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Overview of Topic II

This topic will cover

• Regression Diagnostics (Chapter 3)

• Remedial Measures (Chapter 3)

• Some other Miscellaneous Topics (Chapter 4)
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Chapter 3: Diagnostics and Remedial Measures

Diagnostics – Look at the data to diagnose situations

where the assumptions of our model are violated.

Some diagnostics check the assumptions of our

model. Other diagnostics check the influence of

different data points.

Remedies – Changes in analytic strategy to fix these

problems.
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What do we need to check??

• Main Assumptions: Errors are independent, normal random

variables with common variance σ2.

• Are there “outlying” values for the predictor variables that could

unduly influence the regression model?

• Is the model appropriate? Does the assumption of linearity make

sense?

• Are there outliers? (Generally, the term outlier refers to a

response that is vastly different from the other responses – see

KNNL, page 109.)
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How to get started...

1. Look at the data.

2. Look at the data.

3. LOOK AT THE DATA.

Before trying to describe the relationship between a response

variable (Y ) and an explanatory variable (X), we should look at the

distributions of these variables. We should always look at X as well

as Y , since if Y depends on X , looking at Y alone may not be very

informative.
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Section 3.1: Diagnostics for X

We do not make any specific assumptions about X .

However, understanding what is going on with X is

necessary to interpreting what is going on with Y . So

we look at some basic summaries of the X variables to

get oriented. However, we are not checking our

assumptions at this point.
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• If X has many values, use proc univariate .

• If X has only a few values, use proc freqor the

freqoption in proc univariate .

• Examine the distribution of X . Is it skewed? Are there outliers?

Important statistics to consider include mean, standard

deviation, median, mode, and range.

• Box plots and Stem-and-leaf plots are useful.

• Do the values of X depend on time (order in which the data

were collected)? (Sequence plots)
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Example (Toluca Company, page 96)

See program nknw096.sas for the code used to execute proc

univariate .

data toluca;

infile ’h:\System\Desktop\CH01TA01.DAT’;

input lotsize workhrs;

seq=_n_;

proc print data=toluca;

Obs lotsize workhrs seq

1 80 399 1

2 30 121 2

3 50 221 3

4 90 376 4

5 70 361 5

. . . .

. . . .
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proc univariate data=toluca plot;

var lotsize workhrs;

Moments

N 25 Sum Weights 25

Mean 70 Sum Observations 1750

Std Deviation 28.7228132 Variance 825

Skewness -0.1032081 Kurtosis -1.0794107

Uncorrected SS 142300 Corrected SS 19800

Coeff Variation 41.0325903 Std Error Mean 5.74456265

Basic Statistical Measures

Location Variability

Mean 70.00000 Std Deviation 28.72281

Median 70.00000 Variance 825.00000

Mode 90.00000 Range 100.00000

Interquartile Range 40.00000
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Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 12.18544 Pr > |t| <.0001

Sign M 12.5 Pr >= |M| <.0001

Signed Rank S 162.5 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 120

99% 120

95% 110

90% 110

75% Q3 90

50% Median 70

25% Q1 50

10% 30

5% 30

1% 20

0% Min 20
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Extreme Observations

----Lowest---- ----Highest---

Value Obs Value Obs

20 14 100 9

30 21 100 16

30 17 110 15

30 2 110 20

40 23 120 7

Stem Leaf # Boxplot

12 0 1 |

11 00 2 |

10 00 2 |

9 0000 4 +-----+

8 000 3 | |

7 000 3 *--+--*

6 0 1 | |

5 000 3 +-----+

4 00 2 |

3 000 3 |

2 0 1 |

----+----+----+----+
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title1 ’Sequence plot for X with smooth curve’;

symbol1 v=circle i=sm70;

proc gplot data=toluca;

plot lotsize*seq;
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Normal Distributions

Our model does not state that X comes from a single normal

population.

Nor must Y come from a single normal population... (We assumed

Y |X and the residuals are normal, not Y itself).

In some case, X and/or Y may be normal, or their distributions may

be unusual, and it can be useful to check this.

