
Statistics 512: Applied Linear Models

Topic 1

Topic Overview

This topic will cover

• Course Overview & Policies

• SAS

• KNNL Chapter 1 (emphasis on Sections 1.3, 1.6, and 1.7; much should be review) –
Simple linear regression; method of least squares (LS)

• KNNL Chapter 2 (emphasis on Sections 2.1-2.9) – Inference in simple linear regression,
Prediction intervals and Confidence bands, ANOVA tables, General Linear Test

Class Policies

Refer to handout

Overview

We will cover

• simple linear regression – KNNL Chapters 1-5

• multiple regression – KNNL Chapters 6-11

• analysis of variance (ANOVA) – KNNL Chapters 15-25

and possibly throw in some other stuff for fun...

Emphasis will be placed on using selected practical tools (such as SAS) rather than on
mathematical manipulations. We want to understand the theory so that we can apply it
appropriately. Some of the material on SLR will be review, but our goal with SLR is to be
able to generalize the methods to MLR.

SAS

SAS is the program we will use to perform data analysis for this class. Learning to use
SAS will be a large part of the course.

1



Getting Help with SAS

Several sources for help:

• SAS Help Files (not always best)

• World Wide Web (look up the syntax in your favorite search engine)

• SAS Getting Started and Tutorials

• Statistical Consulting Service

• Evening Help Sessions

• Applied Statistics and the SAS Programming Language, 5th edition by Cody and Smith;
most relevant material in Chapters 1, 2, 5, 7, and 9.

Statistical Consulting Service

Math G175 Hours 10-4 M through F
http://www.stat.purdue.edu/scs/ I will often give examples from SAS in class. The pro-
grams used in lecture (and any other programs you should need) will be available for you to
download from the website.

I will usually have to edit the output somewhat to get it to fit on the page of notes. You
should run the SAS programs yourself to see the real output and experiment with changing
the commands to learn how they work. Let me know if you get confused about what is
input, output, or my comments. I will tell you the names of all SAS files I use in these
notes. If the notes differ from the SAS file, take the SAS file to be correct, since there may
be cut-and-paste errors.

There is a tutorial in SAS to help you get started.
Help → Getting Started with SAS Software

You should spend some time before next week getting comfortable with SAS (see HW #0).

For today, don’t worry about the detailed syntax of the commands. Just try to get a
sense of what is going on.

Example (Price Analysis for Diamond Rings in Singa-

pore)

Variables

• response variable – price in Singapore dollars (Y )

• explanatory variable – weight of diamond in carats (X)
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Goals

• Create a scatterplot

• Fit a regression line

• Predict the price of a sale for a 0.43 carat diamond ring

SAS Data Step

File diamond.sas on website.

One way to input data in SAS is to type or paste it in. In this case, we have a
sequence of ordered pairs (weight, price).

data diamonds;

input weight price @@;

cards;

.17 355 .16 328 .17 350 .18 325 .25 642 .16 342 .15 322 .19 485

.21 483 .15 323 .18 462 .28 823 .16 336 .20 498 .23 595 .29 860

.12 223 .26 663 .25 750 .27 720 .18 468 .16 345 .17 352 .16 332

.17 353 .18 438 .17 318 .18 419 .17 346 .15 315 .17 350 .32 918

.32 919 .15 298 .16 339 .16 338 .23 595 .23 553 .17 345 .33 945

.25 655 .35 1086 .18 443 .25 678 .25 675 .15 287 .26 693 .15 316

.43 .

;

data diamonds1;

set diamonds;

if price ne .;

Syntax Notes

• Each line must end with a semi-colon.

• There is no output from this statement, but information does appear in the log window.

• Often you will obtain data from an existing SAS file or import it from another file,
such as a spreadsheet. Examples showing how to do this will come later.

SAS proc print

Now we want to see what the data look like.

proc print data=diamonds;

run;
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Obs weight price

1 0.17 355

2 0.16 328

3 0.17 350

...

47 0.26 693

48 0.15 316

49 0.43 .

