
Statistics 512: Applied Linear Models

Topic 4

Topic Overview

This topic will cover

• General Linear Tests (Chapter 7)

• Extra Sums of Squares (Chapter 7)

• Partial Correlations (Chapter 7)

• Multicollinearity (Chapter 7)

• Model Selection (Chapter 9)

General Linear Tests

These are a different way to look at the comparison of models.
So far we have looked at comparing/selecting models based on ...

• model significance test and R2 values

• t-tests for variables added last

These are good things to look at, but they are ineffective in cases where ...

• explanatory variables work together in groups

• we want to test some hypotheses for some βi = b rather than βi = 0 (for example,
maybe we want to test H0 : β1 = 3, β4 = 7 against the alternative hypothesis that at
least one of those is false)

General Linear Tests look at the difference between models

• in terms of SSE (unexplained SS)

• in terms of SSM (explained SS)

Because SSM + SSE = SST , these two comparisons are equivalent.
The models we compare are hierarchical in the sense that one (the full model) includes all
of the explanatory variables of the other (the reduced model).
We can compare models with different explanatory variables. For example:

X1, X2 vs X1

X1, X2, X3, X4, X5 vs X1, X2, X3
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Note that the first model includes all Xs of the second model.
We will get an F -test that compares the two models.
We are testing a null hypothesis that the regression coefficients for the extra variables are
all zero.
For X1, X2, X3, X4, X5 vs X1 , X2 , X3

H0 : β4 = β5 = 0

Ha : β4 and β5 are not both 0

F -test

The test statistic in general is

F =
(SSE(R)− SSE(F )) / (dfE(R)− dfE(F ))

SSE(F )/dfE(F )

Under the null hypothesis (reduced model) this statistic has an F distribution where the
degrees of freedom are the number of extra variables and the dfE for the larger model. So
we reject if the p-value for this test is p ≤ 0.05, and in that case conclude that at least one
of the extra variables is useful for predicting Y in the linear model that already contains the
variables in the reduced model.

Example

Suppose n = 100 and we are testing X1, X2, X3, X4, X5 (full) vs X1 , X2 , X3 (reduced).
Our hypotheses are:

H0 : β4 = β5 = 0

Ha : β4 and β5 are not both 0

Since we are considering removing 2 variables (X4 and X5), the numerator df is 2. The
denominator df is n−6 = 94 (since p = 6 for the full model). We reject if the p-value ≤ 0.05
and in that case would conclude that either X4 or X5 or both contain additional information
that is useful for predicting Y in a linear model that also includes X1, X2, and X3.

Extra Sums of Squares

Notation for Extra SS

Example using 5 variables:

• SSE(X1, X2, X3, X4, X5) is the SSE for the full model, SSE(F )

• SSE(X1, X2, X3) is the SSE for a reduced model, SSE(R).
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• The ”extra sum of squares” for this comparison is denoted SSM(X4, X5|X1, X2, X3).

• This is the difference in the SSE’s:

SSM(X4, X5|X1, X2, X3) = SSE(R)− SSE(F )

= SSE(X1, X2, X3)− SSE(X1, X2, X3, X4, X5)

• We call this an “extra sum of squares” because it is the extra amount of SS explained
by the full model that is not explained by the reduced model. In this case it is the
extra sums of squares explained by X4 and X5, given that X1, X2, and X3 are already
in the model.

For each model, SST = SSM + SSE, so SSE = SST − SSM , and SST is the same for
both models. It follows that

SSM(X4, X5|X1, X2, X3)

= SSE(X1, X2, X3)− SSE(X1, X2, X3, X4, X5)

= [SST − SSM(X1, X2, X3)]− [SST − SSM(X1, X2, X3, X4, X5)]

= SSM(X1, X2, X3, X4, X5)− SSM(X1, X2, X3)

= SSM(F )− SSM(R)

Thus, the extra sums of squares in the numerator of the test may also be written as the
difference in the SSM ’s (full − reduced).
Similarly, since dfM + dfE = dfT for each model, we have

dfE(R)− dfE(F ) = [dfT − dfM(R)]− [dfT − dfM(F )] = dfM(F )− dfM(R)

Thus the df in the numerator of the test may also be written as the difference in the dfM ’s
(full − reduced).
It doesn’t matter whether you look at as the difference in the models or the difference in the
errors, as long as you get the signs right.

F -test (General Linear Test)

Numerator : SSM(X4, X5|X1, X2, X3)/2 (where 2 = # variables before “|”)
Denominator : MSE(X1, X2, X3, X4, X5) (full model MSE)
F ∼ F2,n−6

Numerator df = 2 since two parameters fixed, i.e. difference in parameters = full−reduced.
Denominator df = n− 6 since p = 6 for full model.
Reject if the p-value ≤ 0.05, and in that case would conclude that either X4 or X5 or both
contain additional information that is useful for predicting Y in a linear model that also
includes X1, X2, and X3.
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Example

Predict bone density using age, weight and height; does diet add any useful information?
Predict GPA using 3 HS grade variables; do SAT scores add any useful information?
Predict yield of an industrial process using temperature and pH; does the supplier of the
raw material (categorical) add any useful information?

