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Overview of Topic V

This topic will cover

• Diagnostics (§10)

• Remedial Measures (§11)

• Qualitative Explanatory Variables (§8.3)
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Chapter 10: Regression Diagnostics

We now have more complicated models. The ideas (especially with

regard to the residuals) of Chapter 3 still apply, but we will also

concern ourselves with the detection of outliers and influential data

points. The following are often used for the identification of such

points and can be easily obtained from SAS:

• Studentized deleted residuals

• Hat matrix diagonals

• Dffits, Cook’s D, DFBETAS

• Variance inflation factor

• Tolerance
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Life Insurance Example

• We will use this as a running example in this topic.

• References: page 364 in NKNW and

nknw364.sas .

• Y = amount of insurance (in $1000)

• X1 = Average Annual Income (in $1000)

• X2 = Risk Aversion Score (0-10)

• n = 18 managers were surveyed.
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data insurance;

infile ’H:\System\Desktop\Ch09ta01.dat’;

input income risk amount;

proc reg data=insurance;

model amount=income risk/r influence;
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Just to get oriented...

. Analysis of Variance

Sum of Mean

Source DF Squares Square

Model 2 173919 86960

Error 15 2405.14763 160.34318

Corrected Total 17 176324

F Value Pr > F

542.33 <.0001

Root MSE 12.66267 R-Square 0.9864

Dependent Mean 134.44444 Adj R-Sq 0.9845

Coeff Var 9.41851
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Parameter Estimates

Parameter Standard

Variable DF Estimate Error

Intercept 1 -205.71866 11.39268

income 1 6.28803 0.20415

risk 1 4.73760 1.37808

Variable t Value Pr > |t|

Intercept -18.06 <.0001

income 30.80 <.0001

risk 3.44 0.0037

Model is significant and R2 = 0.9864 – quite high – both variables

are significant.
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The Usual Residual Plots

The plot statement generates the following two

residual plots (in the past we have used gplot to

create these). These residuals are for the full model.

Note the weird syntax r.*(income risk) . It

prints the estimated equation and the R2 on it

automatically, which is kind of nice. This is an alternative

to saving the residuals and using gplot , although you

have less control over the output.
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title1 ’Insurance’;

proc reg data=insurance;

model amount=income risk/r partial;

plot r.*(income risk);
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It looks like there is something quadratic going on with

income in the full model. The residuals for risk look

okay.

(We should also do a qqplot.)
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Types of Residuals

Regular Residuals

• ei = Yi − Ŷi (the usual).

• These are given in the SAS output under the heading

“Residual ” when you use the r option in the

model statement, and to store them use r =

(name) in an output statement.
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Studentized Residuals

• e∗i =
ei√

MSE×(1−hi,i)

• Studentized means divided by its standard error.

(When you ignore the hi,i and just divide by Root

MSE they are called semistudentized residuals.)

• Recall that s2{e} = MSE(I−H), so that

s2{ei} = MSE(1− hi,i). These follow a t(n−p)

distribution if all assumptions are met.

• Studentized residuals are shown in the SAS output

under the heading “Student Residual .” In the
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output, “Residual ” / “Std Error

Residual ” = “Student Residual ”. SAS

also prints a little bar graph of the studentized

residuals so you can identify large ones quickly.

• In general, values larger than about 3 should be

investigated. (The actual cutoff depends on a t

distribution and the sample size; see below.) These

are computed using the ‘r ’ option and can be stored

using student=(name) .
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Studentized Deleted Residuals

• The idea: delete case i and refit the model. Compute

the predicted value and residual for case i using this

model. Compute the “studentized residual” for case i.

(Don’t do this literally.)

• We use the notation (i) to indicate that case i has

been deleted from the computations.

• di = Yi − Ŷi(i) is the deleted residual. (Also used for

PRESS criterion)

• Interestingly, it can be calculated from the following
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formula without re-doing the regression with case i

removed. It turns out that di =
ei

(1−hi,i)
, where hi,i is

the ith diagonal element of the Hat matrix H. Its

estimated variance is s2{di} =
MSE(i)

(1−hi,i)
.

• The studentized deleted residual is ti =
di√
s2{di}

=

ei
(1−hi,i)

√

(1−hi,i)
MSE(i)

= ei√
MSE(i)(1−hi,i)

.

