ.j =
∑

i µi,j

a
.

αi = µi. − µ and βj = µ.j − µ, so µi. = µ+ αi and µ.j = µ+ βj.
Note that the α’s and β’s act like the τ ’s in the single-factor ANOVA model.
(αβ)i,j is the difference between µi,j and µ+ αi + βj:

(αβ)i,j = µi,j − (µ+ αi + βj)

= µi,j − (µ+ (µi. − µ) + (µ.j − µ))

= µi,j − µi. − µ.j + µ

These equations also spell out the relationship between the cell means µi,j and the factor
effects model parameters.

Interpretation

µi,j = µ+ αi + βj + (αβ)i,j

• µ is the overall mean

• αi is an adjustment for level i of A.

• βj is an adjustment for level j of B.

• (αβ)i,j is an additional adjustment that takes into account both i and j.

Zero-sum Constraints

As in the one-way model, we now have too many parameters and need now several con-
straints:

α. =
∑
i

αi = 0

β. =
∑
j

βj = 0

(αβ).j =
∑
i

(αβ)i,j = 0 ∀j (for all j)

(αβ)i. =
∑
j

(αβ)i,j = 0 ∀i (for all i)
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Estimates for Factor-effects model

µ̂ = Ȳ... =

∑
i,j,k Yi,j,k

abn
µ̂i. = Ȳi.. and µ̂.j = Ȳ.j.

α̂i = Ȳi.. − Ȳ... and β̂j = Ȳ.j. − Ȳ...

ˆ(αβ)i,j = Ȳi,j. − Ȳi.. − Ȳ.j. + Ȳ...

SS for ANOVA Table

SSA =
∑

i,j,k α̂
2
i =

∑
i,j,k(Ȳi.. − Ȳ...)

2 = nb
∑

i(Ȳi.. − Ȳ )2 factor A sum of squares

SSB =
∑

i,j,k β̂
2
j =

∑
i,j,k(Ȳ.j. − Ȳ...)

2 = na
∑

j(Ȳ.j. − Ȳ )2 factor B sum of squares

SSAB =
∑

i,j,k
ˆ(αβ)

2

i,j = n
∑

i,j
ˆ(αβ)

2

i,j AB interaction sum of squares

SSE =
∑

i,j,k(Yi,j,k − Ȳi,j.)
2 =

∑
i,j,k e

2
i,j,k error sum of squares

SST =
∑

i,j,k(Yi,j,k − Ȳ...)
2 total sum of squares

SSM = SSA+ SSB + SSAB = SST − SSE model sum of squares

SST = SSA+ SSB + SSAB + SSE = SSM + SSE

df for ANOVA Table

dfA = a− 1

dfB = b− 1

dfAB = (a− 1)(b− 1)

dfE = ab(n− 1)

dfT = abn− 1 = nT − 1

dfM = a− 1 + b− 1 + (a− 1)(b− 1) = ab− 1

MS for ANOVA Table

(no surprises)

MSA = SSA/dfA

MSB = SSB/dfB

MSAB = SSAB/dfAB

MSE = SSE/dfE

MST = SST/dfT

MSM = SSM/dfM
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Hypotheses for two-way ANOVA

Test for Factor A Effect

H0 : αi = 0 for all i

Ha : αi ̸= 0 for at least one i

The F statistic for this test is FA = MSA/MSE and under the null hypothesis this follows
an F distribution with dfA, dfE.

Test for Factor B Effect

H0 : βj = 0 for all j

Ha : βj ̸= 0 for at least one j

The F statistic for this test is FB = MSB/MSE and under the null hypothesis this follows
an F distribution with dfB, dfE.

Test for Interaction Effect

H0 : (αβ)i,j = 0 for all (i, j)

Ha : (αβ)i,j ̸= 0 for at least one (i, j)

The F statistic for this test is FAB = MSAB/MSE and under the null hypothesis this
follows an F distribution with dfAB, dfE.

