
Statistics 512: Applied Linear Models

Topic 3

Topic Overview

This topic will cover

• thinking in terms of matrices

• regression on multiple predictor variables

• case study: CS majors

• Text Example (KNNL 236)

Chapter 5: Linear Regression in Matrix Form

The SLR Model in Scalar Form

Yi = β0 + β1Xi + ϵi where ϵi ∼iid N(0, σ2)

Consider now writing an equation for each observation:

Y1 = β0 + β1X1 + ϵ1

Y2 = β0 + β1X2 + ϵ2
...

...
...

Yn = β0 + β1Xn + ϵn

The SLR Model in Matrix Form
Y1

Y2
...
Yn

 =


β0 + β1X1

β0 + β1X2
...

β0 + β1Xn

+


ϵ1
ϵ2
...
ϵn




Y1

Y2
...
Yn

 =


1 X1

1 X2
...

...
1 Xn


[
β0

β1

]
+


ϵ1
ϵ2
...
ϵn


(I will try to use bold symbols for matrices. At first, I will also indicate the dimensions as
a subscript to the symbol.)
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• X is called the design matrix.

• β is the vector of parameters

• ϵ is the error vector

• Y is the response vector

The Design Matrix

Xn×2 =


1 X1

1 X2
...

...
1 Xn


Vector of Parameters

β2×1 =

[
β0

β1

]
Vector of Error Terms

ϵn×1 =


ϵ1
ϵ2
...
ϵn


Vector of Responses

Yn×1 =


Y1

Y2
...
Yn


Thus,

Y = Xβ + ϵ

Yn×1 = Xn×2β2×1 + ϵn×1
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Variance-Covariance Matrix

In general, for any set of variables U1, U2, . . . , Un, their variance-covariance matrix is defined
to be

σ2{U} =


σ2{U1} σ{U1, U2} · · · σ{U1, Un}

σ{U2, U1} σ2{U2}
. . .

...
...

. . . . . . σ{Un−1, Un}
σ{Un, U1} · · · σ{Un, Un−1} σ2{Un}


where σ2{Ui} is the variance of Ui, and σ{Ui, Uj} is the covariance of Ui and Uj.
When variables are uncorrelated, that means their covariance is 0. The variance-covariance
matrix of uncorrelated variables will be a diagonal matrix, since all the covariances are 0.

Note: Variables that are independent will also be uncorrelated. So when variables are
correlated, they are automatically dependent. However, it is possible to have variables that
are dependent but uncorrelated, since correlation only measures linear dependence. A nice
thing about normally distributed RV’s is that they are a convenient special case: if they are
uncorrelated, they are also independent.

Covariance Matrix of ϵ

σ2{ϵ}n×n = Cov


ϵ1
ϵ2
...
ϵn

 = σ2In×n =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2


Covariance Matrix of Y

σ2{Y}n×n = Cov


Y1

Y2
...
Yn

 = σ2In×n

Distributional Assumptions in Matrix Form

ϵ ∼ N(0, σ2I)
I is an n× n identity matrix.

• Ones in the diagonal elements specify that the variance of each ϵi is 1 times σ2.

• Zeros in the off-diagonal elements specify that the covariance between different ϵi is
zero.

• This implies that the correlations are zero.
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Parameter Estimation

Least Squares

Residuals are e = Y −Xb. Want to minimize sum of squared residuals.

∑
e2i = [e1 e2 · · · en]


e1
e2
...
en

 = e′e

We want to minimize e′e = (Y−Xb)′(Y−Xb), where the “prime” ()′ denotes the transpose
of the matrix (exchange the rows and columns).
We take the derivative with respect to the vector b. This is like a quadratic function: think
“(Y −Xb)2”.
The derivative works out to 2 times the derivative of (Y −Xb)′ with respect to b.
That is, d

db
((Y −Xb)′(Y −Xb)) = −2X′(Y − Xb). We set this equal to 0 (a vector of

zeros), and solve for b.
So, −2X′(Y −Xb) = 0. Or, X′Y = X′Xb (the “normal” equations).

Normal Equations

X′Y = (X′X)b

Solving this equation for b gives the least squares solution for b =

[
b0
b1

]
.