• MSE(i) can be computed by solving this equation:

(n− p)MSE = (n− p− 1)MSE(i) +
e2i

1−hi,i
.

• The ti are shown in the SAS output under the
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heading “Rstudent ”, and the hi,i under the

heading “Hat Diag H ”. To calculate these, use

the influence option and to store them use

rstudent=(name) .

• We can use these to test (using a Bonferroni

correction for n tests) whether the case with the

largest studentized residual is an outlier (see page

374).
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proc reg data=insurance;

model amount=income risk/r influence;

Output Statistics

Dep Var Std Error Student

Obs amount Residual Residual Residual -2-1 0 1 2 RStudent

1 91.0000 -14.7311 12.216 -1.206 | **| | -1.2259

2 162.0000 -10.9321 12.009 -0.910 | *| | -0.9048

3 11.0000 24.1845 11.403 2.121 | |**** | 2.4487

4 240.0000 -4.2780 11.800 -0.363 | | | -0.3518

5 73.0000 -2.5522 12.175 -0.210 | | | -0.2028

6 311.0000 10.3417 10.210 1.013 | |** | 1.0138

7 316.0000 17.8373 7.780 2.293 | |**** | 2.7483

8 154.0000 -9.9763 11.798 -0.846 | *| | -0.8371

9 164.0000 -10.3084 12.239 -0.842 | *| | -0.8336

10 54.0000 1.0560 12.009 0.0879 | | | 0.0850

11 53.0000 4.9301 11.878 0.415 | | | 0.4033

12 326.0000 12.4728 10.599 1.177 | |** | 1.1933

13 55.0000 1.8081 12.050 0.150 | | | 0.1451

14 130.0000 -15.6744 11.258 -1.392 | **| | -1.4415

15 112.0000 -5.8634 12.042 -0.487 | | | -0.4742

16 91.0000 -12.2985 12.162 -1.011 | **| | -1.0120

17 14.0000 14.5636 11.454 1.271 | |** | 1.3004

18 63.0000 -0.5798 12.114 -0.0479 | | | -0.0462
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Test for Outliers Using Studentized Deleted Residuals

• should use the Bonferroni correction since you are looking at all

n residuals

• studentized deleted residuals follow a t(n−p−1) distribution since

they are based on n− 1 observations

• If a studentized deleted residual is bigger in magnitude than

tn−p−1(1− α
2n
) then we identify the case as a possible outlier

based on this test.

• In our example, take α = 0.05 . Since n = 18 and p = 3, we

use t14(0.9986) ≈ 3.6214.

• None of the observations may be called an outlier based on this

test.
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• Note that if we neglected to use the Bonferroni correction our

cutoff would be 2.1448 which would detect obs. 3 and 7, but this

would not be correct.

• Note that “identifying an outlier” does not mean that you then

automatically remove the observation. It just means you should

take a closer look at that observation and check for reasons why

it should possibly be removed. It could also mean that you have

problems with normality and/or constant variance in your dataset

and should consider a transformation.
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What to Look For

When we examine the residuals we are looking for

• Outliers

• Non-normal error distributions

• Influential observations

Other Measures of Influential Observations

The influenceoption calculates a number of other quantities.

We won’t spend a whole lot of time on these, but you might be

wondering what they are.
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Output Statistics