Extra SS Special Cases (SAS)

Type II SS: Each variable given all others are in the model

• Compare models that differ by one explanatory variable, F1,n−p = t2n−p (i.e. ‘variable
added last’ tests).

• SAS’s individual parameter t-tests are equivalent to the general linear test based on
SSM(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)

• These are called Type II SS (not related to Type II Error).

• Type II SS are the extra sums of squares for each variable, given that all other variables
are in the model.

• Option SS2 to proc reg.

Type I SS: Add one variable at a time in order

Consider 4 explanatory variables in a particular order and the extra sums of squares we get
by adding one variable at a time, starting with the first one (SAS takes them in the order
listed in the model statement), and testing each successive model with the one before it. . .

• SSM(X1)

• SSM(X2|X1)

• SSM(X3|X1, X2)

• SSM(X4|X1, X2, X3)

It is easy to work out from the definitions that these sum to the SSM for the full model:

SSM(X1) + SSM(X2|X1) + SSM(X3|X1, X2) + SSM(X4|X1, X2, X3)

= SSM(X1, X2, X3, X4)

For the tests,

• Numerator df is 1 for all of them (one parameter before “|”).
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• Denominator df depends on which model acts as the full one.

• F = (SSR/1)/MSE(F ) ∼ F1,n−p

• These are called Type I SS (not related to Type I Error). Notice that the Type I SS
depend on the order in which the variables are listed.

• Type I SS are the extra SS for each variable, given that all previous variables are in
the model. (“previous” meaning having a lower subscript number)

KNNL Example page 256

• SAS code in nknw260.sas

• 20 healthy female subjects ages 25-34

• Y is fraction body fat

• X1 is triceps skin fold thickness

• X2 is thigh circumference

• X3 is midarm circumference

• Goal is to find a good model based on these three easy measurements. Otherwise we will
have to use underwater weight/density measurements (difficult and more expensive).

Step 1: Check the data and run proc reg on full model

data bodyfat;

infile ’H:\System\Desktop\Ch07ta01.dat’;

input skinfold thigh midarm fat;

proc print data=bodyfat;

proc reg data=bodyfat;

model fat=skinfold thigh midarm;

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 396.98461 132.32820 21.52 <.0001

Error 16 98.40489 6.15031

Corrected Total 19 495.38950

Root MSE 2.47998 R-Square 0.8014

Something is useful.

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 117.08469 99.78240 1.17 0.2578

skinfold 1 4.33409 3.01551 1.44 0.1699

thigh 1 -2.85685 2.58202 -1.11 0.2849

midarm 1 -2.18606 1.59550 -1.37 0.1896

But what? None of the p-values are significant.
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Dilemma

The p-value for F3,16 is 7×10−6, but the p-values for the individual regression coefficients are
0.1699, 0.2849, and 0.1896. None of these are near our standard of 0.05. We have a seeming
contradiction. What is the reason?
Look at the Extra SS. Here’s how to do it in SAS.

proc reg data=bodyfat;

model fat=skinfold thigh midarm /ss1 ss2;

Variable Pr > |t| Type I SS Type II SS

skinfold 0.1699 352.26980 12.70489

thigh 0.2849 33.16891 7.52928

midarm 0.1896 11.54590 11.54590

Compare these values to the model SS

Model 396.98461

Error 98.40489

Corrected Total 495.38950

Interpretation

Type I:

• SSM(skinfold) = 352.26

• SSM(thigh|skinfold) = 33.16

• SSM(midarm|skinfold, thigh) = 11.54

Type II:

• SSM(skinfold|thigh, midarm) = 12.70

• SSM(thigh|skinfold, midarm) = 7.52

Skinfold accounts for a lot of the SS by itself, but if thigh and midarm are
included first then skinfold is redundant.

Notes

• Type I and Type II SS are very different for this example (except for the last one).

• The order in which we list the variables in the model statement affects the Type I SS,
but does not affect the Type II SS.

• If we reorder the variables in the model statement we will get different Type I SS but
the same Type II SS
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Could variables be explaining the same SS and “canceling each other out”? We suspect so
because the Type I and II SS are so different.
We also observe parameter estimates that do not “make sense”: the regression coefficients
for thigh and midarm are negative. (Large thighs = low body fat?)
Run additional models to clarify the situation (more on this later).
Also look at pairwise relationships, keeping in mind that more complicated relationships
may exist.

proc corr data=bodyfat noprob;

Pearson Correlation Coefficients, N = 20

skinfold thigh midarm fat

skinfold 1.00000 0.92384 0.45778 0.84327

thigh 0.92384 1.00000 0.08467 0.87809

midarm 0.45778 0.08467 1.00000 0.14244

fat 0.84327 0.87809 0.14244 1.00000

The correlation between skinfold and thigh is extremely high, so we most likely do not want
to have both of these in our model. Both of these are also highly correlated with fat, which
means they will be good predictors.
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Rerun with single explanatory variables

proc reg data=bodyfat;
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model fat = skinfold;

model fat = thigh;

model fat = midarm;