SAS proc gplot

We want to plot the data as a scatterplot, using circles to represent data points and adding
a curve to see if it looks linear. The symbol statement “v = circle” (v stands for “value”)
lets us do this. The symbol statement “i = sm70” will add a smooth line using splines
(interpolation = smooth). These are options which stay on until you turn them off. In order
for the smoothing to work properly, we need to sort the data by the X variable.

proc sort data=diamonds1; by weight;

symbol1 v=circle i=sm70;

title1 ’Diamond Ring Price Study’;

title2 ’Scatter plot of Price vs. Weight with Smoothing Curve’;

axis1 label=(’Weight (Carats)’);

axis2 label=(angle=90 ’Price (Singapore $$)’);

proc gplot data=diamonds1;

plot price*weight / haxis=axis1 vaxis=axis2;

run;
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Now we want to use the simple linear regression to fit a line through the data. We use the
symbol option “i = rl”, meaning “interpolation = regression line” (that’s an “L”, not a
one).

symbol1 v=circle i=rl;

title2 ’Scatter plot of Price vs. Weight with Regression Line’;

proc gplot data=diamonds1;

plot price*weight / haxis=axis1 vaxis=axis2;

run;

SAS proc reg

We use proc reg (regression) to estimate a regression line and calculate predictors and
residuals from the straight line. We tell it what the data are, what the model is, and what
options we want.

proc reg data=diamonds; model price=weight/clb p r;

output out=diag p=pred r=resid;

id weight; run;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2098596 2098596 2069.99 <.0001

Error 46 46636 1013.81886
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Corrected Total 47 2145232

Root MSE 31.84052 R-Square 0.9783

Dependent Mean 500.08333 Adj R-Sq 0.9778

Coeff Var 6.36704

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -259.62591 17.31886 -14.99 <.0001

weight 1 3721.02485 81.78588 45.50 <.0001

proc print data=diag;

run;

Output Statistics

Dep Var Predicted Std Error Std Error

Obs weight price Value Mean Predict Residual Residual

1 0.17 355.0000 372.9483 5.3786 -17.9483 31.383

2 0.16 328.0000 335.7381 5.8454 -7.7381 31.299

3 0.17 350.0000 372.9483 5.3786 -22.9483 31.383

4 0.18 325.0000 410.1586 5.0028 -85.1586 31.445

5 0.25 642.0000 670.6303 5.9307 -28.6303 31.283

...

46 0.15 287.0000 298.5278 6.3833 -11.5278 31.194

47 0.26 693.0000 707.8406 6.4787 -14.8406 31.174

48 0.15 316.0000 298.5278 6.3833 17.4722 31.194

Simple Linear Regression

Why Use It?

• Descriptive purposes (cause/effect relationships)

• Control (often of cost)

• Prediction of outcomes

Data for Simple Linear Regression

• Observe i = 1, 2, . . . , n pairs of variables (explanatory, response)

• Each pair often called a case or a data point

• Yi = ith response

• Xi = ith explanatory variable
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Simple Linear Regression Model

Yi = β0 + β1Xi + ϵi for i = 1, 2, . . . , n

Simple Linear Regression Model Parameters

• β0 is the intercept.

• β1 is the slope.

• ϵi are independent, normally distributed random errors with mean 0 and variance σ2,
i.e.,

ϵi ∼ N(0, σ2)

Features of Simple Linear Regression Model

• Individual Observations: Yi = β0 + β1Xi + ϵi

• Since ϵi are random, Yi are also random and

E(Yi) = β0 + β1Xi + E(ϵi) = β0 + β1Xi

Var(Yi) = 0 + Var(ϵi) = σ2.

Since ϵi is Normally distributed, Yi ∼ N(β0 + β1Xi, σ
2) (See A.4, page 1302)

Fitted Regression Equation and Residuals

We must estimate the parameters β0, β1, σ
2 from the data. The estimates are denoted b0,

b1, s
2. These give us the fitted or estimated regression line Ŷi = b0 + b1Xi, where

• b0 is the estimated intercept.

• b1 is the estimated slope.

• Ŷi is the estimated mean for Y , when the predictor is Xi (i.e., the point on the fitted
line).