Multiply on the left by the inverse of the matrix X′X. (Notice that the matrix X′X is a

2× 2 square matrix for SLR.)

b = (X′X)−1X′Y

REMEMBER THIS.

Reality Break:

This is just to convince you that we have done nothing new nor magic – all we are doing is
writing the same old formulas for b0 and b1 in matrix format. Do NOT worry if you cannot
reproduce the following algebra, but you SHOULD try to follow it so that you believe me
that this is really not a new formula.
Recall in Topic 1, we had

b1 =

∑
(Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2
≡ SSXY

SSX

b0 = Ȳ − b1X̄
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Now let’s look at the pieces of the new formula:

X′X =

[
1 1 · · · 1
X1 X2 · · · Xn

]
1 X1

1 X2
...

...
1 Xn

 =

[
n

∑
Xi∑

Xi

∑
X2

i

]

(X′X)−1 =
1

n
∑

X2
i − (

∑
Xi)2

[ ∑
X2

i −
∑

Xi

−
∑

Xi n

]
=

1

nSSX

[ ∑
X2

i −
∑

Xi

−
∑

Xi n

]

X′Y =

[
1 1 · · · 1
X1 X2 · · · Xn

]
Y1

Y2
...
Yn

 =

[ ∑
Yi∑

XiYi

]

Plug these into the equation for b:

b = (X′X)−1X′Y =
1

nSSX

[ ∑
X2

i −
∑

Xi

−
∑

Xi n

] [ ∑
Yi∑

XiYi

]
=

1

nSSX

[
(
∑

X2
i )(

∑
Yi)− (

∑
Xi)(

∑
XiYi)

−(
∑

Xi)(
∑

Yi) + n
∑

XiYi

]
=

1

SSX

[
Ȳ (

∑
X2

i )− X̄
∑

XiYi∑
XiYi − nX̄Ȳ

]
=

1

SSX

[
Ȳ (

∑
X2

i )− Ȳ (nX̄2) + X̄(nX̄Ȳ )− X̄
∑

XiYi

SPXY

]
=

1

SSX

[
Ȳ SSX − SPXY X̄

SPXY

]
=

[
Ȳ − SPXY

SSX
X̄

SPXY

SSX

]
=

[
b0
b1

]
,

where

SSX =
∑

X2
i − nX̄2 =

∑
(Xi − X̄)2

SPXY =
∑

XiYi − nX̄Ȳ =
∑

(Xi − X̄)(Yi − Ȳ )

All we have done is to write the same old formulas for b0 and b1 in a fancy new format.
See NKNW page 199 for details. Why have we bothered to do this? The cool part is that
the same approach works for multiple regression. All we do is make X and b into bigger
matrices, and use exactly the same formula.
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Other Quantities in Matrix Form

Fitted Values

Ŷ =


Ŷ1

Ŷ2
...

Ŷn

 =


b0 + b1X1

b0 + b1X2
...

b0 + b1Xn

 =


1 X1

1 X2
...

...
1 Xn


[
b0
b1

]
= Xb

Hat Matrix

Ŷ = Xb

Ŷ = X(X′X)−1X′Y

Ŷ = HY

where H = X(X′X)−1X′. We call this the “hat matrix” because is turns Y ’s into Ŷ ’s.

Estimated Covariance Matrix of b

This matrix b is a linear combination of the elements of Y.
These estimates are normal if Y is normal.
These estimates will be approximately normal in general.

A Useful Multivariate Theorem

Suppose U ∼ N(µ,Σ), a multivariate normal vector, and V = c + DU, a
linear transformation of U where c is a vector and D is a matrix. Then V ∼
N(c+Dµ,DΣD′).

Recall: b = (X′X)−1X′Y = [(X′X)−1X′]Y and Y ∼ N(Xβ, σ2I).
Now apply theorem to b using

U = Y, µ = Xβ,Σ = σ2I

V = b, c = 0, and D = (X′X)−1X′

The theorem tells us the vector b is normally distributed with mean

(X′X)−1(X′X)β = β

and covariance matrix

σ2
(
(X′X)−1X′) I ((X′X)−1X′)′ = σ2(X′X)−1(X′X)

(
(X′X)−1

)′
= σ2(X′X)−1
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using the fact that both X′X and its inverse are symmetric, so ((X′X)−1)
′
= (X′X)−1.

