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Overview of Topic IX

This topic will cover

• One-Way Analysis of Covariance (ANCOVA) (§22)

• ANCOVA With More Than One Factor / Covariate (§22)
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One-way Analysis of Covariance

ANCOVA is really “ANOVA with covariates” or, more simply, a

combination of ANOVA and regression used when you have some

categorical factors and some quantitative predictors. The predictors

(X variables on which to perform regression) are called “covariates”

in this context. The idea is that often these covariates are not

necessarily of primary interest, but still their inclusion in the model

will help explain more of the response, and hence reduce the error

variance.
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Example: An Illustration of why ANCOVA can be

important

Our response Y is the number of months a patient lives

after being placed on one of three different treatments

available to treat an aggressive form of cancer. We could

analyze these treatments with a one-way ANOVA as

follows:
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At first glance, the treatment variable would appear to be

important.
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In fact if we run the one-way analysis of variance we get

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1122.666667 561.333333 14.43 0.0051

Error 6 233.333333 38.888889

Corrected Total 8 1356.000000

Mean N trt

A 39.333 3 1

B 24.667 3 2

C 12.000 3 3
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The analysis tells us that there is a big difference

between the treatments. Treatment 1 is clearly the best

as people live longer. Suppose we put a large group of

people on Treatment 1 expecting them to live 30+

months only to find that over half of them die prior to 25

months. What did we do wrong????
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It turns out that we have neglected an important variable. We need

to consider X , the stage to which the cancer has progressed at the

time treatment begins. We can see its effect in the following plot:
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There is clearly a linear relationship between X and Y ,

and we notice that the group assigned to the first

treatment were all in a lower stage of the disease, those

assigned to treatment 2 were all in a mid-stage, and

those assigned to treatment 3 were all in a late stage of

the disease. We would suspect looking at this plot to find

the treatments are not all that different.
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. Sum of

Source DF Squares Mean Square F Value Pr > F

x 1 1297.234815 1297.234815 192.86 <.0001

trt 2 25.134378 12.567189 1.87 0.2478

Error 5 33.630807 6.726161

Total 8 1356.000000

LSMEAN

trt y LSMEAN Number

1 20.3039393 1

2 23.6762893 2

3 32.0197715 3
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. Least Squares Means for Effect trt

t for H0: LSMean(i)=LSMean(j) / Pr > |t|

i/j 1 2 3

1 -0.85813 -1.56781

0.4300 0.1777

2 0.858127 -1.89665

0.4300 0.1164

3 1.567807 1.89665

0.1777 0.1164
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So the stage of the cancer was what actually was

affecting the lifetime - it really didn’t have anything to do

with the choice of treatment. It just happened that

everyone on treatment 1 was in an earlier stage of the

disease and so that made it look like there was a

treatment effect. And notice that if there was to be a

difference, treatment 3 actually would have been the

best. So to give everyone treatment 1 on the basis of our

original analysis could have been a deadly mistake.
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A Second Example

It is also possible to have a difference in means, but not be able to

see it unless you first adjust for a covari-

ate. Imagine a similar disease/treatment situation (but different data).
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. Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1.5555556 0.7777778 0.04 0.9604

Error 6 114.6666667 19.1111111

Total 8 116.2222222

No significant differences between the treatments, right?

WRONG!
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Consider now what happens when we consider the covariate X =

stage of disease:
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Now we see that there is probably a difference in means.

Again all the treatment 1’s were in the early stages of the

disease, all the treatment 2’s in the middle stages, and

all the treatment 3’s in the latter stages. But now

treatment 3 would appear to be doing a better job since

it is keeping those at the advanced stage of cancer alive

just as long as those in the initial stages.
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If we look to the actual analysis:

. Sum of

Source DF Squares Mean Square F Value Pr > F

x 1 6.97675624 6.97675624 1.11 0.3407

trt 2 77.76617796 38.88308898 6.18 0.0446

Error 5 31.4792880 6.2958576

Total 8 116.2222222
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Note that X by itself was not significant. But we had to

adjust for it before we could find the differences in the

treatments. The output below indicates that treatment 3

is significantly better than the other two treatments. So

this time the potentially deadly mistake would be to

assume they were equivalent and give out the cheapest

(unless you were lucky and that was treatment 3).
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. LSMEAN

trt y LSMEAN Number

1 -3.5873786 1

2 11.9844660 2

3 26.2695793 3

Least Squares Means for Effect trt

t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: y

i/j 1 2 3

1 -3.11551 -3.49022

0.0581 0.0390

2 3.115508 -3.3454

0.0581 0.0454

3 3.490225 3.345401

0.0390 0.0454
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Notice that the lsmean estimate for the mean of Y

with treatment 1 is negative. That’s meant to be the

mean of Y for an “average” stage of cancer (X̄ = 5.3)

given trt 1. Since all trt 1 patients had x < 3.5 this is an

unreasonable extrapolation. The interpretation breaks

down (it would imply they were dead before treatment

began) but the point is made that adjusting for covariates

can seriously change your results.
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Warning: As these examples illustrate, although

