
Statistics 512: Applied Linear Models

Topic 5

Topic Overview

This topic will cover

• Diagnostics (§10)

• Remedial Measures (§11)

• Qualitative Explanatory Variables (§8.3)

Chapter 10: Regression Diagnostics

We now have more complicated models. The ideas (especially with regard to the residuals)
of Chapter 3 still apply, but we will also concern ourselves with the detection of outliers and
influential data points. The following are often used for the identification of such points and
can be easily obtained from SAS:

• Studentized deleted residuals

• Hat matrix diagonals

• Dffits, Cook’s D, DFBETAS

• Variance inflation factor

• Tolerance

Life Insurance Example

• We will use this as a running example in this topic.

• References: page 386 in KNNL and nknw364.sas.

• Y = amount of insurance (in $1000)

• X1 = Average Annual Income (in $1000)

• X2 = Risk Aversion Score (0-10)

• n = 18 managers were surveyed.
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data insurance;

infile ’H:\System\Desktop\Ch09ta01.dat’;

input income risk amount;

proc reg data=insurance;

model amount=income risk/r influence;

Just to get oriented...

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 173919 86960 542.33 <.0001

Error 15 2405.14763 160.34318

Corrected Total 17 176324

Root MSE 12.66267 R-Square 0.9864

Dependent Mean 134.44444 Adj R-Sq 0.9845

Coeff Var 9.41851

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -205.71866 11.39268 -18.06 <.0001

income 1 6.28803 0.20415 30.80 <.0001

risk 1 4.73760 1.37808 3.44 0.0037

Model is significant and R2 = 0.9864 – quite high – both variables are significant.
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The Usual Residual Plots

The plot statement generates the following two residual plots (in the past we have used
gplot to create these). These residuals are for the full model. Note the weird syntax
r.*(income risk). It prints the estimated equation and the R2 on it automatically, which
is kind of nice. This is an alternative to saving the residuals and using gplot, although you
have less control over the output.

title1 ’Insurance’;

proc reg data=insurance;

model amount=income risk/r partial;

plot r.*(income risk);

It looks like there is something quadratic going on with income in the full model. The
residuals for risk look okay.
(We should also do a qqplot.)

Types of Residuals

Regular Residuals

• ei = Yi − Ŷi (the usual).

• These are given in the SAS output under the heading “Residual” when you use the
r option in the model statement, and to store them use r = (name) in an output

statement.
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Studentized Residuals

• e∗i =
ei√

MSE×(1−hi,i)

• Studentized means divided by its standard error. (When you ignore the hi,i and just
divide by Root MSE they are called semistudentized residuals.)

• Recall that s2{e} = MSE(I−H), so that s2{ei} = MSE(1 − hi,i). These follow a
t(n−p) distribution if all assumptions are met.

• Studentized residuals are shown in the SAS output under the heading “Student Residual.”
In the output, “Residual” / “Std Error Residual” = “Student Residual”. SAS
also prints a little bar graph of the studentized residuals so you can identify large ones
quickly.

• In general, values larger than about 3 should be investigated. (The actual cutoff
depends on a t distribution and the sample size; see below.) These are computed using
the ‘r’ option and can be stored using student=(name).

Studentized Deleted Residuals

• The idea: delete case i and refit the model. Compute the predicted value and residual
for case i using this model. Compute the “studentized residual” for case i. (Don’t do
this literally.)

• We use the notation (i) to indicate that case i has been deleted from the computations.

• di = Yi − Ŷi(i) is the deleted residual. (Also used for PRESS criterion)

• Interestingly, it can be calculated from the following formula without re-doing the
regression with case i removed. It turns out that di =

ei
(1−hi,i)

, where hi,i is the ith

diagonal element of the Hat matrix H. Its estimated variance is s2{di} =
MSE(i)

(1−hi,i)
.

• The studentized deleted residual is ti =
di√
s2{di}

= ei
(1−hi,i)

√
(1−hi,i)

MSE(i)
= ei√

MSE(i)(1−hi,i)
.