We DO assume that the residuals are normal, and we will also use

the following technique to check this (later).
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Normal Quantile Plots: The Basic Idea

Consider n = 5 observations iid from N(0, 1)

From Table B.1, we find

P (z ≤ −0.84) = 0.20

P (−0.84 < z ≤ −0.25) = 0.20

P (−0.25 < z ≤ 0.25) = 0.20

P (0.25 < z ≤ 0.84) = 0.20

P (z > 0.84) = 0.20
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So we expect, on average,

One observation ≤ −0.84

One observation in (−0.84,−0.25)

One observation in (−0.25, 0.25)

One observation in (−0.25, 0.84)

One observation > 0.84
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Paraphrasing KNNL, page 111, “Statistical theory has shown that

for a normal random variable with mean 0 and variance 1, a good

approximation of the expected value of the kth smallest observation

in a random sample of size n is

Zi = Φ−1

(

k − 0.375

n+ 0.25

)

, k = 1, . . . , n

where Φ−1 is the inverse of the standard normal cdf, i.e., the

function that gives the normal percentiles. (I won’t go into the 0.375

or 0.25 here, but they were suggested by a statistician named Blom.

Later in the semester, we will see how to get these values with

proc rank . Also, there is an issue of how ties are handled. For

now, let’s just let SAS give us the graph and not worry about the

details.)
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The Algorithm

• Plot the order statistics X(i) vs Zi

• The standardized X variable is Z = (X − µ)/σ

• So, X = µ+ σZ

• If the data are approximately normal, the relationship

will be approximately linear with slope close to σ and

intercept close to µ.
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title1 ’QQPlot (normal probability plot)’;

proc univariate data=toluca noprint;

qqplot lotsize workhrs / normal (L=1 mu=est sigma=est);

The options (after the / ) tell SAS to also draw a straight line for comparison. The

command noprint tells SAS NOT to print all the descriptive statistics, just make the

qqplots.
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Bottom line: To get a quantile plot, use proc

univariatewith a qqplot statement. If it looks

roughly like a straight line, the variable approximately

has a normal distribution. If it does not look straight, it is

not normal.
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Sections 3.2-3.3: Diagnostics for Residuals

Model: Yi = β0 + β1Xi + ǫi,

where the ǫi are independent , normal, and have

constant variance, that is ǫi ∼iid N(0, σ2).

The ei should be similar to the ǫi,

How do we check this?

PLOT

PLOT

PLOT
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Questions Addressed by Diagnostics for Residuals

• Is the relationship linear?

• Does the variance depend on X?

• Are the errors normal?

• Are there outliers?

• Are the errors dependent on order or each other?

These are addressed by examining various plots. See programs

nknw100.sasand nknw106.sas for the residuals analysis.
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Is the Relationship Linear?

Plot Y vs X .

Plot e vs X (residual plot)

Residual plot emphasizes deviations from linear pattern.
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Example of a non-linear relationship

Make a dataset that we know is quadratic, not linear. Use the

equation

Y = 30− 10X +X2 +N(0, 252)

data quad;

do x = 1 to 30;

y = x*x - 10*x + 30 + 25*normal(0);

output;

end;

proc reg data = quad;

model y = x;

output out = diagquad r = resid;
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Analysis of Variance

Sum of

Source DF Squares Pr > F

Model 1 950768 <.0001

Error 28 154382

Corrected Total 29 1105150

symbol1 v = circle i = rl;

title1 ’Quadratic relationship’;

proc gplot data = diagquad;

plot y*x;
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The regression is significant, but from the plot, it is evident that the straight line

does not fit the data very well. If we fail to notice this, we will make incorrect

conclusions based on this regression.

Now draw it with a smooth curve instead of a straight line.

symbol1 v = circle i = sm60;

proc gplot data = diagquad;

plot y*x;
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Now plot the residuals vs X .

proc gplot data = diagquad;

plot resid*x/ vref = 0;

The result is even more dramatic. This is clearly NOT a random

scatter. Need to modify the model.
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Does the variance depend on X?

• Plot Y vs X

• Plot e vs X

• Plot of e vs X will emphasize problems with the variance

assumption.