Next we will use this framework to do multiple regression where we have more than one
explanatory variable (i.e., add another column to the design matrix and additional beta
parameters).

Multiple Regression

Data for Multiple Regression

• Yi is the response variable (as usual)

• Xi,1, Xi,2, . . . , Xi,p−1 are the p− 1 explanatory variables for cases i = 1 to n.

• Example – In Homework #1 you considered modeling GPA as a function of entrance
exam score. But we could also consider intelligence test scores and high school GPA
as potential predictors. This would be 3 variables, so p = 4.

• Potential problem to remember!!! These predictor variables are likely to be themselves
correlated. We always want to be careful of using variables that are themselves strongly
correlated as predictors together in the same model.

The Multiple Regression Model

Yi = β0 + β1Xi,1 + β2Xi,2 + . . .+ βp−1Xi,p−1 + ϵi for i = 1, 2, . . . , n

where

• Yi is the value of the response variable for the ith case.

• ϵi ∼iid N(0, σ2) (exactly as before!)

• β0 is the intercept (think multidimensionally).

• β1, β2, . . . , βp−1 are the regression coefficients for the explanatory variables.

• Xi,k is the value of the kth explanatory variable for the ith case.

• Parameters as usual include all of the β’s as well as σ2. These need to be estimated
from the data.
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Interesting Special Cases

• Polynomial model:

Yi = β0 + β1Xi + β2X
2
i + . . .+ βp−1X

p−1
i + ϵi

• X’s can be indicator or dummy variables with X = 0 or 1 (or any other two distinct
numbers) as possible values (e.g. ANOVA model). Interactions between explanatory
variables are then expressed as a product of the X’s:

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,1Xi,2 + ϵi

Model in Matrix Form

Yn×1 = Xn×pβp×1 + ϵn×1

ϵ ∼ N(0, σ2In×n)

Y ∼ N(Xβ, σ2I)

Design Matrix X:

X =


1 X1,1 X1,2 · · · X1,p−1

1 X2,1 X2,2 · · · X2,p−1
...

...
...

. . .
...

1 Xn,1 Xn,2 · · · Xn,p−1


Coefficient matrix β:

β =


β0

β1
...

βp−1


Parameter Estimation

Least Squares

Find b to minimize SSE = (Y −Xb)′(Y −Xb)
Obtain normal equations as before: X′Xb = X′Y

Least Squares Solution

b = (X′X)−1X′Y

Fitted (predicted) values for the mean of Y are

Ŷ = Xb = X(X′X)−1X′Y = HY,

where H = X(X′X)−1X′.
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Residuals

e = Y − Ŷ = Y −HY = (I−H)Y

Notice that the matrices H and (I−H) have two special properties. They are

• Symmetric: H = H′ and (I−H)′ = (I−H).

• Idempotent: H2 = H and (I−H)(I−H) = (I−H)

Covariance Matrix of Residuals

Cov(e) = σ2(I−H)(I−H)′ = σ2(I−H)

V ar(ei) = σ2(1− hi,i),

where hi,i is the ith diagonal element of H.

Note: hi,i = X′
i(X

′X)−1Xi where X′
i = [1Xi,1 · · · Xi,p−1].

Residuals ei are usually somewhat correlated: cov(ei, ej) = −σ2hi,j; this is not unexpected,
since they sum to 0.

Estimation of σ

Since we have estimated p parameters, SSE = e′e has dfE = n− p. The estimate for σ2 is
the usual estimate:

s2 =
e′e

n− p
=

(Y −Xb)′(Y −Xb)

n− p
=

SSE

dfE
= MSE

s =
√
s2 = Root MSE

Distribution of b

We know that b = (X′X)−1X′Y. The only RV involved is Y , so the distribution of b is
based on the distribution of Y.

Since Y ∼ N(Xβ, σ2I), and using the multivariate theorem from earlier (if you like, go
through the details on your own), we have

E(b) =
(
(X′X)−1X′)Xβ = β

σ2{b} = Cov(b) = σ2(X′X)−1

Since σ2 is estimated by the MSE s2, σ2{b} is estimated by s2(X′X)−1.
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ANOVA Table

Sources of variation are

• Model (SAS) or Regression (KNNL)

• Error (Residual)

• Total

SS and df add as before

SSM + SSE = SST

dfM + dfE = dfTotal

but their values are different from SLR.