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -1.49610 3.31923 -0.45 0.6576

skinfold 1 0.85719 0.12878 6.66 <.0001

Root MSE 2.81977 R-Square 0.7111

Intercept 1 -23.63449 5.65741 -4.18 0.0006

thigh 1 0.85655 0.11002 7.79 <.0001

Root MSE 2.51024 R-Square 0.7710

Intercept 1 14.68678 9.09593 1.61 0.1238

midarm 1 0.19943 0.32663 0.61 0.5491

Root MSE 5.19261 R-Square 0.0203

test statement in proc reg

This does any general linear test you specify. Note that the labels before the “:” are just
names picked to identify the tests; they are useful, since you can do more than one test here
and need to distinguish the output. For example, the command test thigh, midarm; tests
H0 : β2 = β3 = 0.

proc reg data=bodyfat;

model fat=skinfold thigh midarm;

skinonly: test thigh, midarm;

thighonly: test skinfold, midarm;

skinmid: test thigh;

Test skinonly Results for Dependent Variable fat

Mean

Source DF Square F Value Pr > F

Numerator 2 22.35741 3.64 0.0500

Denominator 16 6.15031

This is really borderline – probably should not remove both thigh and midarm.

Test thighonly Results for Dependent Variable fat

Mean

Source DF Square F Value Pr > F

Numerator 2 7.50940 1.22 0.3210

Denominator 16 6.15031

This says a model with thigh only would probably be okay.

Test skinmid Results for Dependent Variable fat

Mean

Source DF Square F Value Pr > F

Numerator 1 7.52928 1.22 0.2849

Denominator 16 6.15031
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This says a model with skinfold and midarm only, but not thigh, would probably be okay.

How to pick the very best model depends on your objectives. If your goal is only “black-
box” prediction, with no interpretation on the coefficients, you might want to include some
variables that are only marginally helpful. But if your goal is to actually interpret the co-
efficient, you will also want to look at whether the coefficients make sense. For example, in
the full model, the parameter estimates for thigh and midarm are both negative. This says,
the larger your thighs and arms, the smaller your bodyfat, which doesn’t make much sense.
This happens because skinfold is already in the model, and so the positive influence of thigh
on fat has already been included.

Other uses

The test statement can be used to perform a significance test for any hypothesis involving
a linear combination of the regression coefficients.
Examples:

H0 : β4 = β5 (test X4 = X5)

H0 : β4 − 3β5 = 12 (test X4-3*X5=12)

Separate equations by commas; if no = sign appears then = 0 is assumed.

Chapter 7.4: Partial correlations (r) - Coefficients of

Partial Determination(r2)

Partial correlation measures the strength of a linear relation between two variables taking
into account other variables.
Recall from SLR that r2 = SSM/SST . In contrast, now we are measuring the marginal
increase in SS explained by including a new variable in the model, compared to the SSE.
See page 270 for formulas.
This is closely related to extra sums of squares.

Possible procedure to find partial correlation Xi, Y

This is not how you will actually calculate it, but it may help you visualize what is going on

• Predict Y using other X’s

• Predict Xi using other X’s

• Find correlation between the two sets of residuals
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• Plotting the two sets of residuals vs each other on a scatterplot gives a partial corre-
lation plot (later).

KNNL use the term coefficient of partial determination for the squared partial correlation
r2.

Partial correlations in SAS

proc reg data=bodyfat;

model fat=skinfold thigh midarm / pcorr1 pcorr2;

Parameter Estimates

Squared Partial Squared Partial

Variable Pr > |t| Corr Type I Corr Type II

Intercept 0.2578 . .

skinfold 0.1699 0.71110 0.11435

thigh 0.2849 0.23176 0.07108

midarm 0.1896 0.10501 0.10501

These use the Type I and Type II SS for computation:

• Type I Squared Partial Correlation uses Type I SS: r2 = SS1
SS1+SSE

• Type II Squared Partial Correlation uses Type II SS: r2 = SS2
SS2+SSE

Where e.g. for thigh, SS2 = SSM(thigh|skinfold,midarm), and SSE = SSE(skinfold, thigh,midarm).
We can similarly define partial correlations as the square root.
These give roughly the same information as Extra SS but are scaled.

Multicollinearity

Back to body fat example (KNNL page 256)
The p-value for ANOVA F -test is < .0001.
The p-values for the individual regression coefficients are 0.1699, 0.2849, and 0.1896.
None of these are near our standard significance level of 0.05.
What is the explanation?
Multicollinearity!!!
Numerical analysis problem is that the matrix X ′X is close to singular and is therefore dif-
ficult to invert accurately.
Statistical problem is that there is too much correlation among the explanatory variables,
and it is therefore difficult to determine the regression coefficients.
If we solve the statistical problem then the numerical problem will also be solved. Our gen-
eral goal is to refine a model that has redundancy in the explanatory variables. And we need
to do this whether or not X ′X can be inverted without difficulty.