• If there is a problem with the constancy of variance assumption,

you will see the differences in the vertical distance between

points at similar X ’s. (For example, the range near X = 1 might

be Y = 3 to 7 while near X = 10 it might be Y = 21 to 41).
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Example of non-constant variance (heteroscedastic)

Make a dataset whose variance changes with X .

Y = 30 + 100X +N(0, 100X2)

(nknw100a.sas )

data het;

do x=1 to 100;

y=100*x+30+10*x*normal(0);

output;

end;

run;
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proc reg data=het;

model y=x;

output out=a3 r=resid;

symbol1 v=circle i=sm60;

proc gplot data=a3;

plot y*x/frame;

See how the scatter of the points away from the line increases with

X .
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Now look at the residual plot. It is more obvious here.

proc gplot data=a3;

plot resid*x/vref=0;

This has what we call a megaphone shape. The variance is clearly

not constant here.
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Are the errors normal?

The real question is whether the distribution of the errors is far

enough away from normal to invalidate our confidence intervals and

significance tests.

Look at the residuals’ distribution.

Use a normal quantile plot (qqplot ) and a histogram

(nknw106.sas ).

data toluca;

infile ’H:\System\Desktop\CH01TA01.DAT’;

input lotsize workhrs;

proc reg data=toluca;

model workhrs=lotsize;

output out=diag r=resid;

Topic II

Page 30



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

proc univariate data=diag plot normal;

var resid;

histogram resid / normal kernel(L=2);

qqplot resid / normal (L=1 mu=est sigma=est);

The Toluca example looks pretty good.
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Now let’s see what happens when the normality

assumption is violated.

data expo;

do x = 1 to 100;

y = 100*x+30+10*ranexp(1); output;

end;

proc reg data = expo;

model y = x; output out = diagexpo r = resid;

proc univariate data = diagexpo plot normal;

var resid;

histogram resid / normal kernel (L = 2);

qqplot resid / normal (L = 1 mu = est sigma = est);
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Tests for Normality

• H0: data are an iid sample from a normal population

• Ha: data are not an iid sample from a normal population

• KNNL (page 115) suggest a correlation test that requires a table

look-up

• We have several choices for a significance testing procedure.

• proc univariatewith the normaloption provides four

tests.

proc univariate data = diag normal;

var resid;

Shapiro-Wilk is a common choice.
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For Toluca:

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.978904 Pr < W 0.8626

Kolmogorov-Smirnov D 0.09572 Pr > D >0.1500

Cramer-von Mises W-Sq 0.033263 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.207142 Pr > A-Sq >0.2500

For expo:

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.885197 Pr < W <0.0001

Kolmogorov-Smirnov D 0.14061 Pr > D <0.0100

Cramer-von Mises W-Sq 0.550032 Pr > W-Sq <0.0050

Anderson-Darling A-Sq 3.470824 Pr > A-Sq <0.0050
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Are There Outliers?

• Plot Y vs X

• Plot e vs X

• Plot of e vs X should emphasize an outlier
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Simulate data from the model

Y = 30 + 50X +N(0, 2002),

but with one observation made really large at X = 50.

(nknw100b.sas )

data outlier50;

do x=1 to 100 by 5;

y=30+50*x+200*normal(0);

output;

end;

x=50; y=30+50*50 +10000;

d=’out’; output;
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Analyze without the outlier

proc reg data=outlier50;

model y=x;

where d ne ’out’;

Parameter Estimates

Parameter

Variable DF Estimate t Value Pr > |t|

Intercept 1 -48.91638 -0.60 0.5571

x 1 49.66468 34.27 <.0001

Root MSE 186.86063 R-Square 0.9849
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Analyze with the outlier

proc reg data=outlier50;

model y=x;

output out=a2 r=resid;

Parameter Estimates

Parameter

Variable DF Estimate t Value Pr > |t|

Intercept 1 389.69949 0.39 0.6974

x 1 50.53208 2.87 0.0097

Root MSE 2267.45084 R-Square 0.3030
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symbol1 v=circle i=rl;

proc gplot data=a2;

plot y*x/frame;
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proc gplot data=a2;

plot resid*x / vref=0;
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Different Kinds of Outliers

The outlier in the last example influenced the intercept

but not the slope.