ANCOVA is a powerful tool and can be very helpful, it

cannot completely compensate for a flawed experimental

design. In these two experiments we really haven’t a

clue how trt 1 behaves in late stage patients, or how trt 3

behaves in early stage patients. It would be foolish not to

do another experiment with a proper design.
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Data for one-way ANCOVA

• Yi,j is the jth observation on the response variable in

the ith group

• Xi,j is the jth observation on the covariate in the ith

group

• i = 1, . . . , r levels (groups) of factor

• j = 1, . . . , ni observations for level i
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KNNL Example (page 926)

(nknw1020.sas )

Y is the number of cases of crackers sold during promotion period

Factor is the type of promotion (r = 3)

• Customers sample crackers in store

• Additional shelf space

• Special display shelves

ni = 5 different stores per type

The covariate X is the number of cases of crackers sold in the

preceding period.
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Data

data crackers;

infile ’h:\System\Desktop\CH25TA01.DAT’;

input cases last treat store;

proc print data=crackers;

Obs cases last treat store

1 38 21 1 1

2 39 26 1 2

3 36 22 1 3

4 45 28 1 4

5 33 19 1 5

6 43 34 2 1

7 38 26 2 2

8 38 29 2 3

9 27 18 2 4

10 34 25 2 5

11 24 23 3 1

12 32 29 3 2

13 31 30 3 3

14 21 16 3 4

15 28 29 3 5
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Plot the data

title1 ’Plot of the data’;

symbol1 v=’1’ i=none c=black;

symbol2 v=’2’ i=none c=black;

symbol3 v=’3’ i=none c=black;

proc gplot data=crackers;

plot cases*last=treat;
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Basic Ideas Behind ANCOVA

• Covariates (sometimes called concomitant variables) can reduce

the MSE, thereby increasing power for testing. Baseline or

pretest values are often used as covariates.

• A covariate can adjust for differences in characteristics of

subjects in the treatment groups. It should be related ONLY to

the response variable and not to the treatment variables

(factors).

• We assume that the covariate will be linearly related to the

response and that the relationship will be the same for all levels

of the factor (no interaction between covariate and factor).
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Plot of the data with lines

title1 ’Plot of the data with lines’;

symbol1 v=’1’ i=rl c=black;

symbol2 v=’2’ i=rl c=black;

symbol3 v=’3’ i=rl c=black;

proc gplot data=crackers;

plot cases*last=treat;
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Cell Means Model

• Yi,j = µi + β1(Xi,j − X̄..) + ǫi,j

• As usual the ǫi,j are iid N(0, σ2).

• Yi,j ∼ N(µi + β(Xi,j − X̄..), σ
2) independent

• For each i, we have a simple linear regression in

which the slopes are the same, but the intercepts may

differ (i.e. different means once covariate has been

“adjusted” out).
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Parameters and Estimates

• The parameters of the model are µi for i = 1 to r;

β1, and σ2

• We use multiple regression methods to estimate the

µi and β1

• We use the residuals from the model to estimate σ2

(using the MSE)
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Factor Effects Model for one-way ANCOVA

• Yi,j = µ+ αi + θ1(Xi,j − X̄..) + ǫi,j

• ǫi,j ∼
iid N(0, σ2)

• The usual constraints are
∑

αi = 0 (or in SAS

αa = 0)

• Note the deliberate use of θ instead of β for the slope

to avoid confusion with a factor B
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Interpretation of model

• Expected value of a Y with level i and Xi,j = x is

µ+ αi + θ1(x− X̄..)

• Expected value of a Y with level i′ and Xi′,j = x is

µ+ αi′ + θ1(x− X̄..)