Extreme cases can help us understand the problems caused by multicollinearity.
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• One extreme: Assume columns in X matrix were uncorrelated (r = 0). In that case
Type I and Type II SS will be the same. The contribution of each explanatory variable
to the model is the same whether or not the other explanatory variables are in the
model. There is no overlap in the variation components explained by each variable.

• Other extreme: Suppose a linear combination of the explanatory variables is a constant
(maybe a variable was accidentally included twice in the data set such that X1 = X2).
The Type II SS for the X’s involved will be zero because when one is included the
other is redundant (it explains NO additional variation over the other variables).

Back to CS example: We did not have a big multicollinearity problem. Let’s fake a linear
combination to illustrate a point.

data cs;

infile ’H:\System\Desktop\csdata.dat’;

input id gpa hsm hss hse satm satv genderm1;

data cs; set cs;

sat=satm + satv;

proc reg data=cs;

model gpa=sat satm satv;

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 8.58384 4.29192 7.48 0.0007

Error 221 126.87895 0.57411

Corrected Total 223 135.46279

Something is wrong; dfM = 2, but there are 3 X’s. What is going on?

Error messages from SAS:

NOTE: Model is not full rank. Least-squares solutions for the parameters are

not unique. Some statistics will be misleading. A reported DF of 0 or B means

that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a

linear combination of other variables as shown.

satv = sat - satm

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.28868 0.37604 3.43 0.0007

sat B -0.00002456 0.00061847 -0.04 0.9684

satm B 0.00231 0.00110 2.10 0.0365

satv 0 0 . . .

SAS tells us the design matrix is not of full rank, i.e. its rank is < p. This means one column
is a linear combination of some other columns. This in turn means that the determinant of
X′X is 0, and thus X′X is not invertible.
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Extent of Multicollinearity

This example had one explanatory variable equal to a linear combination of other explanatory
variables. This is the most extreme case of multicollinearity and is detected by statistical
software because X′X does not have an inverse. We are mostly concerned with less extreme
cases where X′X does have an inverse, though the determinant may be quite small.

Effects of Multicollinearity

What happens when there is multicollinearity in the X’s?

• Regression coefficients are not well estimated and may be meaningless, and similarly
for standard errors of these estimates. (see chart on page 286)

• Type I SS and Type II SS will differ.

• R2 and predicted values are usually okay.

Pairwise Correlations

Pairwise correlations can be used to check for “pairwise” collinearity. This is useful but note
that they do not show more complicated linear dependence.
KNNL p256

Corr(skinfold, thigh) = 0.9238

Corr(skinfold,midarm) = 0.4578

Corr(thigh,midarm) = 0.0847

But this is not the whole story. For example, if we think of skinfold as a Y variable and model
it with both midarm and thigh as explanatory variables, we get a very large R2 = 0.9986,
meaning that skinfold is almost exactly predicted from the other two. Simple pairwise
correlations do not pick up on this, but the regression results tell us something like this was
going on.
Similarly in the example with sat the problem was with a set of three variables: sat, satv,
and satm. Any two of these would be okay, but three is impossible. We would not have been
aware of the extent of this problem just from the pairwise correlations.

proc corr data=cs noprob;

var sat satm satv;

sat satm satv

sat 1.00000 0.84450 0.86623

satm 0.84450 1.00000 0.46394

satv 0.86623 0.46394 1.00000
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Polynomial Regression

We can fit a quadratic, cubic, etc. relationship by defining squares, cubes, etc., in a data
step and using them as additional explanatory variables.
We can also do this with more than one explanatory variable, in which case we also often
include an interaction term.
When we do this we generally create a multicollinearity problem, which can often be corrected
by standardization.
Warning: You know that with linear regression models it is a bad idea to extrapolate beyond
the scope of the data. In polynomial regression it is a VERY bad idea.

KNNL Example, page 300 (nknw302.sas)

Response variable is the life (in cycles) of a power cell.
Explanatory variables are

• Charge rate (3 levels)

• Temperature (3 levels)

This is a designed experiment: levels of charge and temperature are planned. The experi-
menter wants to know if a linear or quadratic function is appropriate, and if an interaction
between charge rate and temperature should be included in the model. (An interaction
means that the way in which charge rate affects the life of the cell depends on the tempera-
ture; a model with no interaction is called additive. MUCH more on this in ANOVA.)

Input and check the data.

data powercell;

infile ’H:\System\Desktop\CH07TA09.DAT’;

input cycles chrate temp;

proc print data=powercell;

Obs cycles chrate temp

1 150 0.6 10

2 86 1.0 10

3 49 1.4 10

4 288 0.6 20

5 157 1.0 20

6 131 1.0 20

7 184 1.0 20

8 109 1.4 20

9 279 0.6 30

10 235 1.0 30

11 224 1.4 30

Use a data step to create new variables and run the regression with polynomial and inter-
action terms.
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data powercell; set powercell;

chrate2=chrate*chrate;

temp2=temp*temp;

ct=chrate*temp;

proc reg data=powercell;

model cycles=chrate temp chrate2 temp2 ct / ss1 ss2;