F -statistics for the tests

Notice that the denominator is always MSE and the denominator df is always dfE; the
numerators change depending on the test. This is true as long as the effects are fixed. That
is to say that the levels of our variables are of intrinsic interest in themselves - they are fixed
by the experimenter and not considered to be a sample from a larger population of factor
levels. For random effects we would need to do something different (more later).

p-values

• p-values are calculated using the FdfNumerator,dfDenominator distributions.

• If p ≤ 0.05 we conclude that the effect being tested is statistically significant.
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ANOVA Table

proc glm gives the summary ANOVA table first (model, error, total), then breaks down the
model into its components A, B, and AB.

Source df SS MS F
Model ab− 1 SSM MSM MSM/MSE
Error ab(n− 1) SSE MSE
Total abn− 1 SSTO MST

A a− 1 SSA MSA MSA/MSE
B b− 1 SSB MSB MSB/MSE
AB (a− 1)(b− 1) SSAB MSAB MSAB/MSE

KNNL Example: ANOVA with GLM

proc glm data=bread;

class height width;

model sales=height width height*width;

The GLM Procedure

Dependent Variable: sales

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 1580.000000 316.000000 30.58 0.0003

Error 6 62.000000 10.333333

Corrected Total 11 1642.000000

Source DF Type I SS Mean Square F Value Pr > F

height 2 1544.000000 772.000000 74.71 <.0001

width 1 12.000000 12.000000 1.16 0.3226

height*width 2 24.000000 12.000000 1.16 0.3747

Source DF Type III SS Mean Square F Value Pr > F

height 2 1544.000000 772.000000 74.71 <.0001

width 1 12.000000 12.000000 1.16 0.3226

height*width 2 24.000000 12.000000 1.16 0.3747

Sums of Squares

• Type I SS are again the sequential sums of squares (variables added in order). Thus
height explains 1544, width explains 12 of what is left, and the interaction explains 24
of what is left after that.

• Type III SS is like Type II SS (variable added last) but it also adjusts for differing
ni,j. So if all cells have the same number of observations (balanced designs are nice -
the variables height and width in our example are independent - no multicollinearity!)
SS1, SS2, and SS3 will all be the same.

• More details on SS later.
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Other output

R-Square Coeff Var Root MSE sales Mean

0.962241 6.303040 3.214550 51.00000

Results

• The interaction between height and width is not statistically significant (F = 1.16;
df = (2, 6); p = 0.37). NOTE: Check Interaction FIRST! If it is significant then main
effects are left in the model, even if not significant themselves! We may now go on to
examine main effects since our interaction is not significant.

• The main effect of height is statistically significant (F = 74.71; df = (2, 6); p =
4.75× 10−5).

• The main effect of width is not statistically significant (F = 1.16; df = (1, 6); p = 0.32)

Interpretation

• The height of the display affects sales of bread.

• The width of the display has no apparent effect.

• The effect of the height of the display is similar for both the regular and the wide
widths.

Additional Analyses

• We will need to do additional analyses to understand the height effect (factor A).

• There were three levels: bottom, middle and top. Based on the interaction picture, it
appears the middle shelf increases sales.

• We could rerun the data with a one-way anova and use the methods we learned in the
previous chapters to show this (e.g. tukey)..

Parameter Estimation

Cell Means Model

Yi,j,k = µi,j + ϵi,j,k, where

• µi,j is the theoretical mean or expected value of all observations in cell (i, j).

• ϵi,j,k ∼iid N(0, σ2)

• Yi,j,k ∼ N(µi,j,k, σ
2) are independent
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• There are ab+ 1 parameters of the model: µi,j; i = 1, . . . , a, j = 1, . . . , b and σ2.

For the bread example, estimate the µi,j with Ȳi,j. which we can get from the means height*width

statement:

µ̂1,1 = Ȳ1,1. = 45

µ̂1,2 = Ȳ1,2. = 43

µ̂2,1 = Ȳ2,1. = 65

µ̂2,2 = Ȳ2,2. = 69

µ̂3,1 = Ȳ3,1. = 40

µ̂3,2 = Ȳ3,2. = 44

As usual, σ2 is estimated by MSE.