It inflated all of our standard errors.

Here is an example of an outlier that influences the

slope. Use the model

Y = 30 + 50X +N(0, 2002)

with one data point made really small at X = 100.
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(nknw100c.sas )

data outlier100;

do x=1 to 100 by 5;

y=30+50*x+200*normal(0);

output;

end;

x=100; y=30+50*100 -10000;

d=’out’; output;
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Analysis without the outlier

proc reg data=outlier100;

model y=x;

where d ne ’out’;

Parameter Estimates

Parameter

Variable DF Estimate t Value Pr > |t|

Intercept 1 151.52255 1.37 0.1875

x 1 47.45220 24.21 <.0001

Root MSE 252.73113 R-Square 0.9702

Topic II

Page 44



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

Analysis with the outlier included (save the residuals)

proc reg data=outlier100;

model y=x;

output out=a2 r=resid;

Parameter Estimates

Parameter

Variable DF Estimate t Value Pr > |t|

Intercept 1 969.23278 1.09 0.2883

x 1 22.18243 1.48 0.1550

Root MSE 2072.84983 R-Square 0.1035
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symbol1 v=circle i=rl;

proc gplot data=a2;

plot y*x;
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proc gplot data = a2;

plot resid*x/ vref = 0;
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Dependent Errors

We may see this in a plot of residuals vs time order (KNNL) or

sequence in the file.

We may see, for example, trends and/or cyclical effects.

Other, more subtle dependences may be more difficult to detect,

especially since the information needed to detect it may not be

included with the dataset. Ideally, the problem of dependence is

handled at the experimental design stage, so that any dependence

is either eliminated or explicitly included in the data.

See KNNL pages 108-109.
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Summary of Diagnostics

You will have noticed that the same plots are used for checking

more than one assumption. These are your basic tools. The

following plots should be examined for every regression you

ever do for the rest of your life, whether or not they are

specifically asked for.

• Plot Y vs X (check for linearity, outliers)

• Plot residuals vs X (check for constant variance, outliers,

linearity, normality, patterns)

• qqplot and/or histogram of residuals (normality)

If possible, consider also doing a sequence plot of the residuals, but

if the data are given in X order, this will not be informative.
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Plots vs significance tests

If you are uncertain what to conclude after examining the plots, you

may additionally perform hypothesis tests for model assumptions

(normality, homogeneity of variance, independence). These tests

are not a replacement for plots, but rather a supplement to them.

• Plots are more likely to suggest a remedy.

• Significance tests rests are very dependent on the sample size;

with sufficiently large samples, we can reject most null

hypotheses.

• Significance tests are design to possibly reject H0: non-rejection

does not mean that H0 is necessarily true (although if the test

has good power, H0 may be “true enough”)
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Other Tests for Model Assumptions

• Durbin-Watson test for serially correlated errors

(KNNL, page 114)

• Brown-Forsythe test for homogeneity of variance

(KNNL, pages 116-117)

• Breusch-Pagan test for homogeneity of variance

(KNNL, page 118)

• For SAS commands for residual tests, see

nknw110.sas

Topic II

Page 51



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

We have discussed how to examine plots to detect

departures from the important assumptions.

• linear relationship

• constant variance

• normal errors

• (independence)...

Now let’s see what we can do about it.
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Remedial Measures

Nonlinear relationships

We can model many nonlinear relationships with linear

models; some have several explanatory variables (we’ll

see how to do this with multiple linear regression). Some

examples include

Y = β0 + β1X + β2X
2 + ǫ (quadratic)

Y = β0 + β1 log(X) + ǫ
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In these examples, we simply consider X , X2, and

log(X) as individual quantities. That is to say that we

consider the model Y = β0 + β1X
′, where

X ′ = log(X). The model is still linear in terms of the

regression coefficients. Other times it is necessary to

transform a nonlinear equation into a linear equation.

Consider the log-linear example:

Y = β0e
β1X+ǫ
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We can form a linear model taking logs:

log(Y ) = log(β0) + β1X + ǫ

or

Y ′ = β′
0 + β1X + ǫ

Note that assumptions about the error term also change

with transformations.
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We could also perform a nonlinear regression analysis;

beyond the scope of this course.