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 55366 11073 10.57 0.0109

Error 5 5240.43860 1048.08772

Corrected Total 10 60606

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Type I SS Type II SS

Intercept 1 337.72149 149.96163 2.25 0.0741 325424 5315.62944

chrate 1 -539.51754 268.86033 -2.01 0.1011 18704 4220.41673

temp 1 8.91711 9.18249 0.97 0.3761 34202 988.38036

chrate2 1 171.21711 127.12550 1.35 0.2359 1645.96667 1901.19474

temp2 1 -0.10605 0.20340 -0.52 0.6244 284.92807 284.92807

ct 1 2.87500 4.04677 0.71 0.5092 529.00000 529.00000

Conclusion

Overall F is significant, but no individual t’s are significant → multicollinearity problem.
Also notice the extreme difference between Type I and Type II SS for chrate and temp.
Look at the correlations (proc corr) for a clue :

Pearson Correlation Coefficients, N = 11

chrate temp chrate2 temp2 ct

chrate 1.00000 0.00000 0.99103 0.00000 0.60532

temp 0.00000 1.00000 0.00000 0.98609 0.75665

chrate2 0.99103 0.00000 1.00000 0.00592 0.59989

temp2 0.00000 0.98609 0.00592 1.00000 0.74613

ct 0.60532 0.75665 0.59989 0.74613 1.00000

There are some very high correlations

r(chrate, chrate2) = 0.99103

r(temp, temp2) = 0.98609

Correlation between powers of variables are causing a big multicollinearity problem.

A remedy

We can remove or reduce the correlation between explanatory variables and their powers
by centering. Centering means that you subtract off the mean from each variable. We
often rescale by standardizing (subtract the mean and divide by the standard deviation) but
subtracting the mean is the key.
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Use proc standard to center the explanatory variables. (proc standard will standardize a
dataset to any given mean and std dev; we set a mean of 0 to center the variables. To set a
given standard deviation, we could also say std=1, for example. The same names are used
for the standardized variables.)
Recompute the squares, cubes, etc., using the centered variables, and rerun the regression
analysis.
Note the use of “drop” in the data step. (opposite is “keep”)

data copy; set powercell;

schrate=chrate; stemp=temp;

drop chrate2 temp2 ct;

*center the variables and put them in

dataset std;

proc standard data=copy out=std mean=0;

var schrate stemp;

* schrate and stemp now have mean 0;

proc print data=std;

Obs cycles chrate temp schrate stemp

1 150 0.6 10 -0.4 -10

2 86 1.0 10 0.0 -10

3 49 1.4 10 0.4 -10

4 288 0.6 20 -0.4 0

5 157 1.0 20 0.0 0

6 131 1.0 20 0.0 0

7 184 1.0 20 0.0 0

8 109 1.4 20 0.4 0

9 279 0.6 30 -0.4 10

10 235 1.0 30 0.0 10

11 224 1.4 30 0.4 10

Now both schrate and stemp have mean 0.
Recompute squares and interaction term using standardized variables.

data std; set std;

schrate2=schrate*schrate;

stemp2=stemp*stemp;

sct=schrate*stemp;

Rerun regression...

proc reg data=std;

model cycles= chrate temp schrate2 stemp2 sct / ss1 ss2;

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Type I SS Type II SS

Intercept 1 151.42544 45.45653 3.33 0.0208 325424 11631
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chrate 1 -139.58333 33.04176 -4.22 0.0083 18704 18704

temp 1 7.55000 1.32167 5.71 0.0023 34202 34202

schrate2 1 171.21711 127.12550 1.35 0.2359 1645.96667 1901.19474

stemp2 1 -0.10605 0.20340 -0.52 0.6244 284.92807 284.92807

sct 1 2.87500 4.04677 0.71 0.5092 529.00000 529.00000

Now we can see that the linear terms are significant and the quadratic terms are not. See
book: general linear test shows that quadratic and interaction terms can be omitted. Things
are much more clear now and we can trust our results since the correlations among X’s are
virtually eliminated.

Type I and Type II SS are almost the same.

proc corr data=std noprob;

var chrate temp schrate2 stemp2 sct;

Pearson Correlation Coefficients, N = 11

chrate temp schrate2 stemp2 sct

chrate 1.00000 0.00000 0.00000 0.00000 0.00000

temp 0.00000 1.00000 0.00000 0.00000 0.00000

schrate2 0.00000 0.00000 1.00000 0.26667 0.00000

stemp2 0.00000 0.00000 0.26667 1.00000 0.00000

sct 0.00000 0.00000 0.00000 0.00000 1.00000

In this particular example, the correlations went to zero after centering. That happened
because all possible combinations were equally represented (in ANOVA terms, a balanced
design). Correlations will not always go to zero after centering, but they should be reduced.
A typical quadratic regression model with two X variables would be

Yi = β0 + β1Xi,1 + β2Xi,2 + β1,1(Xi,1 − X̄1)
2 + β2,2(Xi,2 − X̄2)

2 + β1,2(Xi,1 − X̄1)(Xi,2 − X̄2) + ϵi

Notice the alternate convention for subscripts sometimes used on the regression coefficients.