• ei is the residual for the ith case (the vertical distance from the data point to the fitted
regression line). Note that ei = Yi − Ŷi = Yi − (b0 + b1Xi).
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Using SAS to Plot the Residuals (Diamond Example)

When we called proc reg earlier, we assigned the residuals to the name “resid” and placed
them in a new data set called “diag”. We now plot them vs. X.

proc gplot data=diag;

plot resid*weight / haxis=axis1 vaxis=axis2 vref=0;

where price ne .;

run;

Notice there does not appear to be any obvious pattern in the residuals. We’ll talk a lot
more about diagnostics later, but for now, you should know that looking at residuals plots
is an important way to check assumptions.

Least Squares

• Want to find “best” estimators b0 and b1.

• Will minimize the sum of the squared residuals
∑n

i=1 e
2
i =

∑n
i=1(Yi − (b0 + b1Xi))

2.

• Use calculus: take derivative with respect to b0 and with respect to b1 and then set the
two result equations equal to zero and solve for b0 and b1 (see KNNL, pages 17-18).
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Least Squares Solution

• These are the best estimates for β1 and β0.

b1 =

∑
(Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2
=

SSXY

SSX

b0 = Ȳ − b1X̄

• These are also maximum likelihood estimators (MLE), see KNNL, pages 26-32.

• This estimate is the “best” because because it is unbiased (its expected value is equal
to the true value) with minimum variance.

Maximum Likelihood

Yi ∼ N(β0 + β1Xi, σ
2)

fi =
1√
2πσ2

e−
1
2(

Yi−β0−β1Xi
σ )

2

L = f1 × f2 × . . .× fn – likelihood function

Find values for β0 and β1 which maximize L. These are the SAME as the least squares
estimators b0 and b1!!!

Estimation of σ2

We also need to estimate σ2 with s2. We use the sum of squared residuals, SSE, divided by
the degrees of freedom n− 2.

s2 =

∑
(Yi − Ŷi)

2

n− 2
=

∑
e2i

n− 2

=
SSE

dfE
= MSE

s =
√
s2 = Root MSE,

where SSE =
∑

e2i is the sum of squared residuals or “errors”, and MSE stands for “mean
squared error”.

There will be other estimated variance for other quantities, and these will also be denoted
s2, e.g. s2{b1}. Without any {}, s2 refers to the value above – that is, the estimated variance
of the residuals.
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Identifying these things in the SAS output

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2098596 2098596 2069.99 <.0001

Error 46 46636 1013.81886

Corrected Total 47 2145232

Root MSE 31.84052 R-Square 0.9783

Dependent Mean 500.08333 Adj R-Sq 0.9778

Coeff Var 6.36704

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept 1 -259.62591 17.31886 -14.99 <.0001 -294.48696 -224.76486

weight 1 3721.02485 81.78588 45.50 <.0001 3556.39841 3885.65129

Review of Statistical Inference for Normal Samples

This should be review!
In Statistics 503/511 you learned how to construct confidence intervals and do hypothesis
tests for the mean of a normal distribution, based on a random sample. Suppose we have
an iid (random) sample W1, . . . ,Wn from a normal distribution. (Usually, I would use the
symbol X or Y , but I want to keep the context general and not use the symbols we use for
regression.)

We have

Wi ∼iid N(µ, σ2) where µ and σ2 are unknown

W̄ =

∑
Wi

n
= sample mean

SSW =
∑

(Wi − W̄ )2 = sum of squares for W

s2{W} =

∑
(Wi − W̄ )2

n− 1
=

SSW

n− 1
= sample variance (estimating variance of entire population)

s{W} =
√

s2{W} = sample standard deviation

s{W̄} =
s{W}√

n
= standard error of the mean (standard deviation of mean)
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and from these definitions, we obtain

W̄ ∼ N

(
µ,

σ2

n

)
,

T =
W̄ − µ

s{W̄}
has a t-distribution with n− 1 df (in short, T ∼ tn−1)

This leads to inference:

• confidence intervals for µ

• significance tests for µ.

Confidence Intervals

We are 100(1− α)% confident that the following interval contains µ:

W̄ ± tcs{W̄} =
[
W̄ − tcs{W̄}, W̄ + tcs{W̄}

]
where tc = tn−1(1− α

2
), the upper (1− α

2
) percentile of the t distribution with n− 1 degrees

of freedom, and 1− α is the confidence level (e.g. 0.95 = 95%, so α = 0.05).