• KNNL, Chapter 13

• SAS proc nlin

Alternatively – guess at a good transformation and see if

it works.

Topic II

Page 56



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

Nonconstant Variance

Sometimes we can model the way in which error

variance changes

• may be linearly related to X

We can then use a weighted analysis, aka weighted

linear regression.

• Use a weight statement in proc reg

• This is covered KNNL 11.1, so we will leave this until

later.
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Nonnormal Errors

Transformations often help; these are called

variance-stabilizing transformations.

More complicated solution if transformations don’t work:

if we know what distribution the error terms have, model

that explicitly, using a procedure that allows different

distributions for the error term: SAS proc genmod .
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genmod

We will not focus on this, but here are some distributions of Y that

genmod can handle:

• Binomial (Yes/No or two-category data)

• Poisson (Count data)

• Gamma (exponential)

• Inverse gaussian

• Negative binomial

• Multinomial

• Specify a link function of E(Y ).

For now we will focus on transformations.
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Transformations

Basic framework:

• If the residuals appear to be normal with constant variance, and the

relationship is linear, then go ahead with the regression model.

• If the residuals appear to be normal with constant variance, but the

relationship is non-linear, try transforming the X ’s to make it a straight line.

• If the residuals are badly-behaved, try transforming Y . If that stabilizes the

variance but wrecks the straight line, try transforming X as well.

• Transformations might simultaneously fix problems with residuals and linearity

(and normality).

Remember that if you choose a transformation, you need to go back and do all

the diagnostics all over again.

If a Y transformation doesn’t fix a non-constant variance, weighted least squares

might work.
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What Transformation to Use?

• Pictures of various prototype situations are given in Section 3.9.

• Figure 3.31, page 127: transformations on X for non-linear relationships

• Figure 3.15, page 130: transformations on Y for non-constant variance (and

possibly non-linear relationships)

• Choosing a good transformation is a skill that improves with experience. A

good way to get that experience is to try a lot of transformations on a lot of

different datasets, and look at the graphs to see what happens.

• One semi-automated way of choosing a transformation for Y is to use the

Box-Cox procedure, which suggests a transformation on Y . (Yes, you still

need to check all the diagnostics all over again.)
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Box-Cox Procedure

1. Transformations on Y can sometimes be used to adjust for nonnormality and

nonconstant variance.

2. If we restrict to a certain class called “power transformations”, there is an

automated procedure that can help figure out which transformations might

help.

3. Box-Cox will give us a “suggestion” of what type of transformation to try.

Eventually, you would probably suggest the same transformation “by eye”, but

this is especially good before you gain experience; also it may suggest a

transformation you didn’t think of.

4. Box-Cox examines transformations that are either powers of Y or the natural

log of Y . If we denote the new (transformed) Y as Y ′, then the Box-Cox

procedure will result in Y ′ = Y λ or Y ′ = ln(Y ).
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Important Special Cases

λ = 1, Y ′ = Y 1, no transformation

λ = 0.5, Y ′ = Y 1/2 =
√
Y , square root

λ = −0.5, Y ′ = Y −1/2 = 1√
Y

, reciprocal square root

λ = −1, Y ′ = Y −1, reciprocal

λ = 0, Y ′ = ln(Y ) = (natural) log of Y (doesn’t follow

the Y λ formula; we just define it that way)
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Box-Cox Details

We can estimate λ by including it as a parameter in a nonlinear

model

Y λ = β0 + β1X + ǫ

Details are in KNNL, pages 134-135.

Detailed “by-hand” Box-Cox transformation SAS code is in

nknw132.sas

Automated Box-Cox procedure in proc transreg , illustrated

in boxcox.sas .

It suggests a transformation, but there is no guarantee it will solve

all your problems; still have to check residuals, assumptions, etc.
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Helpful Details for Understanding nknw132.sas

Standard transformed Y is

K1(Y
λ − 1) if λ 6= 0

K2 log(Y ) if λ = 0,

where K2 = (
∏

Yi)
1/n

(the geometric mean)

and K1 =
1

λKλ−1

2

.