Sum of Squares

SSM =
∑

(Ŷi − Ȳ )2

SSE =
∑

(Yi − Ŷi)
2

SSTO =
∑

(Yi − Ȳ )2

Degrees of Freedom

dfM = p− 1

dfE = n− p

dfTotal = n− 1

The total degrees have not changed from SLR, but the model df has increased from 1 to
p−1, i.e., the number of X variables. Correspondingly, the error df has decreased from n−2
to n− p.

Mean Squares

MSM =
SSM

dfM
=

∑
(Ŷi − Ȳ )2

p− 1

MSE =
SSE

dfE
=

∑
(Yi − Ŷi)

2

n− p

MST =
SSTO

dfTotal

=

∑
(Yi − Ȳ )2

n− 1
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ANOVA Table

Source df SS MSE F
Model dfM = p− 1 SSM MSM MSM

MSE

Error dfE = n− p SSE MSE
Total dfT = n− 1 SST

F -test

H0 : β1 = β2 = . . . = βp−1 = 0 (all regression coefficients are zero)
HA : βk ̸= 0, for at least one k = 1, . . . , p− 1; at least of the β’s is non-zero (or, not all the
β’s are zero).
F = MSM/MSE
Under H0, F ∼ Fp−1,n−p

Reject H0 if F is larger than critical value; if using SAS, reject H0 if p-value < α = 0.05 .

What do we conclude?

If H0 is rejected, we conclude that at least one of the regression coefficients is non-zero;
hence at least one of the X variables is useful in predicting Y . (Doesn’t say which one(s)
though). If H0 is not rejected, then we cannot conclude that any of the X variables is useful
in predicting Y .

p-value of F -test

The p-value for the F significance test tell us one of the following:

• there is no evidence to conclude that any of our explanatory variables can help us to
model the response variable using this kind of model (p ≥ 0.05).

• one or more of the explanatory variables in our model is potentially useful for predict-
ing the response in a linear model (p ≤ 0.05).

R2

The squared multiple regression correlation (R2) gives the proportion of variation in the
response variable explained by the explanatory variables.
It is sometimes called the coefficient of multiple determination (KNNL, page 236).
R2 = SSM/SST (the proportion of variation explained by the model)
R2 = 1− (SSE/SST ) (1− the proportion not explained by the model)
F and R2 are related:

F =
R2/(p− 1)

(1−R2)/(n− p)
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Inference for Individual Regression Coefficients

Confidence Interval for βk

We know that b ∼ N(β, σ2(X′X)−1)
Define

s2{b}p×p = MSE × (X′X)−1

s2{bk} =
[
s2{b}

]
k,k

, the kth diagonal element

CI for βk: bk ± tcs{bk}, where tc = tn−p(0.975).

Significance Test for βk

H0 : βk = 0
Same test statistic t∗ = bk/s{bk}
Still use dfE which now is equal to n− p
p-value computed from tn−p distribution.
This tests the significance of a variable given that the other variables are already in the model
(i.e., fitted last). Unlike in SLR, the t-tests for β are different from the F -test.

Multiple Regression – Case Study

Example: Study of CS Students

Problem: Computer science majors at Purdue have a large drop-out rate.
Potential Solution: Can we find predictors of success? Predictors must be available at time
of entry into program.

Data Available

Grade point average (GPA) after three semesters (Yi, the response variable)
Five potential predictors (p = 6)

• X1 = High school math grades (HSM)

• X2 = High school science grades (HSS)

• X3 = High school English grades (HSE)

• X4 = SAT Math (SATM)

• X5 = SAT Verbal (SATV)

• Gender (1 = male, 2 = female) (we will ignore this one right now, since it is not a
continuous variable).

We have n = 224 observations, so if all five variables are included, the design matrix X is
224× 6. The SAS program used to generate output for this is cs.sas.
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Look at the individual variables

Our first goal should be to take a look at the variables to see...

• Is there anything that sticks out as unusual for any of the variables?

• How are these variables related to each other (pairwise)? If two predictor variables are
strongly correlated, we wouldn’t want to use them in the same model!