Significance Tests

To test whether µ has a specific value, we use a t-test (one sample, non-directional).

H0 : µ = µ0 vs Ha : µ ̸= µ0

• t = W̄−µ0

s{W̄} has a tn−1 distribution under H0.

• Reject H0 if |t| ≥ tc, where tc = tn−1(1− α
2
).

• p-value = ProbH0
(|T | > |t|), where T ∼ tn−1.

The p-value is twice the area in the upper tail of the tn−1 distribution above the observed
|t|. It is the probability of observing a test statistic at least as extreme as what was actually
observed, when the null hypothesis is really true. We reject H0 if p ≤ α. (Note that this is
basically the same – more general, actually – as having |t| ≥ tc.)
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Important Notational Comment

The text says “conclude HA” if t is in the rejection region (|t| ≥ tc), otherwise “conclude
H0”. This is shorthand for

• “conclude HA” means “there is sufficient evidence in the data to conclude that H0 is
false, and so we assume that HA is true.”

• “conclude H0” means “there is insufficient evidence in the data to conclude that either
H0 or HA is true or false, so we default to assuming that H0 is true.”

Notice that a failure to reject H0 does not mean
that there was any evidence in favor of H0

NOTE: In this course, α = 0.05 unless otherwise specified.

Section 2.1: Inference about β1

b1 ∼ N(β1, σ
2{b1})

where σ2{b1} =
σ2

SSX

t =
(b1 − β1)

s{b1}

where s{b1} =

√
s2

SSX

t ∼ tn−2 if β1 = 0

According to our discussion above for “W”, you therefore know how to obtain CI’s and t-
tests for β1. (I’ll go through it now but not in the future.) There is one important difference:
the degrees of freedom (df) here are n− 2, not n− 1, because we are also estimating β0.

Confidence Interval for β1

• b1 ± tcs{b1},

• where tc = tn−2(1− α
2
), the upper 100(1− α

2
) percentile of the t distribution with n− 2

degrees of freedom

• 1− α is the confidence level.
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Significance Tests for β1

• H0 : β1 = 0 vs Ha : β1 ̸= 0

• t = b1−0
s{b1}

• Reject H0 if |t| ≥ tc, tc = tn−2(1− α/2)

• p-value = Prob(|T | > |t|), where T ∼ tn−2

Inference for β0

• b0 ∼ N(β0, σ
2{b0}) where σ2{b0} = σ2

[
1
n
+ X̄2

SSX

]
.

• t = b0−β0

s{b0} for s{b0} replacing σ2 by s2 and take
√

• s{b0} = s
√

1
n
+ X̄2

SSX

• t ∼ tn−2

Confidence Interval for β0

• b0 ± tcs{b0}

• where tc = tn−2(1− α
2
), 1− α is the confidence level.

Significance Tests for β0

• H0 : β0 = 0 vs HA : β0 ̸= 0

• t = b0−0
s{b0}

• Reject H0 if |t| ≥ tc, tc = tn−2(1− α
2
)

• p-value = Prob(|T | > |t|), where T ∼ tn−2

Notes

• The normality of b0 and b1 follows from the fact that each is a linear combination of
the Yi, themselves each independent and normally distributed.

• For b1, see KNNL, page 42.

• For b0, try this as an exercise.
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• Often the CI and significance test for β0 is not of interest.

• If the ϵi are not normal but are approximately normal, then the CI’s and significance
tests are generally reasonable approximations.

• These procedures can easily be modified to produce one-sided confidence intervals and
significance tests

• Because σ2(b1) =
σ2∑

(Xi−X̄)2
, we can make this quantity small by making

∑
(Xi − X̄)2

large, i.e. by spreading out the Xi’s.

SAS proc reg

Here is how to get the parameter estimates in SAS. (Still using diamond.sas). The option
“clb” asks SAS to give you confidence limits for the parameter estimates b0 and b1.

proc reg data=diamonds;

model price=weight/clb;

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept 1 -259.62591 17.31886 -14.99 <.0001 -294.48696 -224.76486

weight 1 3721.02485 81.78588 45.50 <.0001 3556.39841 3885.65129

Points to Remember

• What is the default value of α that we use in this class?