• Of note is that the difference αi − αi′ does NOT

depend on the value of x.
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proc glm data=crackers;

class treat;

model cases=last treat/solution clparm;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 607.8286915 202.6095638 57.78 <.0001

Error 11 38.5713085 3.5064826

Corrected Total 14 646.4000000

R-Square Coeff Var Root MSE cases Mean

0.940329 5.540120 1.872560 33.80000

Source DF Type I SS Mean Square F Value Pr > F

last 1 190.6777778 190.6777778 54.38 <.0001

treat 2 417.1509137 208.5754568 59.48 <.0001

Source DF Type III SS Mean Square F Value Pr > F

last 1 269.0286915 269.0286915 76.72 <.0001

treat 2 417.1509137 208.5754568 59.48 <.0001
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Standard

Parameter Estimate Error t Value

Intercept 4.37659064 B 2.73692149 1.60

last 0.89855942 0.10258488 8.76

treat 1 12.97683073 B 1.20562330 10.76

treat 2 7.90144058 B 1.18874585 6.65

treat 3 0.00000000 B . .

Pr > |t| 95% Confidence Limits

0.1381 -1.64733294 10.40051421

<.0001 0.67277163 1.12434722

<.0001 10.32327174 15.63038972

<.0001 5.28502860 10.51785255

. . .
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The estimate for the common slope is θ̂1 = 0.9, and

notice that its confidence interval contains 1 (we’ll use

that later). The option ‘clparm ’ can be used to get

confidence intervals on the parameters. Note, however,

that only CI’s for unbiased estimates (in this case the

slope for last ) are appropriate.
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Interpretation

• The expected value of Y with level i of factor A and

X = x is µ+ αi + θ1(x− X̄..).

• So µ+ αi is the expected value of Y when X is

equal to the average covariate value

• This is commonly the level of X where the treatment

means are calculated (for this to be interpretable,

need to make sure this level of X is reasonable for

each level of the factor)
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LSMEANS

• The L(least)S(square) means can be used to obtain

these estimates

• All other categorical values are set at an equal mix for

all levels (i.e., average over the other factors)

• All continuous values are set at their overall means
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Interpretation for KNNL example

• Y is cases of crackers sold under a particular

promotion scenario

• X is the cases of crackers sold during the last period

• The LSMEANS are the estimated number cases of

crackers that would be sold with a given treatment for

a store with average cracker sales during the previous

period
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LSMEANSStatement

proc glm data=crackers;

class treat;

model cases=last treat;

lsmeans treat/stderr tdiff pdiff cl;
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• STDERRgets the standard errors for the means (in the first part

of the output)

• TDIFF requests the matrix of statistics (with p-values) that will

do pairwise comparisons. You can use this along with ADJUST

= TUKEY (or BON , SCHEFFE , DUNNETT ) to apply multiple

comparison procedures.

• PDIFF requests only the matrix of p-values for the pairwise

comparisons (may use ADJUST )

• CLgets confidence limits for the means. When used in

conjunction with PDIFF , it also provides confidence limits for

the pairwise differences using whatever adjustment you specify.
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Least Squares Means

Standard LSMEAN

treat cases LSMEAN Error Pr > |t| Number

1 39.8174070 0.8575507 <.0001 1

2 34.7420168 0.8496605 <.0001 2

3 26.8405762 0.8384392 <.0001 3

Least Squares Means for Effect treat

t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: cases

i/j 1 2 3

1 4.129808 10.76359

0.0017 <.0001

2 -4.12981 6.646871

0.0017 <.0001

3 -10.7636 -6.64687

<.0001 <.0001

Topic IX

Page 41



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

treat cases LSMEAN 95% Confidence Limits

1 39.817407 37.929951 41.704863

2 34.742017 32.871927 36.612107

3 26.840576 24.995184 28.685968

Least Squares Means for Effect treat

Difference

Between 95% Confidence Limits for

i j Means LSMean(i)-LSMean(j)

1 2 5.075390 2.370456 7.780324

1 3 12.976831 10.323272 15.630390

2 3 7.901441 5.285029 10.517853

NOTE: To ensure overall protection level, only probabilities

associated with pre-planned comparisons should be used.
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From this output we see that the means (adjusted for

covariate) are significantly different for each treatment

and so the first treatment is superior. Allowing food

sampling in the store appears to increase sales. Without

the covariate we would not see this, as treatments 1 and

2 would test to be equivalent.
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Prepare data for plot

title1 ’Plot of the data with the model’;

proc glm data=crackers;

class treat;

model cases=last treat;

output out=crackerpred p=pred;
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data crackerplot; set crackerpred;

drop cases pred;

if treat eq 1 then do

cases1=cases;

pred1=pred;

output; end;

if treat eq 2 then do

cases2=cases;

pred2=pred;

output; end;

if treat eq 3 then do

cases3=cases;

pred3=pred;

output; end;

proc print data=crackerplot;

Topic IX

Page 45



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

Obs last treat store cases1 pred1 cases2 pred2 cases3 pred3

1 21 1 1 38 36.2232 . . . .