Run regression lots of times with different values of λ.

Try to minimize SSE; maximize R2 and likelihood.

Have a look at nknw132.sas to see how it works.
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An Example

Let’s use the automated procedure in boxcox.sas

data orig; input age plasma @@;

cards;

0 13.44 0 12.84 0 11.91 0 20.09 0 15.60

1 10.11 1 11.38 1 10.28 1 8.96 1 8.59

2 9.83 2 9.00 2 8.65 2 7.85 2 8.88

3 7.94 3 6.01 3 5.14 3 6.90 3 6.77

4 4.86 4 5.10 4 5.67 4 5.75 4 6.23

;

Topic II

Page 66



Statistics 512: Applied Regression Analysis

Professor Min Zhang

Purdue University

Spring 2014

* First let’s look at the scatterplot to see the relationship;

title1 ’Original Variables’;

proc print data=orig;

symbol1 v=circle i=rl;

proc gplot data=orig;

plot plasma*age;
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proc reg data=orig;

model plasma=age;

output out = notrans r = resid;

Root MSE 1.84135 R-Square 0.7532

symbol1 i=sm70;

proc gplot data = notrans;

plot resid*age / vref = 0;
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proc univariate data=notrans;

var resid; qqplot/normal (L=1 mu = est sigma=est);

The residuals do not appear to have constant variance and the relationship is not quite

linear. Use the Box-Cox procedure to suggest a possible transformation of the Y variable.
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proc transreg data = orig;

model boxcox(plasma)=identity(age);

The TRANSREG Procedure

Transformation Information for BoxCox(plasma)

Lambda R-Square Log Like

-2.00 0.80 -12.3665

-1.75 0.82 -10.1608

-1.50 0.83 -8.1127

-1.25 0.85 -6.3056

-1.00 0.86 -4.8523 *

-0.75 0.86 -3.8891 *

-0.50 0.87 -3.5523 <

-0.25 0.86 -3.9399 *

0.00 + 0.85 -5.0754 *

0.25 0.84 -6.8988

0.50 0.82 -9.2925

0.75 0.79 -12.1209

1.00 0.75 -15.2625

< - Best Lambda

* - Confidence Interval

+ - Convenient Lambda

Box-Cox suggests logY or 1/sqrt(Y). Let’s do both of these.;
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title1 ’Transformed Variables’;

data trans; set orig;

logplasma = log(plasma);

rsplasma = plasma**(-0.5);

proc print data = trans;

run;

title1 ’Log Transformation’;

proc reg data = trans;

model logplasma = age;

output out = logtrans r = logresid;

Root MSE 0.14385 R-Square 0.8535
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symbol1 i=rl;

proc gplot data = logtrans;

plot logplasma * age;
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symbol1 i=sm70;

proc gplot data = logtrans;

plot logresid * age / vref = 0;
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proc univariate data=logtrans;

var logresid;

qqplot/normal (L=1 mu = est sigma = est);
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title1 ’Reciprocal Square Root Transformation’;

proc reg data = trans;

model rsplasma = age;

output out = rstrans r = rsresid;

Root MSE 0.02319 R-Square 0.8665
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symbol1 i=rl;

proc gplot data = rstrans;

plot rsplasma * age;
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symbol1 i=sm70;

proc gplot data = rstrans;

plot rsresid * age / vref = 0;
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proc univariate data=rstrans;

var rsresid; qqplot/normal (L=1 mu = est sigma = est);

We went over KNNL 3.8 and 3.9.
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Sections 3.4-3.7 – Description of significance tests for assumptions

(read it if you are interested).
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Summary of Remedial Measures

Nonlinear Relationships

Sometimes a transformation on X will fix this. It could involve, for

example, both linear and quadratic terms in X , for which we need

multiple regression.

Nonconstant Variance

If we can model the way in which error variance changes, we can

use weighted regression. We’ll talk about this later, when we get to

KNNL 11.1.

Use a weight statement in proc reg .

Sometimes a transformation on Y will work instead.
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Nonnormal Errors

Transformations on Y often help.