• MSE(i) can be computed by solving this equation: (n−p)MSE = (n−p−1)MSE(i)+
e2i

1−hi,i
.

• The ti are shown in the SAS output under the heading “Rstudent”, and the hi,i under
the heading “Hat Diag H”. To calculate these, use the influence option and to store
them use rstudent=(name).

• We can use these to test (using a Bonferroni correction for n tests) whether the case
with the largest studentized residual is an outlier (see page 396).
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proc reg data=insurance;

model amount=income risk/r influence;

Output Statistics

Dep Var Std Error Student

Obs amount Residual Residual Residual -2-1 0 1 2 RStudent

1 91.0000 -14.7311 12.216 -1.206 | **| | -1.2259

2 162.0000 -10.9321 12.009 -0.910 | *| | -0.9048

3 11.0000 24.1845 11.403 2.121 | |**** | 2.4487

4 240.0000 -4.2780 11.800 -0.363 | | | -0.3518

5 73.0000 -2.5522 12.175 -0.210 | | | -0.2028

6 311.0000 10.3417 10.210 1.013 | |** | 1.0138

7 316.0000 17.8373 7.780 2.293 | |**** | 2.7483

8 154.0000 -9.9763 11.798 -0.846 | *| | -0.8371

9 164.0000 -10.3084 12.239 -0.842 | *| | -0.8336

10 54.0000 1.0560 12.009 0.0879 | | | 0.0850

11 53.0000 4.9301 11.878 0.415 | | | 0.4033

12 326.0000 12.4728 10.599 1.177 | |** | 1.1933

13 55.0000 1.8081 12.050 0.150 | | | 0.1451

14 130.0000 -15.6744 11.258 -1.392 | **| | -1.4415

15 112.0000 -5.8634 12.042 -0.487 | | | -0.4742

16 91.0000 -12.2985 12.162 -1.011 | **| | -1.0120

17 14.0000 14.5636 11.454 1.271 | |** | 1.3004

18 63.0000 -0.5798 12.114 -0.0479 | | | -0.0462

Test for Outliers Using Studentized Deleted Residuals

• should use the Bonferroni correction since you are looking at all n residuals

• studentized deleted residuals follow a t(n−p−1) distribution since they are based on n−1
observations

• If a studentized deleted residual is bigger in magnitude than tn−p−1(1 − α
2n
) then we

identify the case as a possible outlier based on this test.

• In our example, take α = 0.05 . Since n = 18 and p = 3, we use t14(0.9986) ≈ 3.6214.

• None of the observations may be called an outlier based on this test.

• Note that if we neglected to use the Bonferroni correction our cutoff would be 2.1448
which would detect obs. 3 and 7, but this would not be correct.

• Note that “identifying an outlier” does not mean that you then automatically remove
the observation. It just means you should take a closer look at that observation and
check for reasons why it should possibly be removed. It could also mean that you have
problems with normality and/or constant variance in your dataset and should consider
a transformation.
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What to Look For

When we examine the residuals we are looking for

• Outliers

• Non-normal error distributions

• Influential observations

Other Measures of Influential Observations

The influence option calculates a number of other quantities. We won’t spend a whole lot
of time on these, but you might be wondering what they are.