Cook’s Hat Diag ----------DFBETAS----------

Obs D H DFFITS Intercept income risk

1 0.036 0.0693 -0.3345 -0.1179 0.1245 -0.1107

2 0.031 0.1006 -0.3027 -0.0395 -0.1470 0.1723

3 0.349 0.1890 1.1821 0.9594 -0.9871 0.1436

4 0.007 0.1316 -0.1369 0.0770 -0.0821 -0.0410

5 0.001 0.0756 -0.0580 -0.0394 0.0286 0.0011

6 0.184 0.3499 0.7437 -0.5298 0.3048 0.5125

7 2.889 0.6225 3.5292 -0.3649 2.6598 -2.6751

8 0.036 0.1319 -0.3263 0.0816 0.0254 -0.2452

9 0.017 0.0658 -0.2212 0.0308 -0.0672 -0.0366

10 0.000 0.1005 0.0284 0.0238 -0.0138 -0.0092

11 0.008 0.1201 0.1490 0.0863 -0.1057 0.0536

12 0.197 0.2994 0.7801 -0.5820 0.4495 0.4096

13 0.001 0.0944 0.0468 0.0348 -0.0294 0.0014

14 0.171 0.2096 -0.7423 -0.2706 -0.2656 0.6269

15 0.008 0.0957 -0.1543 -0.0164 0.0532 -0.0953

16 0.029 0.0775 -0.2934 -0.1810 0.0258 0.1424

17 0.120 0.1818 0.6129 0.5803 -0.3608 -0.2577

18 0.000 0.0849 -0.0141 -0.0101 0.0080 -0.0001

* 0.826 0.3333 0.8165 1 (or 0.4714)
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Cook’s Distance

• This measures the influence of case i on all of the Ŷi’s. It is a

standardized version of the sum of squares of the differences

between the predicted values computed with and without case i.

Di =

∑n

j=1(Ŷj − Ŷj(i))
2

p×MSE
=

e2i
p×MSE

× hii

(1− hii)2

• Large values suggest an observation has a lot of influence.

Cook’s D values are obtained via the ‘r ’ option in the

model statement and can be stored with cookd=(name) .

• here “large” means larger than the 50th percentile of the Fp,n−p

distribution; for our example F3,15(0.5) = 0.826 .
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Hat Matrix Diagonals

• hi,i is a measure of how much Yi is contributing to the prediction

of Ŷi. This depends on the distance between the X values for

the ith case and the means of the X values. Observations with

extreme values for the predictors will have more influence.

• hi,i is sometimes called the leverage of the ith observation. It

always holds that 0 ≤ hi,i ≤ 1 and
∑

hi,i = p.

• A large value of hi,i suggests that the ith case is distant from the

center of all X ’s. The average value is p/n. Values far from this

average (say, twice as large) point to cases that should be

examined carefully because they may have a substantial

influence on the regression parameters.
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• For our example,
2p
n
= 6

18
= 0.333 so values larger than 0.333

would be considered large. Observations #6, #7, and maybe #12

seem to have a lot of influence. These can be further examined

with the next set of influence statistics.

• The hat matrix diagonals are displayed with the

influenceoption and can be stored with h=(name) .
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DEFITS

• Another measure of the influence of case i on its own fitted

value Ŷi. It is a standardized version of the difference between

Ŷi computed with and without case i. It is closely related to hi,i

(consult the text for formula if you are interested). Values larger

than 1 (for small to medium size datasets) or 2
√

p

n
(for large

datasets) are considered influential. (In our example,

2
√

p

n
= 0.816 but this is a small dataset so we would use 1).

• these are calculated with the influenceoption and can be

stored with dffits=(name) .
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DFBETAS

• A measure of the influence of case i on each of the regression

coefficients.

• It is a standardized version of the difference between the

regression coefficient computed with and without case i.

• Values larger than 1 (for small-to-medium datasets) or 2
√

n
(for

large datasets) are considered influential. In this example
2
√

n
= 0.4714, but we would use 1 as a cutoff.

• According to all these measures, observation #7 appears to be

influential. This is not surprising because it has the smallest risk

(1) and the highest income (79.380) of all the observations.
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Measures of Multicollinearity

We already know about several identifying factors in dealing with

multicollinearity:

• regression coefficients change greatly when predictors are

included/excluded from the model

• significant F -test but no significant t-tests for β’s (ignoring

intercept)

• regression coefficients that don’t “make sense”, i.e. don’t match

scatterplot and/or intuition

• Type I and II SS very different

• predictors that have pairwise correlations
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There are two other numerical measures that can be used:

vifand tolerance .
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Variance Inflation Factor

• The VIF is related to the variance of the estimated regression

coefficients.

• V IFk =
1

1−R2

k

where R2
k is the coefficient of multiple

determination obtained in a regression where all other

explanatory variables are used to predict Xk. We calculate it for

each explanatory variable.