Comment on General Linear Test and Extra SS

The test for all second-order terms = 0 uses SSM(schrate2, stemp2, sct|chrate, temp). This
is not given directly from our SAS output. We can use the usual test statement in proc
reg:

second: test schrate2, stemp2, sct;

Test second Results for Dependent Variable cycles

Mean

Source DF Square F Value Pr > F

Numerator 3 819.96491 0.78 0.5527

Denominator 5 1048.08772
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But we can also get the necessary SS from SS1 with a little work:

SSM(schrate2, stemp2, sct|schrate, stemp) = SSM(full)− SSM(schrate, stemp)

Notice that the Type I SS are

SS1(schrate2) = SSM(schrate2|chrate, temp)

= SSM(chrate, temp, schrate2)− SSM(chrate, temp)

SS1(stemp2) = SSM(stemp2|chrate, temp, schrate2)

= SSM(chrate, temp, schrate2, stemp2)− SSM(chrate, temp, schrate2)

SS1(sct) = SSM(sct, chrate, temp, schrate2, stemp2)

= SSM(chrate, temp, schrate2, stemp2, sct)− SSM(chrate, temp, schrate2, stemp2)

SS1(schrate2) + SS1(stemp2) + SS1(sct)

= SSM(chrate, temp, schrate2, stemp2, sct)− SSM(chrate, temp)

= SSM(schrate2, stemp2, sct|chrate, temp)

Thus, we can get the required extra SS from adding certain Type I SS. This only works
if the second-order terms (in general, the terms to be tested) are listed last in the model

statement.

Interaction Models

With several explanatory variables, we need to consider the possibility that the effect of one
variable depends on the value of another variable.
Special cases:

• One binary variable (0/1) and one continuous variable (Section 8.3 - doing this out of
sequence)

• Two continuous variables

First Special Case: One binary variable and one continuous variable

(From Section 8.3)
X1 takes values 0 and 1 corresponding to two different groups or categories.
X2 is a continuous variable.
Model: Y = β0 + β1X1 + β2X2 + β3X1X2 + ϵ
As you will see, this is a convenient way of writing down two separate SLR models for the
two categories.
When X1 = 0, the model becomes

Y = β0 + β1(0) + β2X2 + β3(0)X2 + ϵ

= β0 + β2X2 + ϵ
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This is a SLR model for Y as a function of X2 with intercept β0 and slope β2.

When X1 = 1, the model becomes

Y = β0 + β1(1) + β2X2 + β3(1)X2 + ϵ

= β0 + β1 + β2X2 + β3X2 + ϵ

= (β0 + β1) + (β2 + β3)X2 + ϵ

This is a SLR model for Y as a function of X2 with intercept (β0+β1) and slope
(β2 + β3).

These are both SLR models, and we could model them separately (make one data set for
each group). But we can more easily model the combination of the two with a multiple
regression model using a binary (0-1) variable, and this allows us to look at both groups
together. It has the added benefit of using all the data together to get the variance estimate,
increasing our error degrees of freedom. Some useful tests in this situation include

• H0 : β1 = β3 = 0 is the hypothesis that the regression lines are the same.

• H0 : β1 = 0 is the hypothesis that the two intercepts are equal.

• H0 : β3 = 0 is the hypothesis that the two slopes are equal.

KNNL Example, page 315

(nknw459.sas)
Y is number of months it takes for an insurance company to adopt an innovation.
X1 is the type of firm (a qualitative or categorical variable): X1 takes the value 0 if it is a
mutual fund firm and 1 if it is a stock fund firm. X2 is the size of the firm (a continuous
variable).
We ask whether stock firms adopt the innovation slower or faster than mutual firms. We ask
the question across all firms, regardless of size.

data insurance;

infile ’H:\System\Desktop\Ch11ta01.dat’;

input months size stock;

proc print data=insurance;

Obs months size stock

1 17 151 0

2 26 92 0

...

19 30 124 1

20 14 246 1

Plot the data with two symbols:
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symbol1 v=M i=sm70 c=black l=1;

symbol2 v=S i=sm70 c=black l=3;

title1 ’Insurance Innovation’;

proc sort data=insurance;

by stock size;

title2 ’with smoothed lines’;

proc gplot data=insurance;

plot months*size=stock;

Note the use of a new syntax in the plot statement to plot separate lines for different values
of the categorical variable stock.

Interaction Effects

Interaction expresses the idea that the effect of one explanatory variable on the response
depends on another explanatory variable.
In this example, this would mean that the slope of the line depends on the type of firm.
Are both lines the same?
Use the test statement to test whether β1 = β3 = 0.
Make the X3 variable which is the product of stock (X1) and size (X2).

data insurance; set insurance;

sizestock=size*stock;

proc reg data=insurance;

model months = stock size sizestock;

sameline: test stock, sizestock;

Sum of Mean

Source DF Squares Square F Value Pr > F
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Model 3 1504.41904 501.47301 45.49 <.0001

Error 16 176.38096 11.02381

Corrected Total 19 1680.80000

Root MSE 3.32021 R-Square 0.8951

Test sameline Results for Dependent Variable months

Mean

Source DF Square F Value Pr > F

Numerator 2 158.12584 14.34 0.0003

Denominator 16 11.02381

The lines are not the same. How are they different?