Factor Effects Model

µi,j = µ+ αi + βj + (αβ)i,j, where

• µ is the overall (grand) mean - it is µ.. in KNNL

• αi is the main effect of Factor A

• βj is the main effect of Factor B

• (αβ)i,j is the interaction effect between A and B. Note that (αβ)i,j is the name of a
parameter all on its own and does not refer to the product of α and β.

Overall Mean

The overall mean is estimated as µ̂ = Ȳ... = 51 under the zero-sum constraining. (This is
sales mean in the glm output). You can get a whole dataset of this value by using a model

statement with no right hand side, e.g. model sales=; and storing the predicted values.

Main Effects

The main effect of A is estimated from the means height output. You can get a whole
dataset of the µ̂i. by running a model with just A, e.g. model sales = height; and storing
the predicted values.
To estimate the α’s, you then subtract µ̂ from each height mean.

µ̂1. = Ȳ1.. = 44 ⇒ α̂1 = 44− 51 = −7

µ̂2. = Ȳ2.. = 67 ⇒ α̂2 = 67− 51 = +16

µ̂3. = Ȳ3.. = 42 ⇒ α̂3 = 42− 51 = −9
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This says that “middle” shelf height has the effect of a relative increase in sales by 16, while
bottom and top decrease the sales by 7 and 9 respectively. Notice that these sum to zero so
that there is no “net” effect (there are only 2 free parameters, dfA = 2).

The main effect of B is similarly estimated from the means width output, or by storing
the predicted values of model sales = width; then subtract µ̂ from each height mean.

µ̂.1 = Ȳ.1. = 50 ⇒ β̂1 = 50− 51 = −1

µ̂.2 = Ȳ.2. = 52 ⇒ β̂2 = 52− 51 = +1

Wide display increases sales by an average of 1, while regular display decreases sales by 1
(they sum to zero so there’s only 1 free parameter, dfB = 1).

Interaction Effects

Recall that α̂βi,j = µ̂i,j−(µ̂+α̂i+β̂j). This is the difference between the treatment mean and
the value predicted by the overall mean and main effects only (i.e. by the additive model).
You can get the treatment means from the means height*width statement, or by the pre-
dicted values of model sales=height*width; then subtract the appropriate combination of
the previously estimated parameters.

ˆ(αβ)11 = Ȳ11. − (µ̂+ α̂1 + β̂1) = 45− (51− 7− 1) = +2

ˆ(αβ)12 = Ȳ12. − (µ̂+ α̂1 + β̂2) = 43− (51− 7 + 1) = −2

ˆ(αβ)21 = Ȳ21. − (µ̂+ α̂2 + β̂1) = 65− (51 + 16− 1) = −1

ˆ(αβ)22 = Ȳ22. − (µ̂+ α̂2 + β̂2) = 69− (51 + 16 + 1) = +1

ˆ(αβ)31 = Ȳ31. − (µ̂+ α̂3 + β̂1) = 40− (51− 9− 1) = −1

ˆ(αβ)32 = Ȳ32. − (µ̂+ α̂3 + β̂2) = 44− (51− 9 + 1) = +1

Notice that they sum in pairs (over j) to zero and also the sum over i is zero for each j.
Thus there are in reality only two free parameters here (dfAB = 2).

Doing this in SAS

Unlike proc reg, you are only allowed one model statement per call to glm. But this at
least saves you doing the arithmetic by hand.

proc glm data=bread;

class height width;

model sales=;

output out=pmu p=muhat;

proc glm data=bread;

class height width;
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model sales=height;

output out=pA p=Amean;

proc glm data=bread;

class height width;

model sales=width;

output out=pB p=Bmean;

proc glm data=bread;

class height width;

model sales=height*width;

output out=pAB p=ABmean;

data parmest;

merge bread pmu pA pB pAB;

alpha = Amean - muhat;

beta = Bmean - muhat;

alphabeta = ABmean - (muhat+alpha+beta);

proc print data=parmest;