Output Statistics

Cook’s Hat Diag ----------DFBETAS----------

Obs D H DFFITS Intercept income risk

1 0.036 0.0693 -0.3345 -0.1179 0.1245 -0.1107

2 0.031 0.1006 -0.3027 -0.0395 -0.1470 0.1723

3 0.349 0.1890 1.1821 0.9594 -0.9871 0.1436

4 0.007 0.1316 -0.1369 0.0770 -0.0821 -0.0410

5 0.001 0.0756 -0.0580 -0.0394 0.0286 0.0011

6 0.184 0.3499 0.7437 -0.5298 0.3048 0.5125

7 2.889 0.6225 3.5292 -0.3649 2.6598 -2.6751

8 0.036 0.1319 -0.3263 0.0816 0.0254 -0.2452

9 0.017 0.0658 -0.2212 0.0308 -0.0672 -0.0366

10 0.000 0.1005 0.0284 0.0238 -0.0138 -0.0092

11 0.008 0.1201 0.1490 0.0863 -0.1057 0.0536

12 0.197 0.2994 0.7801 -0.5820 0.4495 0.4096

13 0.001 0.0944 0.0468 0.0348 -0.0294 0.0014

14 0.171 0.2096 -0.7423 -0.2706 -0.2656 0.6269

15 0.008 0.0957 -0.1543 -0.0164 0.0532 -0.0953

16 0.029 0.0775 -0.2934 -0.1810 0.0258 0.1424

17 0.120 0.1818 0.6129 0.5803 -0.3608 -0.2577

18 0.000 0.0849 -0.0141 -0.0101 0.0080 -0.0001

* 0.826 0.3333 0.8165 1 (or 0.4714)

Cook’s Distance

• This measures the influence of case i on all of the Ŷi’s. It is a standardized version of
the sum of squares of the differences between the predicted values computed with and
without case i.

Di =

∑n
j=1(Ŷj − Ŷj(i))

2

p×MSE
=

e2i
p×MSE

× hii

(1− hii)2

• Large values suggest an observation has a lot of influence. Cook’s D values are obtained
via the ‘r’ option in the model statement and can be stored with cookd=(name).

6



• here “large” means larger than the 50th percentile of the Fp,n−p distribution; for our
example F3,15(0.5) = 0.826 .

Hat Matrix Diagonals

• hi,i is a measure of how much Yi is contributing to the prediction of Ŷi. This depends
on the distance between the X values for the ith case and the means of the X values.
Observations with extreme values for the predictors will have more influence.

• hi,i is sometimes called the leverage of the ith observation. It always holds that 0 ≤
hi,i ≤ 1 and

∑
hi,i = p.

• A large value of hi,i suggests that the ith case is distant from the center of all X’s.
The average value is p/n. Values far from this average (say, twice as large) point to
cases that should be examined carefully because they may have a substantial influence
on the regression parameters.

• For our example, 2p
n

= 6
18

= 0.333 so values larger than 0.333 would be considered
large. Observations #6, #7, and maybe #12 seem to have a lot of influence. These
can be further examined with the next set of influence statistics.

• The hat matrix diagonals are displayed with the influence option and can be stored
with h=(name) .

DEFITS

• Another measure of the influence of case i on its own fitted value Ŷi. It is a stan-
dardized version of the difference between Ŷi computed with and without case i. It is
closely related to hi,i (consult the text for formula if you are interested). Values larger
than 1 (for small to medium size datasets) or 2

√
p
n
(for large datasets) are considered

influential. (In our example, 2
√

p
n
= 0.816 but this is a small dataset so we would use

1).

• these are calculated with the influence option and can be stored with dffits=(name).

DFBETAS

• A measure of the influence of case i on each of the regression coefficients.

• It is a standardized version of the difference between the regression coefficient computed
with and without case i.

• Values larger than 1 (for small-to-medium datasets) or 2√
n
(for large datasets) are

considered influential. In this example 2√
n
= 0.4714, but we would use 1 as a cutoff.
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• According to all these measures, observation #7 appears to be influential. This is not
surprising because it has the smallest risk (1) and the highest income (79.380) of all
the observations.

Measures of Multicollinearity

We already know about several identifying factors in dealing with multicollinearity:

• regression coefficients change greatly when predictors are included/excluded from the
model

• significant F -test but no significant t-tests for β’s (ignoring intercept)

• regression coefficients that don’t “make sense”, i.e. don’t match scatterplot and/or
intuition

• Type I and II SS very different

• predictors that have pairwise correlations

There are two other numerical measures that can be used: vif and tolerance

Variance Inflation Factor

• The VIF is related to the variance of the estimated regression coefficients.