• If this R2
k is large that means Xk is well predicted by the other

X ’s. One suggested rule is that a value of 10 or more for VIF

indicates excessive multicollinearity. This corresponds to an R2
k

of ≥ 0.9. Use the vifoption to the model statement.
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Tolerance

• TOL = 1−R2
k =

1
V IF

. A tolerance of < 0.1 is the

same as a VIF > 10, indicating excessive

multicollinearity. Use the TOL option to the

model statement. Described in comment on p 388.

Typically you would look at either VIF or TOL, not both.
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proc reg data=insurance;

model amount=income risk/tol vif;

Parameter Estimates

Variable Tolerance Inflation

Intercept . 0

income 0.93524 1.06925

risk 0.93524 1.06925

These values are quite acceptable.
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Partial Regression Plots

• Also called partial residual plots, added variable plots

or adjusted variable plots.

• Related to partial correlations, they help you figure

out the net effect of Xi on Y , given that other

variables are in the model.

• One plot for each Xi. To get the plot, run two

regressions. In the first, use the other X ’s to predict

Y . In the second use the other X ’s to predict Xi.

Then plot the residuals from the first regression
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against the residuals from the second regression. The

correlation of these residuals was called the partial

correlation coefficient .

• A linear pattern in this type of plot indicates that the

variable would be useful in the model, and the slope

is its regression coefficient. The plots shows the

strength of a marginal relationship between Y and Xi

in the full model. If the partial residual plot for Xi

appears “flat”, Xi may not need to be included in the

model. If they appear like a straight line (with

non-zero slope), then that suggests Xi should be
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included as a linear term, etc.

• Nonlinear relationships, heterogeneous variances,

and outliers may also be detected in these plots.

• In SAS, the ‘partial ’ option in the

model statement can be used to get a partial

residual plot. This is not a very good plot (useful for

first glance, but not something you would want to

publish), so it is useful to know how to create a better

one.
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Coding for the poor resolution plot (they’re kind of ugly): large

proc reg data=insurance;

model amount=income risk/r partial;

The axes are labelled amount and income , but we

are actually plotting the residuals for amount (predicted

by risk) vs. the residuals for income (when predicted

by risk)

(The number labels on the plot will be the first digit of

income when using “id income ”.)
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Obtaining Partial Regression Plots

title1 ’Partial residual plot’;

title2 ’for risk’;

symbol1 v=circle i=rl;

axis1 label=(’Risk Aversion Score’);

axis2 label=(angle=90 ’Amount of Insurance’);

proc reg data=insurance;

model amount risk = income;

output out=partialrisk r=resamt resrisk;

proc gplot data=partialrisk;

plot resamt*resrisk / haxis=axis1 vaxis=axis2 vref = 0;

run;
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The y-axis has the residuals for the model insur =

income . The x-axis has the residuals for the model

risk = income (i.e. treat risk as a Y -variable).
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The residuals compared to the horizontal line are the

residuals for the model that omits risk as a variable.

The residuals compared to the “regression” line are the

residuals for the model that includes risk as a variable.

Are the points closer to the regression line than to the

x-axis? This helps decide if there is much to be gained

(i.e. smaller residuals) by including risk in the model. In

this case risk clearly should be included.
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Similar code for income:

axis3 label=(’Income’);

title2 ’for income’;

proc reg data=insurance;

model amount income = risk;

output out=partialincome r=resamt resinc;

proc gplot data=partialincome;

plot resamt*resinc / haxis=axis3 vaxis=axis2 vref = 0;
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The resulting plot has on the y-axis the residuals for the

model insur = risk , and the x-axis has the

residuals for the model income = risk . This is the

same as the text plot.
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This plot shows, first of all, that income is clearly

needed in the model. Secondly, we can see that the

effect of income (when risk is included) is mostly

linear. Third, a close look shows that the residuals curve

a bit around the straight line, so that there is a quadratic

effect. However, the quadratic effect is small compared

to the linear one. A quadratic term will improve the fit of

the model, but it may not improve it much. We would

have to weigh the improved fit vs. the interpretability and

possible multicollinearity problems when deciding on the

final model.
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Here’s what happens when we include the square of

(centered) income:

data quad;

set insurance;

sinc = income;

proc standard data=quad out=quad mean=0;

var sinc;

data quad;

set quad;

incomesq = sinc*sinc;

title1 ’Residuals for quadratic model’;

proc reg data=quad;

model amount = income risk incomesq / r vif;

plot r.*(income risk incomesq);
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. Analysis of Variance