We do this by looking at statistics and plots.

data cs;

infile ’H:\System\Desktop\csdata.dat’;

input id gpa hsm hss hse satm satv genderm1;

Descriptive Statistics: proc means

proc means data=cs maxdec=2;

var gpa hsm hss hse satm satv;

The option maxdec = 2 sets the number of decimal places in the output to 2 (just showing
you how).

Output from proc means

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

---------------------------------------------------------------------------------

gpa 224 2.64 0.78 0.12 4.00

hsm 224 8.32 1.64 2.00 10.00

hss 224 8.09 1.70 3.00 10.00

hse 224 8.09 1.51 3.00 10.00

satm 224 595.29 86.40 300.00 800.00

satv 224 504.55 92.61 285.00 760.00

---------------------------------------------------------------------------------

Descriptive Statistics

Note that proc univariate also provides lots of other information, not shown.

proc univariate data=cs noprint;

var gpa hsm hss hse satm satv;

histogram gpa hsm hss hse satm satv /normal;
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Figure 1: Graph of GPA (left) and High School Math (right)

Figure 2: Graph of High School Science (left) and High School English (right)

Figure 3: Graph of SAT Math (left) and SAT Verbal (right)

NOTE: If you want the plots (e.g., histogram, qqplot) and not the copious output from proc
univariate, use a noprint statement

proc univariate data = cs noprint;

histogram gpa / normal;
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Interactive Data Analysis

Read in the dataset as usual
From the menu bar, select

Solutions -> analysis -> interactive data analysis

Obtain SAS/Insight window

• Open library work

• Click on Data Set CS and click “open”.

Getting a Scatter Plot Matrix

(CTRL) Click on GPA, SATM, SATV
Go to menu Analyze

Choose option Scatterplot(Y X)

You can, while in this window, use Edit -> Copy to copy this plot to another program such as
Word: (See Figure 4.)

satm

300

800

satv

285

760

gpa

0.12

4.00

Figure 4: Scatterplot Matrix

This graph – once you get used to it – can be useful in getting an overall feel for the
relationships among the variables. Try other variables and some other options from the
Analyze menu to see what happens.
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Correlations

SAS will give us the r (correlation) value between pairs of random variables in a data set
using proc corr.

proc corr data=cs;

var hsm hss hse;

hsm hss hse

hsm 1.00000 0.57569 0.44689

<.0001 <.0001

hss 0.57569 1.00000 0.57937

<.0001 <.0001

hse 0.44689 0.57937 1.00000

<.0001 <.0001

To get rid of those p-values, which make it difficult to read, use a noprob statement. Here
are also a few different ways to call proc corr:

proc corr data=cs noprob;

var satm satv;

satm satv

satm 1.00000 0.46394

satv 0.46394 1.00000

proc corr data=cs noprob;

var hsm hss hse;

with satm satv;

hsm hss hse

satm 0.45351 0.24048 0.10828

satv 0.22112 0.26170 0.24371

proc corr data=cs noprob;

var hsm hss hse satm satv;

with gpa;

hsm hss hse satm satv

gpa 0.43650 0.32943 0.28900 0.25171 0.11449

Notice that not only do the X’s correlate with Y (this is good), but the X’s correlate with
each other (this is bad). That means that some of the X’s may be redundant in predicting
Y .
Use High School Grades to Predict GPA

proc reg data=cs;

model gpa=hsm hss hse;
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Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 27.71233 9.23744 18.86 <.0001

Error 220 107.75046 0.48977

Corrected Total 223 135.46279

Root MSE 0.69984 R-Square 0.2046

Dependent Mean 2.63522 Adj R-Sq 0.1937

Coeff Var 26.55711

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.58988 0.29424 2.00 0.0462

hsm 1 0.16857 0.03549 4.75 <.0001

hss 1 0.03432 0.03756 0.91 0.3619

hse 1 0.04510 0.03870 1.17 0.2451

Remove HSS

proc reg data=cs;

model gpa=hsm hse;

R-Square 0.2016 Adj R-Sq 0.1943

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.62423 0.29172 2.14 0.0335

hsm 1 0.18265 0.03196 5.72 <.0001

hse 1 0.06067 0.03473 1.75 0.0820

Rerun with HSM only

proc reg data=cs;

model gpa=hsm;