2 26 1 2 39 40.7160 . . . .

3 22 1 3 36 37.1217 . . . .

4 28 1 4 45 42.5131 . . . .

5 19 1 5 33 34.4261 . . . .

6 34 2 1 . . 43 42.8291 . .

7 26 2 2 . . 38 35.6406 . .

8 29 2 3 . . 38 38.3363 . .

9 18 2 4 . . 27 28.4521 . .

10 25 2 5 . . 34 34.7420 . .

11 23 3 1 . . . . 24 25.0435

12 29 3 2 . . . . 32 30.4348

13 30 3 3 . . . . 31 31.3334

14 16 3 4 . . . . 21 18.7535

15 29 3 5 . . . . 28 30.4348
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Code for plot

symbol1 v=’1’ i=none c=black;

symbol2 v=’2’ i=none c=black;

symbol3 v=’3’ i=none c=black;

symbol4 v=none i=rl c=black;

symbol5 v=none i=rl c=black;

symbol6 v=none i=rl c=black;

proc gplot data=crackerplot;

plot (cases1 cases2 cases3 pred1 pred2 pred3)*last/overlay;
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Prepare data for plot without covariate

title1 ’No covariate’;

proc glm data=crackers;

class treat;

model cases=treat;

output out=nocov p=pred;

run;

symbol1 v=circle i=none c=black;

symbol2 v=none i=join c=black;

proc gplot data=nocov;

plot (cases pred)*treat/overlay;
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Diagnostics and remedies

• Examine the data and residuals (check the three

standard assumptions)

• Check the same-slope assumption

• Look for outliers that are influential

• Transform if needed, consider Box-Cox

• Examine variances (standard deviations). Look at

MSE for models run separately on each treatment

group (use a BY statement in PROC REG or GLM )
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Check for equality of slopes

title1 ’Check for equal slopes’;

proc glm data=crackers;

class treat;

model cases=last treat last*treat;

. Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 614.8791646 122.9758329 35.11 <.0001

Error 9 31.5208354 3.5023150

Total 14 646.4000000

R-Square Coeff Var Root MSE cases Mean

0.951236 5.536826 1.871447 33.80000
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Source DF Type I SS Mean Square F Value Pr > F

last 1 190.6777778 190.6777778 54.44 <.0001

treat 2 417.1509137 208.5754568 59.55 <.0001

last*treat 2 7.0504731 3.5252366 1.01 0.4032

Source DF Type III SS Mean Square F Value Pr > F

last 1 243.1412380 243.1412380 69.42 <.0001

treat 2 1.2632832 0.6316416 0.18 0.8379

last*treat 2 7.0504731 3.5252366 1.01 0.4032
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Analysis using differences

Recall that the CI for the slope included 1. So it is not unreasonable

to assume a model that looks like

Yi,j = µ+ αi +Xi,j + ǫi,j where ǫi,j ∼ N(0, σ2)

This is the same as considering the one-way ANOVA model

Yi,j −Xi,j = µ+ αi + ǫi,j where ǫi,j ∼ N(0, σ2)

and so we can treat Yi,j −Xi,j as our response variable. This

corresponds to the increase in sales over the previous period.

Topic IX

Page 54



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

data crackerdiff;

set crackers;

casediff = cases - last;

proc glm data=crackerdiff;

class treat;

model casediff = treat;

means treat / tukey;

Topic IX

Page 55



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

. Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 440.4000000 220.2000000 62.91 <.0001

Error 12 42.0000000 3.5000000

Total 14 482.4000000

R-Square Coeff Var Root MSE casediff Mean

0.912935 21.25942 1.870829 8.800000

Mean N treat

A 15.000 5 1

B 9.600 5 2

C 1.800 5 3
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We see that the R2 is about 0.03 less, but this is

because the point estimate for slope was not exactly 1.