Sum of Mean

Source DF Squares Square

Model 3 176249 58750

Error 14 75.05895 5.36135

Corrected Total 17 176324

Source F Value Pr > F

Model 10958.0 <.0001

Root MSE 2.31546 R-Square 0.9996

Dependent Mean 134.44444 Adj R-Sq 0.9995

Coeff Var 1.72224
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. Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value

Intercept 1 -200.81134 2.09649 -95.78

income 1 5.88625 0.04201 140.11

risk 1 5.40039 0.25399 21.26

incomesq 1 0.05087 0.00244 20.85

Variance

Variable Pr > |t| Inflation

Intercept <.0001 0

income <.0001 1.35424

risk <.0001 1.08627

incomesq <.0001 1.26657
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For the two-variable model, R2 was 0.9864, so while

this is an improvement, it does not make a big difference.

Our assumptions are now more closely met, which is

good, but it also appears an outlier now exists where it

did not before.
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Regression Diagnostics Summary

Check normality of the residuals with a normal quantile

plot.

Plot the residuals versus predicted values, versus each

of the X ’s and (when appropriate) versus time

Examine the partial regression plots for each X variable.

Topic V

Page 47



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

Examine

• the studentized deleted residuals (RSTUDENT in the

output)

• The hat matrix diagonals

• Dffits, Cook’s D, and the DFBETAS

• Check observations that are extreme on these

measures relative to the other observations

• Examine the tolerance or VIF for each X
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If there are variables with low tolerance / high VIF, or if

any of the other indications of multicollinearity problems

are present, you may need to do some model building:

• Recode variables

• Variable selection
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Remedial Measures (Chapter 11)

• Weighted Regression

• Robust Regression

• Nonparametric Regression

• Bootstrapping
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Weighted Regression

Maximum LikelihoodYi = β0 + β1Xi + ǫi, Var(ǫi) = σ2
i

Yi ∼ N(β0 + β1Xi, σ
2
i )

fi =
1√
2πσi

e
−

1

2

(

Yi−β0−β1Xi
σi

)

2

L = f1 × f2 × · · · × fn – likelihood function

• Variance is no longer constant

• Maximization of L with respect to β’s.

• Equivalent to minimization of
∑

i
1
σ2

i

(Yi − β0 − β1Xi,1 − . . .− βp−1Xi,p−1)
2
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Weighted Least Squares

• Used to deal with unequal variances:

σ2{ǫ} =

















σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

...

0 0 · · · σ2
n

















• Least squares minimizes the sum of the squared

residuals. For WLS, we minimize instead the sum of

the squared residuals each multiplied by an
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appropriate weight. If the error variances are known,

the weights are wi = 1/σ2
i .

• Otherwise the variances need to be estimated (see

discussion pages 403-405).

• The regression coefficients with weights are:

bW = (X′
WX)−1(X′

WY) where W is a

diagonal matrix of weights.

• In SAS, use a ‘weight ’ statement in proc reg .
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Drawbacks to Weighted Least Squares

No clear interpretation for MSE. MSE will be close to

1 if error variance is modeled well.

Advantages to Weighted Least Squares

Improved parameter estimates, and CI’s. Valid inference

in presence of heteroscedasticity.
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Determining the Weights

We try to find a relationship between the absolute residual and

another variable and use this as a model for the standard deviation;

or similarly for the squared residual and the variance. Sometimes it

is necessary to use grouped data or approximately grouped data to

estimate the variance. With a model for the standard deviation or

the variance, we can approximate the optimal weights. Optimal

weights are proportional to the inverse of the variance as shown

above. If the data have many observations for each value of X we

can get a variance estimate at each value (this happens frequently

in ANOVA).
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NKNW Example

• NKNW p 406 (nknw406.sas )

• Y is diastolic blood pressure

• X is age

• n = 54 healthy adult women aged 20 to 60 years old
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data pressure;

infile ’H:\System\Desktop\Ch10ta01.dat’;

input age diast;

proc print data=pressure;

title1 ’Blood Pressure’;

symbol1 v=circle i=sm70;

proc sort data=pressure;

by age;

proc gplot data=pressure;

plot diast*age;
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This clearly has non-constant variance. Run the