R-Square 0.1905 Adj R-Sq 0.1869

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.90768 0.24355 3.73 0.0002

hsm 1 0.20760 0.02872 7.23 <.0001

The last two models (HSM only and HSM, HSE) appear to be pretty good. Notice that R2

go down a little with the deletion of HSE , so HSE does provide a little information. This is
a judgment call: do you prefer a slightly better-fitting model, or a simpler one?
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Now look at SAT scores

proc reg data=cs;

model gpa=satm satv;

R-Square 0.0634 Adj R-Sq 0.0549

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.28868 0.37604 3.43 0.0007

satm 1 0.00228 0.00066291 3.44 0.0007

satv 1 -0.00002456 0.00061847 -0.04 0.9684

Here we see that SATM is a significant explanatory variable, but the overall fit of the model
is poor. SATV does not appear to be useful at all.

Now try our two most promising candidates: HSM and SATM

proc reg data=cs;

model gpa=hsm satm;

R-Square 0.1942 Adj R-Sq 0.1869

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.66574 0.34349 1.94 0.0539

hsm 1 0.19300 0.03222 5.99 <.0001

satm 1 0.00061047 0.00061117 1.00 0.3190

In the presence of HSM, SATM does not appear to be at all useful. Note that adjusted R2

is the same as with HSM only, and that the p-value for SATM is now no longer significant.

General Linear Test Approach: HS and SAT’s

proc reg data=cs;

model gpa=satm satv hsm hss hse;

*Do general linear test;

* test H0: beta1 = beta2 = 0;

sat: test satm, satv;

* test H0: beta3=beta4=beta5=0;

hs: test hsm, hss, hse;

R-Square 0.2115 Adj R-Sq 0.1934

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.32672 0.40000 0.82 0.4149

satm 1 0.00094359 0.00068566 1.38 0.1702

satv 1 -0.00040785 0.00059189 -0.69 0.4915

hsm 1 0.14596 0.03926 3.72 0.0003

hss 1 0.03591 0.03780 0.95 0.3432

hse 1 0.05529 0.03957 1.40 0.1637
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The first test statement tests the full vs reduced models (H0 : no satm or satv, Ha : full
model)

Test sat Results for Dependent Variable gpa

Mean

Source DF Square F Value Pr > F

Numerator 2 0.46566 0.95 0.3882

Denominator 218 0.49000

We do not reject the H0 that β1 = β2 = 0. Probably okay to throw out SAT scores.

The second test statement tests the full vs reduced models (H0 : no hsm, hss, or hse,
Ha : all three in the model)

Test hs Results for Dependent Variable gpa

Mean

Source DF Square F Value Pr > F

Numerator 3 6.68660 13.65 <.0001

Denominator 218 0.49000

We reject the H0 that β3 = β4 = β5 = 0. CANNOT throw out all high school grades.

Can use the test statement to test any set of coefficients equal to zero. Related to ex-
tra sums of squares (later).

Best Model?

Likely the one with just HSM. Could argue that HSM and HSE is marginally better. We’ll
discuss comparison methods in Chapters 7 and 8.

Key ideas from case study

• First, look at graphical and numerical summaries for one variable at a time.

• Then, look at relationships between pairs of variables with graphical and numerical
summaries.

• Use plots and correlations to understand relationships.

• The relationship between a response variable and an explanatory variable depends on
what other explanatory variables are in the model.

• A variable can be a significant (p < 0.05) predictor alone and not significant (p > 0.05)
when other X’s are in the model.

• Regression coefficients, standard errors, and the results of significance tests depend on
what other explanatory variables are in the model.
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• Significance tests (p-values) do not tell the whole story.

• Squared multiple correlations (R2) give the proportion of variation in the response
variable explained by the explanatory variables, and can give a different view; see also
adjusted R2.

• You can fully understand the theory in terms of Y = Xβ + ϵ.

• To effectively use this methodology in practice, you need to understand how the data
were collected, the nature of the variables, and how they relate to each other.

Other things that should be considered

• Diagnostics: Do the models meet the assumptions? You might take one of our final
two potential models and check these out on your own.

• Confidence intervals/bands, Prediction intervals/bands?

Example II (KNNL page 236)

Dwaine Studios, Inc. operates portrait studios in n = 21 cities of medium size.
Program used to generate output for confidence intervals for means and prediction intervals
is nknw241.sas.