• V IFk = 1
1−R2

k
where R2

k is the coefficient of multiple determination obtained in a

regression where all other explanatory variables are used to predict Xk. We calculate
it for each explanatory variable.

• If this R2
k is large that means Xk is well predicted by the other X’s. One suggested

rule is that a value of 10 or more for VIF indicates excessive multicollinearity. This
corresponds to an R2

k of ≥ 0.9. Use the vif option to the model statement.

Tolerance

• TOL = 1 − R2
k = 1

V IF
. A tolerance of < 0.1 is the same as a VIF > 10, indicating

excessive multicollinearity. Use the TOL option to the model statement. Described in
comment on p 388.

Typically you would look at either vif or tol, not both.

proc reg data=insurance;

model amount=income risk/tol vif;
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Parameter Estimates

Variable Tolerance Inflation

Intercept . 0

income 0.93524 1.06925

risk 0.93524 1.06925

These values are quite acceptable.

Partial Regression Plots

• Also called partial residual plots, added variable plots or adjusted variable plots.

• Related to partial correlations, they help you figure out the net effect of Xi on Y , given
that other variables are in the model.

• One plot for each Xi. To get the plot, run two regressions. In the first, use the
other X’s to predict Y . In the second use the other X’s to predict Xi. Then plot
the residuals from the first regression against the residuals from the second regression.
The correlation of these residuals was called the partial correlation coefficient.

• A linear pattern in this type of plot indicates that the variable would be useful in the
model, and the slope is its regression coefficient. The plots shows the strength of a
marginal relationship between Y and Xi in the full model. If the partial residual plot
for Xi appears “flat”, Xi may not need to be included in the model. If they appear
like a straight line (with non-zero slope), then that suggests Xi should be included as
a linear term, etc.

• Nonlinear relationships, heterogeneous variances, and outliers may also be detected in
these plots.

• In SAS, the ‘partial’ option in the model statement can be used to get a partial
residual plot. This is not a very good plot (useful for first glance, but not something
you would want to publish), so it is useful to know how to create a better one.

Coding for the poor resolution plot (they’re kind of ugly):

proc reg data=insurance;

model amount=income risk/r partial;

(The number labels on the plot are the first digit of income because we said “id income”.)
The axes are labelled amount and income, but we are actually plotting the residuals for
amount (predicted by risk) vs. the residuals for income (when predicted by risk)

(The number labels on the plot are the first digit of income because we said “id income”.)
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Obtaining Partial Regression Plots

title1 ’Partial residual plot’;

title2 ’for risk’;

symbol1 v=circle i=rl;

axis1 label=(’Risk Aversion Score’);

axis2 label=(angle=90 ’Amount of Insurance’);

proc reg data=insurance;

model amount risk = income;

output out=partialrisk r=resamt resrisk;

proc gplot data=partialrisk;

plot resamt*resrisk / haxis=axis1 vaxis=axis2 vref = 0;

run;

The y-axis has the residuals for the model insur = income. The x-axis has the residuals
for the model risk = income (i.e. treat risk as a Y -variable).
The residuals compared to the horizontal line are the residuals for the model that omits
risk as a variable. The residuals compared to the “regression” line are the residuals for the
model that includes risk as a variable. Are the points closer to the regression line than
to the x-axis? This helps decide if there is much to be gained (i.e. smaller residuals) by
including risk in the model. In this case risk clearly should be included.

Similar code for income:

axis3 label=(’Income’);

title2 ’for income’;

proc reg data=insurance;

model amount income = risk;

output out=partialincome r=resamt resinc;
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proc gplot data=partialincome;

plot resamt*resinc / haxis=axis3 vaxis=axis2 vref = 0;

The resulting plot has on the y-axis the residuals for the model insur = risk, and the
x-axis has the residuals for the model income = risk. This is the same as the text plot.

This plot shows, first of all, that income is clearly needed in the model. Secondly, we can see
that the effect of income (when risk is included) is mostly linear. Third, a close look shows
that the residuals curve a bit around the straight line, so that there is a quadratic effect.
However, the quadratic effect is small compared to the linear one. A quadratic term will
improve the fit of the model, but it may not improve it much. We would have to weigh the
improved fit vs. the interpretability and possible multicollinearity problems when deciding
on the final model.