(unweighted) regression to get residuals.
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proc reg data=pressure;

model diast=age / clb;

output out=diag r=resid;

. Analysis of Variance

Sum of Mean

Source DF Squares Square

Model 1 2374.96833 2374.96833

Error 52 3450.36501 66.35317

Corrected Total 53 5825.33333

Source F Value Pr > F

Model 35.79 <.0001

Root MSE 8.14575 R-Square 0.4077

Dependent Mean 79.11111 Adj R-Sq 0.3963

Coeff Var 10.29659
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. Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value

Intercept 1 56.15693 3.99367 14.06

age 1 0.58003 0.09695 5.98

Variable Pr > |t| 95% Confidence Limits

Intercept <.0001 48.14304 64.17082

age <.0001 0.38548 0.77458
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Use the output data set to get the absolute and squared

residuals. Plot each of them (vs. X) with a smoother.

data diag;

set diag;

absr=abs(resid);

sqrr=resid*resid;

proc gplot data=diag;

plot (resid absr sqrr)*age;
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The absolute value of the residuals appears to have a

fairly linear relationship with age (it appears more linear

than does the graph of squared residuals vs. age).

Thus, we will model standard deviation as a linear

function of age. (If the second graph was more linear we

would model variance instead.) We will model the

absolute residuals as a function of age, and use the

predicted values of that regression as weights.
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Predict the standard deviation (absolute value of the

residual):

proc reg data=diag;

model absr=age;

output out=findweights p=shat;

data findweights;

set findweights;

wt=1/(shat*shat);

We always compute the weights as the reciprocal of the

estimated variance.
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Regression with weights:

proc reg data=findweights;

model diast=age / clb p;

weight wt;

output out = weighted p = predict;
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. Analysis of Variance

Sum of Mean

Source DF Squares Square

Model 1 83.34082 83.34082

Error 52 76.51351 1.47141

Corrected Total 53 159.85432

Source F Value Pr > F

Model 56.64 <.0001

Root MSE 1.21302 R-Square 0.5214

Dependent Mean 73.55134 Adj R-Sq 0.5122

Coeff Var 1.64921
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. Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value

Intercept 1 55.56577 2.52092 22.04

age 1 0.59634 0.07924 7.53

Variable Pr > |t| 95% Confidence Limits

Intercept <.0001 50.50718 60.62436

age <.0001 0.43734 0.75534
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Robust Regression

• Basic idea is to have a procedure that is not sensitive

to outliers.

• Alternatives to least squares, minimize either the sum

of absolute values of residuals or the median of the

squares of residuals.

• Do weighted regression with weights based on

residuals, and iterate.

• See Section 11.3 for details.
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Nonparametric Regression

• Several versions

• We have used e.g. i=sm70

• Interesting theory

• All versions have some smoothing parameter similar

to the 70 in i=sm70 .

• Confidence intervals and significance tests not fully

developed.
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Bootstrap

• Very important theoretical development that has had

a major impact on applied statistics

• Based on simulation

• Sample with replacement from the data or residuals

and get the distribution of the quantity of interest

• CI usually based on quantiles of the sampling

distribution
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Model Validation

Three approaches to checking the validity of the model.

• Collect new data: does it fit the model?

• Compare with theory, other data, simulation.

• Use some of the data for the basic analysis (“training

set”) and some for validity check.
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Qualitative Explanatory Variables (Section 8.3)

Example include

• Gender as an explanatory variable

• Placebo versus treatment

• Insurance Co. example from previous notes (Type of

company)
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Two Categories

Recall from Topic 4 (General Linear Tests):

• Model: Y = β0 + β1X1 + β2X2 + β3X1X2 + ǫ

• When X1 = 0, β1 and β3 terms disappear:

Y = β0 + β2X2 + ǫ. For this group, β0 is the

intercept, and β2 is the slope.

• When X1 = 1, β1 and β3 terms are incorporated into

the intercept and X2 coefficient:

Y = (β0 + β1) + (β2 + β3)X2 + ǫ
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• For this group, β0 + β1 is the intercept, and β2 + β3

is the slope.