• Yi is sales in city i

• X1 : population aged 16 and under

• X2 : per capita disposable income

Yi = β0 + β1Xi,1 + β2Xi,2 + ϵi

Read in the data

data a1;

infile ’H:\System\Desktop\CH06FI05.DAT’;

input young income sales;

proc print data=a1;

Obs young income sales

1 68.5 16.7 174.4

2 45.2 16.8 164.4

3 91.3 18.2 244.2

4 47.8 16.3 154.6

...
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proc reg data=a1;

model sales=young income

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015 12008 99.10 <.0001

Error 18 2180.92741 121.16263

Corrected Total 20 26196

Root MSE 11.00739 R-Square 0.9167

Dependent Mean 181.90476 Adj R-Sq 0.9075

Coeff Var 6.05118

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -68.85707 60.01695 -1.15 0.2663

young 1 1.45456 0.21178 6.87 <.0001

income 1 9.36550 4.06396 2.30 0.0333

clb option: Confidence Intervals for the β’s

proc reg data=a1;

model sales=young income/clb;

95% Confidence Limits

Intercept -194.94801 57.23387

young 1.00962 1.89950

income 0.82744 17.90356

Estimation of E(Yh)

Xh is now a vector of values. (Yh is still just a number.)
(1, Xh,1, Xh,2, . . . , Xh,p−1)

′ = X′
h: this is row h of the design matrix. We want a point estimate

and a confidence interval for the subpopulation mean corresponding to the set of explanatory
variables Xh.

Theory for E(Yh)

E(Yh) = µj = X′
hβ

µ̂h = X′
hb

s2{µ̂h} = X′
hs

2{b}Xh = s2X′
h(X

′X)−1Xh

95%CI : µ̂h ± s{µ̂h}tn−p(0.975)

clm option: Confidence Intervals for the Mean

proc reg data=a1;

model sales=young income/clm;

id young income;
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Dep Var Predicted Std Error

Obs young income sales Value Mean Predict 95% CL Mean

1 68.5 16.7 174.4000 187.1841 3.8409 179.1146 195.2536

2 45.2 16.8 164.4000 154.2294 3.5558 146.7591 161.6998

3 91.3 18.2 244.2000 234.3963 4.5882 224.7569 244.0358

4 47.8 16.3 154.6000 153.3285 3.2331 146.5361 160.1210

Prediction of Yh(new)

Predict a new observation Yh with X values equal to Xh.
We want a prediction of Yh based on a set of predictor values with an interval that expresses
the uncertainty in our prediction. As in SLR, this interval is centered at Ŷh and is wider
than the interval for the mean.

Theory for Yh

Yh = X′
hβ + ϵ

Ŷh = µ̂h = X′
hb

σ2{pred} = Var(Ŷh + ϵ) = Var(Ŷh) + Var(ϵ)

s2{pred} = s2
(
1 +X′

h(X
′X)−1Xh

)
CI for Yh(new) : Ŷh ± s{pred}tn−p(0.975)

cli option: Confidence Interval for an Individual Observation

proc reg data=a1;

model sales=young income/cli;

id young income;

Dep Var Predicted Std Error

Obs young income sales Value Mean Predict 95% CL Predict

1 68.5 16.7 174.4000 187.1841 3.8409 162.6910 211.6772

2 45.2 16.8 164.4000 154.2294 3.5558 129.9271 178.5317

3 91.3 18.2 244.2000 234.3963 4.5882 209.3421 259.4506

4 47.8 16.3 154.6000 153.3285 3.2331 129.2260 177.4311

Diagnostics

Look at the distribution of each variable to gain insight.
Look at the relationship between pairs of variables. proc corr is useful here. BUT note that
relationships between variables can be more complicated than just pairwise: correlations are
NOT the entire story.

• Plot the residuals vs...
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– the predicted/fitted values

– each explanatory variable

– time (if available)

• Are the relationships linear?

– Look at Y vs each Xi

– May have to transform some X’s.

• Are the residuals approximately normal?

– Look at a histogram

– Normal quantile plot

• Is the variance constant?

– Check all the residual plots.

Remedies

Similar remedies to simple regression (but more complicated to decide, though).
Additionally may eliminate some of the X’s (this is call variable selection).
Transformations such as Box-Cox
Analyze with/without outliers
More detail in KNNL Ch 10 and 11
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