Here’s what happens when we include the square of (centered) income:

data quad;

set insurance;

sinc = income;

proc standard data=quad out=quad mean=0;

var sinc;

data quad;

set quad;

incomesq = sinc*sinc;

title1 ’Residuals for quadratic model’;

proc reg data=quad;

model amount = income risk incomesq / r vif;

plot r.*(income risk incomesq);
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Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 176249 58750 10958.0 <.0001

Error 14 75.05895 5.36135

Corrected Total 17 176324

Root MSE 2.31546 R-Square 0.9996

Dependent Mean 134.44444 Adj R-Sq 0.9995

Coeff Var 1.72224

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 -200.81134 2.09649 -95.78 <.0001 0

income 1 5.88625 0.04201 140.11 <.0001 1.35424

risk 1 5.40039 0.25399 21.26 <.0001 1.08627

incomesq 1 0.05087 0.00244 20.85 <.0001 1.26657

For the two-variable model, R2 was 0.9864, so while this is an improvement, it does not
make a big difference. Our assumptions are now more closely met, which is good, but it also
appears an outlier now exists where it did not before.

Regression Diagnostics Summary

Check normality of the residuals with a normal quantile plot.
Plot the residuals versus predicted values, versus each of the X’s and (when appropriate)
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versus time
Examine the partial regression plots for each X variable.
Examine

• the studentized deleted residuals (RSTUDENT in the output)

• The hat matrix diagonals

• Dffits, Cook’s D, and the DFBETAS

• Check observations that are extreme on these measures relative to the other observa-
tions

• Examine the tolerance or VIF for each X

If there are variables with low tolerance / high VIF, or if any of the other indications of
multicollinearity problems are present, you may need to do some model building:

• Recode variables

• Variable selection

Remedial Measures (Chapter 11)

• Weighted Regression

• Robust Regression

• Nonparametric Regression

• Bootstrapping

Weighted Regression

Maximum Likelihood

Yi = β0 + β1Xi + ϵi, Var(ϵi) = σ2
i

Yi ∼ N(β0 + β1Xi, σ
2
i )

fi =
1√
2πσi

e
− 1

2

(
Yi−β0−β1Xi

σi

)2

L = f1 × f2 × · · · × fn – likelihood function

• Variance is no longer constant

• Maximization of L with respect to β’s.

• Equivalent to minimization of
∑

1
σ2
i
(Yi − β0 − β1Xi,1 − . . .− βp−1Xi,p−1)

2
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Weighted Least Squares

• Used to deal with unequal variances:

σ2{ϵ} =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

0 0 · · · σ2
n


• Least squares minimizes the sum of the squared residuals. For WLS, we minimize
instead the sum of the squared residuals each multiplied by an appropriate weight. If
the error variances are known, the weights are wi = 1/σ2

i .

• Otherwise the variances need to be estimated (see discussion pages 403-405).

• The regression coefficients with weights are: bW = (X′WX)−1(X′WY) where W is a
diagonal matrix of weights.

• In SAS, use a ‘weight’ statement in PROC REG.

Drawbacks to Weighted Least Squares

No clear interpretation for MSE. MSE will be close to 1 if error variance is modeled well.

Advantages to Weighted Least Squares

Improved parameter estimates, and CI’s. Valid inference in presence of heteroscedasticity.

Determining the Weights

We try to find a relationship between the absolute residual and another variable and use this
as a model for the standard deviation; or similarly for the squared residual and the variance.
Sometimes it is necessary to use grouped data or approximately grouped data to estimate
the variance. With a model for the standard deviation or the variance, we can approximate
the optimal weights. Optimal weights are proportional to the inverse of the variance as
shown above. If the data have many observations for each value of X we can get a variance
estimate at each value (this happens frequently in ANOVA).