Obs sales height width muhat Amean Bmean ABmean alpha beta alphabeta

1 47 1 1 51 44 50 45 -7 -1 2

2 43 1 1 51 44 50 45 -7 -1 2

3 46 1 2 51 44 52 43 -7 1 -2

4 40 1 2 51 44 52 43 -7 1 -2

5 62 2 1 51 67 50 65 16 -1 -1

6 68 2 1 51 67 50 65 16 -1 -1

7 67 2 2 51 67 52 69 16 1 1

8 71 2 2 51 67 52 69 16 1 1

9 41 3 1 51 42 50 40 -9 -1 -1

10 39 3 1 51 42 50 40 -9 -1 -1

11 42 3 2 51 42 52 44 -9 1 1

11 46 3 2 51 42 52 44 -9 1 1

Zero-sum Constraints

α. =
∑
i

αi = 0

β. =
∑
j

βj = 0

(αβ).j =
∑
i

(αβ)i,j = 0 ∀j (for all j)

(αβ).i =
∑
i

(αβ)i,j = 0 ∀i (for all i)

All of these constraints are satisfied by the above estimates.
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Notice how these main and interaction effects fit together to give back the treatment means:

45 = 51− 7− 1 + 2

43 = 51− 7 + 1− 2

65 = 51 + 16− 1− 1

69 = 51 + 16 + 1 + 1

40 = 51− 9− 1− 1

44 = 51− 9 + 1 + 1

SAS GLM Constraints

As usual, SAS has to do its constraints differently. As in one-way ANOVA, it sets the
parameter for the last category equal to zero.

αa = 0 (1 constraint)

βb = 0 (1 constraint)

(αβ)a,j = 0 for all j (b constraints)

(αβ)i,b = 0 for all i (a constraints)

The total is 1 + 1+ a+ b− 1 = a+ b+1 constraints (the constraint (αβ)a,b is counted twice
above).

Parameters and constraints

The cell means model has ab parameters for the means. The factor effects model has (1 +
a+ b+ ab) parameters.

• An intercept (1)

• Main effect of A (a)

• Main effect of B (b)

• Interaction of A and B (ab)

There are 1 + a + b + ab parameters and 1 + a + b constraints, so there are ab remaining
unconstrained parameters (or sets of parameters), the same number of parameters for the
means in the cell means model. This is the number of parameters we can actually estimate.
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KNNL Example

KNNL page 823 (nknw817b.sas)
Y is the number of cases of bread sold
A is the height of the shelf display, a = 3 levels: bottom, middle, top
B is the width of the shelf display, b = 2: regular, wide
n = 2 stores for each of the 3× 2 treatment combinations

proc glm with solution

We will get different estimates for the parameters here because a different constraint system
is used.

proc glm data=bread;

class height width;

model sales=height width height*width/solution;

means height*width;

Solution output

Intercept 44.00000000 B* = µ̂

height 1 -1.00000000 B = α̂1

height 2 25.00000000 B* = α̂2

height 3 0.00000000 B = α̂3

width 1 -4.00000000 B = β̂1

width 2 0.00000000 B = β̂2

height*width 1 1 6.00000000 B = ˆ(αβ)1,1

height*width 1 2 0.00000000 B = ˆ(αβ)1,2

height*width 2 1 0.00000000 B = ˆ(αβ)2,1

height*width 2 2 0.00000000 B = ˆ(αβ)2,2

height*width 3 1 0.00000000 B = ˆ(αβ)3,1

height*width 3 2 0.00000000 B = ˆ(αβ)3,2

It also prints out standard errors, t-tests and p-values for testing whether each parameter is
equal to zero. That output has been omitted here but the significant ones have been starred.
Notice that the last α and β are set to zero, as well as the last α̂β in each category. They
no longer sum to zero.