• What is the default confidence level that we use in this class?

• Suppose you could choose the X’s. How would you choose them if you wanted a precise
estimate of the slope? intercept? both?

Summary of Inference

• Yi = β0 + β1Xi + ϵi

• ϵi ∼ N(0, σ2) are independent, random errors
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Parameter Estimators

For β1 : b1 =

∑
(Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2

β0 : b0 = Ȳ − b1X̄

σ2 : s2 =

∑
(Yi − b0 − b1Xi)

2

n− 2

95% Confidence Intervals for β0 and β1

• b1 ± tcs{b1}

• b0 ± tcs{b0}

• where tc = tn−2(1− α
2
), the 100(1− α

2
) upper percentile of the t distribution with n− 2

degrees of freedom

Significance Tests for β0 and β1

H0 : β0 = 0, Ha : β0 ̸= 0

t = b0
s{b0} ∼ t(n−2) under H0

H0 : β1 = 0, Ha : β1 ̸= 0

t = b1
s{b1} ∼ t(n−2) under H0

Reject H0 if the p-value is small (< 0.05).

KNNL Section 2.3 Power

The power of a significance test is the probability that the null hypothesis will be rejected
when, in fact, it is false. This probability depends on the particular value of the parameter
in the alternative space. When we do power calculations, we are trying to answer questions
like the following:

“Suppose that the parameter β1 truly has the value 1.5, and we are going to
collect a sample of a particular size n and with a particular SSX . What is the
probability that, based on our (not yet collected) data, we will reject H0?”
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Power for β1

• H0 : β1 = 0, Ha : β1 ̸= 0

• t = b1
s{b1}

• tc = tn−2(1− α
2
)

• for α = 0.05, we reject H0, when |t| ≥ tc

• so we need to find P (|t| ≥ tc) for arbitrary values of β1 ̸= 0

• when β1 = 0, the calculation gives α (H0 is true)

• t ∼ tn−2(δ) – noncentral t distribution: t-distribution not centered at 0

• δ = β1

σ{b1} is the noncentrality parameter: it represents on a “standardized” scale how

far from true H0 is (kind of like “effect size”)

• We need to assume values for σ2(b1) =
σ2∑

(Xi−X̄)2
and n

• KNNL uses tables, see pages 50-51

• we will use SAS

Example of Power for β1

• Response Variable: Work Hours

• Explanatory Variable: Lot Size

• See page 19 for details of this study, page 50-51 for details regarding power

• We assume σ2 = 2500, n = 25, and SSX = 19800, so we have σ2(b1) = σ2∑
(Xi−X̄)2

=
0.1263.

• Consider β1 = 1.5.

• We now can calculate δ = β1

σ{b1}

• with t ∼ tn−2(δ); we want to find P (|t| ≥ tc)

• We use a function that calculates the cumulative distribution function (cdf) for the
noncentral t distribution.

See program knnl050.sas for the power calculations.

16



data a1;

n=25; sig2=2500; ssx=19800; alpha=.05;

sig2b1=sig2/ssx; df=n-2;

beta1=1.5;

delta=abs(beta1)/sqrt(sig2b1);

tstar=tinv(1-alpha/2,df);

power=1-probt(tstar,df,delta)+probt(-tstar,df,delta);

output;

proc print data=a1;run;

Obs n sig2 ssx alpha sig2b1 df beta1 delta tstar

1 25 2500 19800 0.05 0.12626 23 1.5 4.22137 2.06866

power

0.98121

data a2;

n=25; sig2=2500; ssx=19800; alpha=.05;

sig2b1=sig2/ssx; df=n-2;

do beta1=-2.0 to 2.0 by .05;

delta=abs(beta1)/sqrt(sig2b1);

tstar=tinv(1-alpha/2,df);

power=1-probt(tstar,df,delta)+probt(-tstar,df,delta);

output;

end;

proc print data=a2;

run;

title1 ’Power for the slope in simple linear regression’;

symbol1 v=none i=join;

proc gplot data=a2; plot power*beta1; run;

Section 2.4: Estimation of E(Yh)

• E(Yh) = µh = β0 + β1Xh, the mean value of Y for the subpopulation with X = Xh.