Could use a procedure that allows different distributions for the error

term: SAS proc genmod (not covered here).

Box-Cox Transformations

Suggests some possible Y transformations to try. Still have to try

them out and look at the graphs to see if they really do fix your

problems. Sometimes the “best” transformation is still not good

enough. Also, sometimes a transformation only improves things a

tiny bit, in which case it may be better to go with the untransformed

variable, because it is much easier to interpret.
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Other Topics (KNNL, Chapter 4)

• Joint estimation of β0 and β1

• Multiplicity

• Regression through the origin

• Measurement error

• Inverse predictions
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Joint Estimation of β0 and β1

Confidence intervals are used for a single parameter.

Confidence regions (e.g., confidence band) for two or more

parameters

The region for (β0, β1) defines a set of lines.

Since b0 and b1 are (jointly) normal, the natural confidence region is

an ellipse (STAT 524) (i.e., smallest region).

KNNL use rectangles (i.e. region formed from two intervals

a1 ≤ β1 ≤ a2 and a3 ≤ β0 ≤ a4), using the Bonferroni

Correction (KNNL 4.1).
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Bonferroni Correction

We want the probability that both intervals are correct to be ≥ 0.95.

• Basic idea is that we have an error budget (α = 0.05), so spend

half on β0 and half on β1

• We use α = 0.025 for each CI (97.5% CI), leading to

b0 ± tcs{b0}
b1 ± tcs{b1}

where tc = tn−2(0.9875). Note 0.9875 = 1− 0.025/2 .

• We start with a 5% error budget, and we have two intervals so

we give 2.5% to each.

• Each interval has two ends (tails) so we again divide by 2.
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Theory Behind this Correction: Bonferroni Inequality

Let the two intervals be I1 and I2.

We will call it “COR” if the interval contains the correct parameter

value, “INC” if not.

P (both COR) = 1− P (at least one INC)

P (at least one INC) = P (I1 INC) + P (I2 INC)− P (both INC)

≤ P (I1 INC) + P (I2 INC).

Thus, P (both COR) ≥ 1− P (I1 INC)− P (I2 INC)

If we use 0.05/2 for each interval,

1− (P (I1 INC) + P (I2 INC)) = 1− 0.05 = 0.95.

So P (both correct) is at least 0.95 (it is better if they happen to

overlap).
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We will use this same idea when we do multiple comparisons in

ANOVA.
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Mean Response CI’s

We already talked about simultaneous estimation for all

Xh with a confidence band: use Working-Hotelling

(KNNL 2.6).

Ŷh ±Ws{Ŷh}, where W 2 = 2F2,n−2(1− α)

For simultaneous estimation for a few Xh, say g different

values, we may use Bonferroni instead.

Ŷh ±Bs{Ŷh}, where B = tn−2(1− α/(2g))
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Simultaneous PI’s

Simultaneous prediction intervals for g different Xh: use

Bonferroni.

Ŷh ± Bs{pred}, where B = tn−2(1− α/(2g))

or Scheffe

Ŷh ± Ss{pred}, where S2 = gFg,n−2(1− α).
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Regression Through the Origin

Yi = β1Xi + ǫi

noint option in proc reg .

Generally not a good idea

Problems with r2 and other statistics

See cautions, KNNL page 164
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Measurement Error

For Y , this is usually not a problem (taken care of by ǫ)

For X , we can get biased estimators of our regression

parameters

See KNNL 4.5, pages 165-167.

Berkson model: special case where measurement error

in X is no problem.
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Inverse Predictions

Given Yh, predict the corresponding value of X .

Sometimes called calibration.

Solve the fitted equation for Xh

X̂h =
(Yh − b0)

b1
, b1 6= 0

Approximate CI can be obtained, see KNNL, page 168.

We did Chapter 4 fairly quickly (important part –

Bonferroni inequality)
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Next we will do simple regression with vectors and

matrices so that we can generalize to multiple

regression. Look at KNNL 5.1 to 5.7. If you have ever

had a course in linear algebra, this should be familiar to

you. If not, you will need to read these sections in detail.

We will not cover them in class, but I will be happy to

answer questions in office hours.
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