Means

The estimated treatment means are µ̂i,j = µ̂+ α̂i + β̂j + ˆ(αβ)i,j.

height width N Mean

1 1 2 45.0000000 = 44 - 1 - 4 + 6
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1 2 2 43.0000000 = 44 - 1 + 0 + 0

2 1 2 65.0000000 = 44 + 25 - 4 + 0

2 2 2 69.0000000 = 44 + 25 + 0 + 0

3 1 2 40.0000000 = 44 + 0 - 4 + 0

3 2 2 44.0000000 = 44 + 0 + 0 + 0

ANOVA Table

Source df SS MS F
A a− 1 SSA MSA MSA/MSE
B b− 1 SSB MSB MSB/MSE
AB (a− 1)(b− 1) SSAB MSAB MSAB/MSE
Error ab(n− 1) SSE MSE
Total abn− 1 SSTO MST

Expected Mean Squares

E(MSE) = σ2

E(MSA) = σ2 +
nb

a− 1

∑
i

α2
i

E(MSB) = σ2 +
na

b− 1

∑
j

β2
j

E(MSAB) = σ2 +
n

(a− 1)(b− 1)

∑
i,j

(αβ)2i,j

Here, αi, βj, and (αβ)i,j are defined with the usual zero-sum constraints.

Analytical strategies

• Run the model with main effects and the two-way interaction.

• Plot the data, the means and look at the residuals.

• Check the significance test for the interaction.

What if AB interaction is not significant?

If the AB interaction is not statistically significant, you could rerun the analysis without
the interaction (see discussion of pooling KNNL Section 19.10). This will put the SS and
df for AB into Error. Results of main effect hypothesis tests could change because MSE
and denominator df have changed (more impact with small sample size). If one main effect
is not significant...
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• There is no evidence to conclude that the levels of this explanatory variable are asso-
ciated with different means of the response variable.

• Model could be rerun without this factor giving a one-way ANOVA.

If neither main effect is significant...

• Model could be run as Y=; (i.e. no factors at all)

• A one population model

• This seems silly, but this syntax can be useful for getting parameter estimates in the
preferred constraint system (see below).

For a main effect with more than two levels that is significant, use the means statement with
the Tukey multiple comparison procedure. Contrasts and linear combinations can also be
examined using the contrast and estimate statements.

If AB interaction is significant but not important

• Plots and a careful examination of the cell means may indicate that the interaction is
not very important even though it is statistically significant.

• For example, the interaction effect may be much smaller in magnitude than the main
effects; or may only be apparent in a small number of treatments.

• Use the marginal means for each significant main effect to describe the important
results for the main effects.

• You may need to qualify these results using the interaction.

• Keep the interaction in the model.

• Carefully interpret the marginal means as averages over the levels of the other factor.

• KNNL also discuss ways that transformations can sometimes eliminate interactions.

If AB interaction is significant and important

The interaction effect is so large and/or pervasive that main effects cannot be interpreted
on their own.
Options include the following:

• Treat as a one-way ANOVA with ab levels; use Tukey to compare means; contrasts
and estimate can also be useful.

• Report that the interaction is significant; plot the means and describe the pattern.

• Analyze the levels of A for each level of B (use a by statement) or vice versa
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Strategy for the bread example

Previous results with interaction

The GLM Procedure

Dependent Variable: sales

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 1580.000000 316.000000 30.58 0.0003

Error 6 62.000000 10.333333

Corrected Total 11 1642.000000

Source DF Type I SS Mean Square F Value Pr > F

height 2 1544.000000 772.000000 74.71 <.0001

width 1 12.000000 12.000000 1.16 0.3226

height*width 2 24.000000 12.000000 1.16 0.3747

Rerun without interaction

proc glm data=bread;

class height width;

model sales=height width;

means height / tukey lines;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 1556.000000 518.666667 48.25 <.0001

Error 8 86.000000 10.750000

Corrected Total 11 1642.000000

Source DF Type I SS Mean Square F Value Pr > F

height 2 1544.000000 772.000000 71.81 <.0001

width 1 12.000000 12.000000 1.12 0.3216

Pooling SS

Data = Model +Residual
When we remove a term from the ‘model’, we put this variation and the associated df into
‘residual’.
This is called pooling. A benefit is that we have more df for error and a simpler model. A
drawback is that if the SS for that term is large it will increase the SSE too much. Therefore
we would only want to do this for insignificant terms, i.e. those with small SS, most often
the interaction term.
This strategy can be beneficial in small experiments where the dfE is very small.
Do not remove the main effect and leave the interaction term. Typically we are pooling SSE
and SSAB.