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 33.83837 2.44065 13.86 <.0001

stock 1 8.13125 3.65405 2.23 0.0408

size 1 -0.10153 0.01305 -7.78 <.0001

sizestock 1 -0.00041714 0.01833 -0.02 0.9821

It appears we can ignore β3 : Two parallel lines.

proc reg data=insurance;

model months = stock size;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 1504.41333 752.20667 72.50 <.0001

Error 17 176.38667 10.37569

Corrected Total 19 1680.80000

Root MSE 3.22113 R-Square 0.8951

Dependent Mean 19.40000 Adj R-Sq 0.8827

Coeff Var 16.60377

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 33.87407 1.81386 18.68 <.0001

size 1 -0.10174 0.00889 -11.44 <.0001

stock 1 8.05547 1.45911 5.52 <.0001

The two lines have different intercepts, but it is safe to assume they have the same slope.
For mutual fund firms, X1 = 0, so the model is Y = β0 + β2X2 + ϵ; the fitted equation is
Ŷ = 33.784− 0.102X2.
For stock firms, X1 = 1, so the model is Y = β0 + β1 + β2X2 + ϵ; the estimated intercept is
(33.874 + 8.055) = 41.93, so the fitted equation is Ŷ = 41.93− 0.102X2.

Plot with two regression lines (note this manner of plotting will permit different slopes;
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to get the actual lines given by the model we would have to overlay the predicted values on
the plot, as we did in Homework 3).

symbol1 v=M i=rl c=black;

symbol2 v=S i=rl c=black;

proc gplot data=insurance;

plot months*size=stock;

Second Special Case: Two Continuous Variables

The model Y = β0 + β1X1 + β2X2 + β3X1X2 + ϵ can be rewritten as follows:

Y = β0 + (β1 + β3X2)X1 + β2X2 + ϵ

Y = β0 + β1X1 + (β2 + β3X1)X2 + ϵ

The coefficient of one explanatory variable depends on the value of the other explanatory
variable.

Variable Selection and Model Building

We usually want to choose a model that includes a subset of the available explanatory
variables.

Two separate but related questions:

• How many explanatory variables should we use (i.e., subset size)? Smaller sets are more
convenient, but larger sets may explain more of the variation (SS) in the response.
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• Given the subset size, which variables should we choose?

Criteria for Model Selection

To determine an appropriate subset of the predictor variables, there are several different cri-
teria available. We will go through them one at a time, noting their benefits and drawbacks.
They include R2, adjusted R2, Mallow’s Cp, MSE, PRESS, AIC, SBC. SAS will provide
these statistics, so you should pay more attention to what they are good for than how they
are computed. To obtain them from SAS, place after the model statement /selection =

MAXR ADJRSQ CP. Note that the different criterion may not lead to the same model in every
case.

R2 and Adjusted R2 (or MSE) Criterion

• The text uses R2
p = R2 = 1− SSE

SSTO
(see page 354). Their subscript is just the number

of variables in the associated model.

• The goal in model selection is to maximize this criterion. One MAJOR drawback to
R2 is that the addition of any variable to the model (significant or not) will increase
R2 (perhaps not enough to notice depending on the variable). At some point, added
variables just get in the way!

• The Adjusted R2 criterion penalizes the R2 value based on the number of variables in
the model. Hence it eventually starts decreasing as unnecessary variables are added.

R2
a = 1−

(
n− 1

n− p

)
SSE

SSTO
(we end up subtracting off more as p is increased)

• Maximizing the Adjusted R2 criterion is one way to select a model. As the text points
out this is equivalent to minimizing the MSE since

R2
a = 1−

(
n− 1

n− p

)
SSE

SSTO
= 1− MSE

SSTO/(n− 1)
= 1− MSE

constant

Mallow’s Cp Criterion

• The basic idea is to compare subset models with the full model.

• The full model is good at prediction, but if there is multicollinearity our interpretations
of the parameter estimates may not makes sense. A subset model is good if there is
not substantial “bias” in the predicted values (relative to the full model).

• The Cp criterion looks at the ratio of error SS for the model with p variables to the
MSE of the full model, then adds a penalty for the number of variables.

Cp =
SSEp

MSE(Full)
− (n− 2p)
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• SSE is based on a specific choice of p − 1 variables (p is the number of regression
coefficients including the intercept); while MSE is based on the full set of variables.

• A model is good according to this criterion if Cp ≤ p. We may choose the smallest
model for which Cp ≤ p, so a benefit of this criterion is that it can achieve for us a
“good” model containing as few variables as possible.

• One might also choose to pick the model that minimizes Cp.

• See page 357-359 for details.

PRESS Statistic

Stands for PREdiction Sums of Squares
Obtained by the following algorithm: For each observation i, delete the observation and
predict Y for that observation using a model based on the n− 1 cases. Then look at SS for
the observed minus predicted.