We do get the same overall results - namely we

conclude that treatment 1 is overall best. So this is a

perfectly appropriate way to do the analysis in this case.
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Two-way ANCOVA Example

• KNNL Problem 22.15 (nknw1038.sas )

• Y is offer made by a dealer on a used car (units $100)

• Factor A is the age of person selling the car (young, middle,

elderly)

• Factor B is gender of the person selling the car (male, female)

• Covariate is overall sales volume for the dealer

• This was a planned experiment using the same medium-priced,

six-year old car
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Plot data without covariate

data cash;

infile ’H:\System\Desktop\CH25PR15.DAT’;

input offer age gender rep sales;

*Look at the model without covariate;

data cashplot; set cash;

if age=1 and gender=1 then factor = ’1_youngmale’;

if age=2 and gender=1 then factor = ’2_midmale’;

if age=3 and gender=1 then factor = ’3_eldmale’;

if age=1 and gender=2 then factor = ’4_youngfemale’;

if age=2 and gender=2 then factor = ’5_midfemale’;

if age=3 and gender=2 then factor = ’6_eldfemale’;

symbol1 v=circle h=2;

title1 ’Plot of Offers against Factor Combinations w/o Covariate’;

proc gplot data=cashplot;

plot offer*factor;
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We appear to have differences based on age: namely it appears

that dealers may offer less money to the young and elderly. This is

backed up by the following two-way ANOVA model output:

. Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 327.2222222 65.4444444 27.40 <.0001

Error 30 71.6666667 2.3888889

Corrected Total 35 398.8888889

R-Square Coeff Var Root MSE offer Mean

0.820334 6.561523 1.545603 23.55556

Source DF Type I SS Mean Square F Value Pr > F

age 2 316.7222222 158.3611111 66.29 <.0001

gender 1 5.4444444 5.4444444 2.28 0.1416

age*gender 2 5.0555556 2.5277778 1.06 0.3597
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Mean N age

A 27.7500 12 2

B 21.5000 12 1

B

B 21.4167 12 3
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Now let’s consider the covariate:

symbol1 v=A h=1 c=black;

symbol2 v=B h=1 c=black;

symbol3 v=C h=1 c=black;

symbol4 v=D h=1 c=black;

symbol5 v=E h=1 c=black;

symbol6 v=F h=1 c=black;

title ’Plot of Offers vs Sales by Factor’;

proc gplot data=cashplot;

plot offer*sales=factor;
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Notice that there seems to be an increasing effect of

sales, with the data dividing into two clusters. The top

cluster is the middle-age group.
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We conduct the two-way ANCOVA:

proc glm data=cash;

class age gender;

model offer=sales age|gender;

lsmeans age gender /tdiff pdiff cl adjust=tukey;

. Sum of

Source DF Squares Mean Square F Value Pr > F

Model 6 390.5947948 65.0991325 227.62 <.0001

Error 29 8.2940941 0.2860032

Corrected Total 35 398.8888889

R-Square Coeff Var Root MSE offer Mean

0.979207 2.270346 0.534793 23.55556
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Source DF Type I SS Mean Square F Value Pr > F

sales 1 157.3659042 157.3659042 550.22 <.0001

age 2 231.5192596 115.7596298 404.75 <.0001

gender 1 1.5148664 1.5148664 5.30 0.0287

age*gender 2 0.1947646 0.0973823 0.34 0.7142

Source DF Type III SS Mean Square F Value Pr > F

sales 1 63.3725725 63.3725725 221.58 <.0001

age 2 232.4894513 116.2447257 406.45 <.0001

gender 1 1.5452006 1.5452006 5.40 0.0273

age*gender 2 0.1947646 0.0973823 0.34 0.7142
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Notice that using the covariate allows us to see a
significant effect of gender which we could not see
before. Age and sales are also both significant. Note
also the much-reduced MSE (was 2.4 without
covariate (i.e. s = $155), now is 0.29 (i.e. s = $53)).
Look at the comparisons for age:

LSMEAN

age offer LSMEAN Number

1 21.4027214 1

2 27.2370766 2

3 22.0268687 3
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. Least Squares Means for Effect age

t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: offer

i/j 1 2 3

1 -26.507 -2.79334

<.0001 0.0241

2 26.50696 22.55522

<.0001 <.0001

3 2.793336 -22.5552

0.0241 <.0001
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The effect we saw previously regarding age is still there -
in addition it appears that the dealer offers young people
even less money than the elderly, since groups 1 and 3
are significantly different.

. H0:LSMean1=LSMean2

gender offer LSMEAN t Value Pr > |t|

1 23.7646265 2.32 0.0273

2 23.3464846

We also see that the dealers offer slightly less money to

women than men. The difference in means is very small

($42) but the standard error is so small that this is

significant.
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