KNNL Example

• KNNL p 427 (nknw406.sas)

• Y is diastolic blood pressure

• X is age
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• n = 54 healthy adult women aged 20 to 60 years old

data pressure;

infile ’H:\System\Desktop\Ch10ta01.dat’;

input age diast;

proc print data=pressure;

title1 ’Blood Pressure’;

symbol1 v=circle i=sm70;

proc sort data=pressure;

by age;

proc gplot data=pressure;

plot diast*age;

This clearly has non-constant variance. Run the (unweighted) regression to get residuals.

proc reg data=pressure;

model diast=age / clb;

output out=diag r=resid;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2374.96833 2374.96833 35.79 <.0001

Error 52 3450.36501 66.35317

Corrected Total 53 5825.33333

Root MSE 8.14575 R-Square 0.4077

Dependent Mean 79.11111 Adj R-Sq 0.3963

Coeff Var 10.29659
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Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept 1 56.15693 3.99367 14.06 <.0001 48.14304 64.17082

age 1 0.58003 0.09695 5.98 <.0001 0.38548 0.77458

Use the output data set to get the absolute and squared residuals. Plot each of them (vs.
X) with a smoother.

data diag;

set diag;

absr=abs(resid);

sqrr=resid*resid;

proc gplot data=diag;

plot (resid absr sqrr)*age;

The absolute value of the residuals appears to have a fairly linear relationship with age (it
appears more linear than does the graph of squared residuals vs. age). Thus, we will model
standard deviation as a linear function of age. (If the second graph was more linear we
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would model variance instead.) We will model the absolute residuals as a function of age,
and use the predicted values of that regression as weights.

Predict the standard deviation (absolute value of the residual):

proc reg data=diag;

model absr=age;

output out=findweights p=shat;

data findweights;

set findweights;

wt=1/(shat*shat);

We always compute the weights as the reciprocal of the estimated variance. Regression with
weights:

proc reg data=findweights;

model diast=age / clb p;

weight wt;

output out = weighted p = predict;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 83.34082 83.34082 56.64 <.0001

Error 52 76.51351 1.47141

Corrected Total 53 159.85432

Root MSE 1.21302 R-Square 0.5214

Dependent Mean 73.55134 Adj R-Sq 0.5122

Coeff Var 1.64921

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept 1 55.56577 2.52092 22.04 <.0001 50.50718 60.62436

age 1 0.59634 0.07924 7.53 <.0001 0.43734 0.75534

Other Methods

Robust Regression

• Basic idea is to have a procedure that is not sensitive to outliers.

• Alternatives to least squares, minimize either the sum of absolute values of residuals
or the median of the squares of residuals.

• Do weighted regression with weights based on residuals, and iterate.

• See Section 11.3 for details.
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Nonparametric Regression

• Several versions

• We have used e.g. i=sm70

• Interesting theory

• All versions have some smoothing parameter similar to the 70 in i=sm70.

• Confidence intervals and significance tests not fully developed.

Bootstrap

• Very important theoretical development that has had a major impact on applied statis-
tics

• Based on simulation

• Sample with replacement from the data or residuals and get the distribution of the
quantity of interest

• CI usually based on quantiles of the sampling distribution

Model Validation

Three approaches to checking the validity of the model.

• Collect new data: does it fit the model?

• Compare with theory, other data, simulation.

• Use some of the data for the basic analysis (“training set”) and some for validity check.

Qualitative Explanatory Variables (Section 8.3)

Example includes

• Gender as an explanatory variable

• Placebo versus treatment

• Insurance Co. example from previous notes (Type of company)

18



Two Categories

Recall from Topic 4 (General Linear Tests):

• Model: Y = β0 + β1X1 + β2X2 + β3X1X2 + ϵ

• When X1 = 0, β1 and β3 terms disappear: Y = β0 + β2X2 + ϵ. For this group, β0 is
the intercept, and β2 is the slope.