In our example, MSh and MSw have not changed, but MSE, F ’s, and p-values have
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changed. In this case MSE went up, but in other cases it might go down.
Note SSE: 62 + 24 = 86; and dfE: 6 + 2 = 8.

Tukey Output

Mean N height

A 67.000 4 2

B 44.000 4 1

B

B 42.000 4 3

As we noticed from the plot, the middle shelf is significantly different (better in terms of
sales if we look at the plot) from the other two.

Specification of contrast and estimate statements

• When using the contrast statement, you can double check your results with the
estimate statement.

• The order of factors is determined by the order in the class statement, not the order
in the model statement.

• Contrasts to be examined should come a priori from research questions,
not from questions that arise after looking at the plots and means.

Contrast/Estimate Example

For the bread example, suppose we want to compare the average of the two height = middle
cells with the average of the other four cells; i.e. look at “eye-level” vs. “not eye-level”
(for the average person). With this approach, the contrast should correspond to a research
question formulated before examining the data. First, formulate the question as a contrast
in terms of the cell means model:

H0 :
(µ2,1 + µ2,2)

2
=

(µ1,1 + µ1,2 + µ3,1 + µ3,2)

4

or L = 0, where

L = −0.25µ1,1 − 0.25µ1,2 + 0.5µ2,1 + 0.5µ2,2 − 0.25µ3,1 − 0.25µ3,2
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Then translate the contrast into the factor effects model using µi,j = µ+αi+βj +(αβ)i,j

−0.25µ1,1 = −0.25(µ+ α1 + β1 + αβ1,1)

−0.25µ1,2 = −0.25(µ+ α1 + β2 + αβ1,2)

0.50µ2,1 = +0.50(µ+ α2 + β1 + αβ2,1)

0.50µ2,2 = +0.50(µ+ α2 + β2 + αβ2,2)

−0.25µ3,1 = −0.25(µ+ α3 + β1 + αβ3,1)

−0.25µ3,2 = −0.25(µ+ α3 + β2 + αβ3,2)

L = (−0.5α1 + α2 − 0.5α3)

+(−0.25αβ1,1 − 0.25αβ1,2 + 0.5αβ2,1 + 0.5αβ2,2 − 0.25αβ3,1 − 0.25αβ3,2)

Note the β’s do not appear in this contrast because we are looking at height only and
averaging over width (this would not necessarily be true in an unbalanced design).

proc glm with contrast and estimate

(nknw864.sas)

proc glm data=bread;

class height width;

model sales=height width height*width;

contrast ’middle vs others’

height -.5 1 -.5

height*width -.25 -.25 .5 .5 -.25 -.25;

estimate ’middle vs others’

height -.5 1 -.5

height*width -.25 -.25 .5 .5 -.25 -.25;

means height*width;

Output

Contrast DF Contrast SS Mean Square F Value Pr > F

middle vs others 1 1536.000000 1536.000000 148.65 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

middle vs others 24.0000000 1.96850197 12.19 <.0001

Check with means

1 1 45

1 2 43

2 1 65

2 2 69

3 1 40

3 2 44
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L̂ =
(65 + 69)

2
− (45 + 43 + 40 + 44)

4
= 24

Combining with Quantitative Factors

Sometimes a factor can be interpreted as either categorical or quantitative. For example,
“low, medium, high” or actual height above floor. If there are replicates for a quantitative
factor we could use either regression or ANOVA. Recall that GLM will treat a factor as
quantitative unless it is listed in the class statement. Notice that you can use ANOVA
even if the relationship with the quantitative variable is non-linear, whereas with regression
you would have to find that relationship.