PRESSp =
∑

(Yi − Ŷi(i))
2

Models with small PRESS statistic are considered good candidates.

SBC and AIC

Criterion based on −2 ∗ log(likelihood) plus a penalty for more complexity.

AIC −− minimize n log

(
SSEp

n

)
+ 2p

SBC −− minimize n log

(
SSEp

n

)
+ p log(n)

Note that different criteria will not give the identical answer.

Model Selection Methods

There are three commonly available. To apply them using SAS, you use the option selection
= ***** after the model statement. The methods include

• Forward Selection (FORWARD) - starts with the null model and adds variables one at a
time.

• Backward Elimination (BACKWARD) - starts with the full model and deletes variables
one at a time.

• Forward Stepwise Regression (STEPWISE) - starts with the null model and checks for
adds/deletes at each step. This is probably the preferred method (see section on
multicollinearity!). It is forward selection, but with a backward glance at each step.

These methods all add/delete variables based on Partial F -tests. (See page 364)
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Some additional options in the model statement

INCLUDE=n forces the first n explanatory variables into all models
BEST=n limits the output to the best n models of each subset size
START=n limits output to models that include at least n explanatory variables

Ordering Models of the Same Subset Size

Use R2 or SSE.
This approach can lead us to consider several models that give us approximately the same
predicted values.
May need to apply knowledge of the subject matter to make a final selection.
If prediction is the key goal, then the choice of variables is not as important as if interpretation
is the key.

Surgical Unit Example

• References: KNNL Section 9.2 (p350ff), nknw334.sas

• Y is the survival time

• Potential X’s include Blood clotting score (X1), Prognostic Index (X2), Enzyme Func-
tion Test (X3), and Liver Function Test (X4).

• n = 54 patients were observed.

• Initial diagnostics note curved lines and non-constant variance, suggesting that Y
should be transformed with a log. Take a look at the plots in the SAS file and play
with some analyses on your own.

data surgical;

infile ’H:\System\Desktop\Ch08ta01.dat’;

input blood prog enz liver surv;
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blood

2.6

11.2

prog

8

96

enz

23

119

liver

0.74

6.40

surv

34

830

Take the log of survival

data surgical;

set surgical;

lsurv=log(surv);

proc reg data=surgical;

model lsurv=blood prog enz liver/

selection=rsquare cp aic sbc b best=3;

Number in

Model R-Square C(p) AIC SBC

1 0.5274 787.9471 -87.3085 -83.33048

1 0.4424 938.6707 -78.3765 -74.39854

1 0.3515 1099.691 -70.2286 -66.25061

--------------------------------------------------------------

2 0.8129 283.6276 -135.3633 -129.39638

2 0.6865 507.8069 -107.4773 -101.51034

2 0.6496 573.2766 -101.4641 -95.49714

--------------------------------------------------------------

3 0.9723 3.0390 -236.5787 -228.62281

3 0.8829 161.6520 -158.6434 -150.68745

3 0.7192 451.8957 -111.4189 -103.46299

--------------------------------------------------------------

4 0.9724 5.0000 -234.6217 -224.67680
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One model stands out: the first one with 3 variables (Cp = 3.04 < p = 4). The full model
has Cp = 5 = p. The parameter estimates indicate that the desired model is the one with
blood, prog and enz, but not liver.

Number in --------------------------Parameter Estimates--------------------------

Model R-Square Intercept blood prog enz liver

1 0.5274 3.90609 . . . 0.42771

1 0.4424 3.55863 . . 0.01973 .

1 0.3515 3.68138 . 0.02211 . .

------------------------------------------------------------------------------------------------

2 0.8129 2.08947 . 0.02271 0.02015 .

2 0.6865 3.19784 . . 0.01301 0.32010

2 0.6496 3.24325 . 0.01403 . 0.34596

------------------------------------------------------------------------------------------------

3 0.9723 1.11358 0.15940 0.02140 0.02193 .

3 0.8829 2.16970 . 0.01819 0.01612 0.18846

3 0.7192 2.68966 0.09239 . 0.01604 0.22556

------------------------------------------------------------------------------------------------

4 0.9724 1.12536 0.15779 0.02131 0.02182 0.00442

In this particular example you would probably come to the same conclusion based on the
Type II SS, but not on the individual correlations: liver has the highest individual correla-
tion with lsurv (but also is correlated with the other three).

Below we see that this is the same model chosen by forward stepwise regression:

proc reg data=surgical;

model lsurv=blood prog enz liver / selection=stepwise;

Summary of Stepwise Selection

Variable Variable Number Partial Model

Step Entered Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 liver 1 0.5274 0.5274 787.947 58.02 <.0001

2 enz 2 0.1591 0.6865 507.807 25.89 <.0001

3 prog 3 0.1964 0.8829 161.652 83.83 <.0001

4 blood 4 0.0895 0.9724 5.0000 158.65 <.0001

5 liver 3 0.0000 0.9723 3.0390 0.04 0.8442
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