• When X1 = 1, β1 and β3 terms are incorporated into the intercept and X2 coefficient:

Y = (β0 + β1) + (β2 + β3)X2 + ϵ

• For this group, β0 + β1 is the intercept, and β2 + β3 is the slope.

• H0 : β1 = β3 = 0 is the hypothesis that the regression lines are the same.

• H0 : β1 = 0 hypothesizes the two intercepts are equal.

• H0 : β3 = 0 hypothesizes the two slopes are equal.

More Complicated Models

• If a categorical (qualitative) variable has k possible values we need k − 1 indicator
variables in order to describe it.

• These can be defined in many different ways; we will do this in Chapter 16 (ANOVA).

• We also can have several categorical explanatory variables, plus interactions, etc.

• Example: Suppose we have a variable speed for which 3 levels (high, medium, low)
are possible. Then we would need two indicator variables (e.g. X1 = medium and
X2 = high) to describe the situation.

speed X1 X2

low 0 0
medium 1 0
high 0 1

Piecewise Linear Model

At some (known) point or points, the slope of the relationship changes. We can describe
such a model with indicator variables.

Examples:

• tax brackets

• discount prices for bulk quantities

• overtime wages
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Piecewise Linear Model Example

• Y = unit cost, X1 = lot size, n = 8

• We have reason to believe that a linear model is appropriate, but a slope change should
be allowed at X1 = 500. (Note the ‘bending’ in the plot.)

• We can do this by including an indicator variable X2 that is 1 if X1 is bigger than 500
and 0 otherwise and allowing it to interact with X1.

data piecewise;

infile ’H:\System\Desktop\Ch11ta06.dat’;

input cost lotsize;

symbol1 v=circle i=sm70 c=black;

proc sort data=piecewise; by lotsize;

proc gplot data=piecewise;

plot cost*lotsize;

Piecewise Model

Define a new variable X2 which is 0 when X1 ≤ 500 and 1 when X1 > 500. Then create
an adjusted interaction term X3 = X2(X1 − 500). This uses −500X2 to indicate the change
in intercept and the product X1X2 to find the change in slope. Note that there is only one
parameter since the two lines must join at X1 = 500. We will not use X2 explicitly in the
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model, just the interaction term X3. Thus the model is

Y = β0 + β1X1 + β2X3 + ϵ

= β0 + β1X1 + β2X2(X1 − 500) + ϵ

= β0 − 500β2X2 + β1X1 + β2X1X2 + ϵ

=

{
β0 + β1X1 X2 = 0 (X1 ≤ 500)

(β0 − 500β2) + (β1 + β2)X1 X2 = 1 (X1 > 500)

Our model has

• An intercept (β0)

• A coefficient for lot size (the slope β1)

• An additional explanatory variable that will add a constant to the slope whenever lot
size is greater than 500.

data piecewise; set piecewise;

if lotsize le 500

then cslope=0;

if lotsize gt 500

then cslope=lotsize-500;

proc print data=piecewise;

Obs cost lotsize cslope

1 4.75 300 0

2 4.40 340 0

3 4.52 400 0

4 3.77 480 0

5 3.55 570 70

6 2.57 650 150

7 2.49 720 220

8 1.39 800 300

The variable cslope is our X3. Run the regression:

proc reg data=piecewise;

model cost=lotsize cslope;

output out=pieceout p=costhat;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 9.48623 4.74311 79.06 0.0002

Error 5 0.29997 0.05999

Corrected Total 7 9.78620

Root MSE 0.24494 R-Square 0.9693
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Dependent Mean 3.43000 Adj R-Sq 0.9571

Coeff Var 7.14106

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 5.89545 0.60421 9.76 0.0002

lotsize 1 -0.00395 0.00149 -2.65 0.0454

cslope 1 -0.00389 0.00231 -1.69 0.1528

Plot data with fitted values:

symbol1 v=circle i=none c=black;

symbol2 v=none i=join c=black;

proc sort data=pieceout; by lotsize;

proc gplot data=pieceout;

plot (cost costhat)*lotsize/overlay;

22