One Quantitative factor and one categorical

• Plot the means vs the quantitative factor for each level of the categorical factor

• Consider linear and quadratic terms for the quantitative factor

• Consider different slopes for the different levels of the categorical factor; i.e, interaction
terms.

• Lack of fit analysis can be useful (recall trainhrs example).

Two Quantitative factors

• Plot the means vs A for each level of B

• Plot the means vs B for each level of A

• Consider linear and quadratic terms.

• Consider products to allow for interaction.

• Lack of fit analysis can be useful.

Chapter 20: One Observation per Cell

For Yi,j,k, as usual

• i denotes the level of the factor A

• j denotes the level of the factor B

• k denotes the kth observation in cell (i, j)

• i = 1, . . . , a levels of factor A
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• j = 1, . . . , b levels of factor B

Now suppose we have n = 1 observation in each cell (i, j). We can no longer estimate
variances separately for each treatment. The impact is that we will not be able to estimate
the interaction terms; we will have to assume no interaction.

Factor Effects Model

µi,j = µ+ αi + βj

• µ is the overall mean

• αi is the main effect of A

• βj is the main effect of B

Because we have only one observation per cell, we do not have enough information to estimate
the interaction in the usual way. We assume no interaction.

Constraints

• Text:
∑

αi = 0 and
∑

βj = 0

• SAS glm: αa = βb = 0

ANOVA Table

Source df SS MS F
A a− 1 SSA MSA MSA/MSE
B b− 1 SSB MSB MSB/MSE
Error (a− 1)(b− 1) SSE MSE
Total ab− 1 SSTO MST

Expected Mean Squares

E(MSE) = σ2

E(MSA) = σ2 +
b

a− 1

∑
i

α2
i

E(MSB) = σ2 +
a

b− 1

∑
j

β2
j

Here, αi and βj are defined with the zero-sum factor effects constraints.
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KNNL Example

• KNNL page 882 (nknw878.sas)

• Y is the premium for auto insurance

• A is the size of the city, a = 3 levels: small, medium and large

• B is the region, b = 2: East, West

• n = 1

• the response is the premium charged by a particular company

The data

data carins;

infile ’H:\System\Desktop\CH21TA02.DAT’;

input premium size region;

if size=1 then sizea=’1_small ’;

if size=2 then sizea=’2_medium’;

if size=3 then sizea=’3_large ’;

proc print data=carins;

Obs premium size region sizea

1 140 1 1 1_small

2 100 1 2 1_small

3 210 2 1 2_medium

4 180 2 2 2_medium

5 220 3 1 3_large

6 200 3 2 3_large

proc glm data=carins;

class sizea region;

model premium=sizea region/solution;

means sizea region / tukey;

output out=preds p=muhat;

The GLM Procedure

Class Level Information

Class Levels Values

sizea 3 1_small 2_medium 3_large

region 2 1 2

Number of observations 6

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 10650.00000 3550.00000 71.00 0.0139
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Error 2 100.00000 50.00000

Corrected Total 5 10750.00000

Notice that we only have 5 total df. If we had interaction in the model it would use up
another 2 df and there would be 0 left to estimate error.

R-Square Coeff Var Root MSE premium Mean

0.990698 4.040610 7.071068 175.0000

Source DF Type I SS Mean Square F Value Pr > F

sizea 2 9300.000000 4650.000000 93.00 0.0106

region 1 1350.000000 1350.000000 27.00 0.0351

Both main effects are significant.

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 195.0000000 B 5.77350269 33.77 0.0009

sizea 1_small -90.0000000 B 7.07106781 -12.73 0.0061

sizea 2_medium -15.0000000 B 7.07106781 -2.12 0.1679

sizea 3_large 0.0000000 B . . .

region 1 30.0000000 B 5.77350269 5.20 0.0351

region 2 0.0000000 B . . .

Check vs predicted values (µ̂)

region sizea muhat

1 1 small 135 = 195− 90 + 30
2 1 small 105 = 195− 90
1 2 medium 210 = 195− 15 + 30
2 2 medium 180 = 195− 15
1 3 large 225 = 195 + 30
2 3 large 195 = 195

Multiple Comparisons Size

Mean N sizea

A 210.000 2 3_large

A

A 195.000 2 2_medium

B 120.000 2 1_small

The ANOVA results told us that size was significant; now we additionally know that small
is different from medium and large, but that medium and large do not differ significantly.