• H0 : β1 = β3 = 0 is the hypothesis that the

regression lines are the same.

• H0 : β1 = 0 hypothesizes the two intercepts are

equal.

• H0 : β3 = 0 hypothesizes the two slopes are equal.

Topic V

Page 74



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

More Complicated Models

• If a categorical (qualitative) variable has k possible

values we need k − 1 indicator variables in order to

describe it.

• These can be defined in many different ways; we will

do this in Chapter 16 (ANOVA).

• We also can have several categorical explanatory

variables, plus interactions, etc.
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• Example: Suppose we have a variable speed for

which 3 levels (high, medium, low) are possible. Then

we would need two indicator variables (e.g.

X1 = medium and X2 = high) to describe the

situation.

speed X1 X2

low 0 0

medium 1 0

high 0 1
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Piecewise Linear Model

At some (known) point or points, the slope of the

relationship changes. We can describe such a model

with indicator variables.

Examples:

• tax brackets

• discount prices for bulk quantities

• overtime wages
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Piecewise Linear Model Example

• NKNW page 476 (nknw476.sas )

• Y = unit cost, X1 = lot size, n = 8

• We have reason to believe that a linear model is

appropriate, but a slope change should be allowed at

X1 = 500. (Note the ‘bending’ in the plot.)

• We can do this by including an indicator variable X2

that is 1 if X1 is bigger than 500 and 0 otherwise and

allowing it to interact with X1.
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data piecewise;

infile ’H:\System\Desktop\Ch11ta06.dat’;

input cost lotsize;

symbol1 v=circle i=sm70 c=black;

proc sort data=piecewise; by lotsize;

proc gplot data=piecewise;

plot cost*lotsize;
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Piecewise Model

Define a new variable X2 which is 0 when X1 ≤ 500 and 1 when

X1 > 500. Then create an adjusted interaction term

X3 = X2(X1 − 500). This uses −500X2 to indicate the change

in intercept and the product X1X2 to find the change in slope. Note

that there is only one parameter since the two lines must join at

X1 = 500. We will not use X2 explicitly in the model, just the

Topic V

Page 81



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

interaction term X3. Thus the model is

Y = β0 + β1X1 + β2X3 + ǫ

= β0 + β1X1 + β2X2(X1 − 500) + ǫ

= β0 − 500β2X2 + β1X1 + β2X1X2 + ǫ

=

{

β0 + β1X1 X2 = 0 (X1 ≤ 500)

(β0 − 500β2) + (β1 + β2)X1 X2 = 1 (X1 > 500)
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Our model has

• An intercept (β0)

• A coefficient for lot size (the slope β1)

• An additional explanatory variable that will add a

constant to the slope whenever lot size is greater than

500.
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data piecewise; set piecewise;

if lotsize le 500

then cslope=0;

if lotsize gt 500

then cslope=lotsize-500;

proc print data=piecewise;
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. Obs cost lotsize cslope

1 4.75 300 0

2 4.40 340 0

3 4.52 400 0

4 3.77 480 0

5 3.55 570 70

6 2.57 650 150

7 2.49 720 220

8 1.39 800 300
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The variable cslope is our X3. Run the regression:

proc reg data=piecewise;

model cost=lotsize cslope;

output out=pieceout p=costhat;
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. Analysis of Variance

Sum of Mean

Source DF Squares Square

Model 2 9.48623 4.74311

Error 5 0.29997 0.05999

Corrected Total 7 9.78620

Source F Value Pr > F

Model 79.06 0.0002

Root MSE 0.24494 R-Square 0.9693

Dependent Mean 3.43000 Adj R-Sq 0.9571

Coeff Var 7.14106
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. Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value

Intercept 1 5.89545 0.60421 9.76

lotsize 1 -0.00395 0.00149 -2.65

cslope 1 -0.00389 0.00231 -1.69

Variable Pr > |t|

Intercept 0.0002

lotsize 0.0454

cslope 0.1528
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Plot data with fitted values:

symbol1 v=circle i=none c=black;

symbol2 v=none i=join c=black;

proc sort data=pieceout; by lotsize;

proc gplot data=pieceout;

plot (cost costhat)*lotsize/overlay;
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