Multiple Comparisons Region

Mean N region

A 190.000 3 1

B 160.000 3 2
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The ANOVA results told us that these were different since region was significant (only two
levels) . . .

So this gives us no new information.

Plot the data

symbol1 v=’E’ i=join c=black;

symbol2 v=’W’ i=join c=black;

title1 ’Plot of the data’;

proc gplot data=preds;

plot premium*sizea=region;

The lines are not quite parallel, but the interaction, if any, does not appear to be substantial.
If it was, our analysis would not be valid and we would need to collect more data.

Plot the estimated model

title1 ’Plot of the model estimates’;

proc gplot data=preds;

plot muhat*sizea=region;
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Notice that the model estimates produce completely parallel lines.

Tukey test for additivity

If we believe interaction is a problem, this is a possible way to test it without using up all
our df.
One additional term is added to the model (θ), replacing the (αβ)i,j with the product:

µi,j = µ+ αi + βj + θαiβj

We use one degree of freedom to estimate θ, leaving one left to estimate error. Of course,
this only tests for interaction of the specified form, but it may be better than nothing.

There are other variations on this idea, such as θiβj.

Find µ̂ (grand mean)

(nknw884.sas)

proc glm data=carins;

model premium=;

output out=overall p=muhat;

proc print data=overall;

Obs premium size region muhat

1 140 1 1 175

2 100 1 2 175

3 210 2 1 175

4 180 2 2 175

5 220 3 1 175

6 200 3 2 175

27



Find µ̂A (treatment means)

proc glm data=carins;

class size;

model premium=size;

output out=meanA p=muhatA;

proc print data=meanA;

muhat

Obs premium size region A

1 140 1 1 120

2 100 1 2 120

3 210 2 1 195

4 180 2 2 195

5 220 3 1 210

6 200 3 2 210

Find µ̂B (treatment means)

proc glm data=carins;

class region;

model premium=region;

output out=meanB p=muhatB;

proc print data=meanB;

muhat

Obs premium size region B

1 140 1 1 190

2 100 1 2 160

3 210 2 1 190

4 180 2 2 160

5 220 3 1 190

6 200 3 2 160

Combine and Compute

data estimates;

merge overall meanA meanB;

alpha = muhatA - muhat;

beta = muhatB - muhat;

atimesb = alpha*beta;

proc print data=estimates;

var size region alpha beta atimesb;

Obs size region alpha beta atimesb

1 1 1 -55 15 -825

2 1 2 -55 -15 825
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3 2 1 20 15 300

4 2 2 20 -15 -300

5 3 1 35 15 525

6 3 2 35 -15 -525

proc glm data=estimates;

class size region;

model premium=size region atimesb/solution;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 10737.09677 2684.27419 208.03 0.0519

Error 1 12.90323 12.90323

Corrected Total 5 10750.00000

R-Square Coeff Var Root MSE premium Mean

0.998800 2.052632 3.592106 175.0000

Source DF Type I SS Mean Square F Value Pr > F

size 2 9300.000000 4650.000000 360.37 0.0372

region 1 1350.000000 1350.000000 104.62 0.0620

atimesb 1 87.096774 87.096774 6.75 0.2339

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 195.0000000 B 2.93294230 66.49 0.0096

size 1 -90.0000000 B 3.59210604 -25.05 0.0254

size 2 -15.0000000 B 3.59210604 -4.18 0.1496

size 3 0.0000000 B . . .

region 1 30.0000000 B 2.93294230 10.23 0.0620

region 2 0.0000000 B . . .

atimesb -0.0064516 0.00248323 -2.60 0.2339

The test for atimesb is testing H0 : θ = 0, which is not rejected. According to this, the
interaction is not significant. Notice the increased p-values on the main effect tests, because
we used up a df.
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