• We will estimate E(Yh) with Ŷh = µ̂h = b0 + b1Xh.

• KNNL uses Ŷh to denote this estimate; we will use the symbols Ŷh = µ̂h interchangeably.

• See equation (2.28) on page 52.
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Figure 1: Power of the t-test for detecting different values of β1

Theory for Estimation of E(Yh)

Ŷh is normal with mean µh and variance σ2{Ŷh} = σ2
[
1
n
+ (Xh−X̄)2∑

(Xi−X̄)2

]
.

• The normality is a consequence of the fact that b0 + b1Xh is a linear combination of
Yi’s.

• The variance has two components: one for the intercept and one for the slope. The
variance associated with the slope depends on the distance Xh − X̄. The estimation is
more accurate near X̄.

• See KNNL pages 52-55 for details.

Application of the Theory

We estimate σ2{Ȳh} with s2{Ŷh} = s2
[
1
n
+ (Xh−X̄)2∑

(Xi−X̄)2

]
It follows that t = Ŷh−E(Yh)

s(µ̂h)
∼ tn−2; proceed as usual.

95% Confidence Interval for E(Yh)

Ŷh ± tcs{Ŷh}, where tc = tn−2(0.975).
NOTE: Significance tests can be performed for Ŷh, but they are rarely used in practice.
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Example

See program knnl054.sas for the estimation of subpopulation means. The option “clm” to
the model statement asks for confidence limits for the mean Ŷh.

data a1;

infile ’H:\Stat512\Datasets\Ch01ta01.dat’;

input size hours;

data a2; size=65; output;

size=100; output;

data a3; set a1 a2;

proc print data=a3; run;

proc reg data=a3;

model hours=size/clm;

id size;

run;

Dep Var Predicted Std Error

Obs size hours Value Mean Predict 95% CL Mean

25 70 323.0000 312.2800 9.7647 292.0803 332.4797

26 65 . 294.4290 9.9176 273.9129 314.9451

27 100 . 419.3861 14.2723 389.8615 448.9106

Section 2.5: Prediction of Yh(new)

We wish to construct an interval into which we predict the next observation (for a given Xh)
will fall.

• The only difference (operationally) between this and E(Yh) is that the variance is
different.

• In prediction, we have two variance components: (1) variance associated with the
estimation of the mean response Ŷh and (2) variability in a single observation taken
from the distribution with that mean.

• Yh(new) = β0 + β1Xh + ϵ is the value for a new observation with X = Xh.

We estimate Yh(new) starting with the predicted value Ŷh. This is the center of the confidence
interval, just as it was for E(Yh). However, the width of the CI is different because they have
different variances.

Var(Yh(new)) = Var(Ŷh) + Var(ϵ)

s2{pred} = s2{Ŷh}+ s2

s2{pred} = s2
[
1 +

1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
Yh(new) − Ŷh

s{pred}
∼ tn−2
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s{pred} denotes the estimated standard deviation of a new observation with X = Xh. It
takes into account variability in estimating the mean Ŷh as well as variability in a single
observation from a distribution with that mean.

Notes

The procedure can be modified for the mean of m observations at X = Xh (see 2.39a on
page 60). Standard error is affected by how far Xh is from X̄ (see Figure 2.3). As was the
case for the mean response, prediction is more accurate near X̄.

See program knnl069.sas for the prediction interval example. The “cli” option to the
model statements asks SAS to give confidence limits for an individual observation. (c.f. clb
and clm)

data a1;

infile ’H:\Stat512\Datasets\Ch01ta01.dat’;

input size hours;

data a2;

size=65; output;

size=100; output;

data a3;

set a1 a2;

proc reg data=a3;

model hours=size/cli;

run;

Dep Var Predicted Std Error

Obs size hours Value Mean Predict 95% CL Predict Residual

25 70 323.0000 312.2800 9.7647 209.2811 415.2789 10.7200

26 65 . 294.4290 9.9176 191.3676 397.4904 .

27 100 . 419.3861 14.2723 314.1604 524.6117 .

Notes

• The standard error (Std Error Mean Predict) given in this output is the standard
error of Ŷh, not s{pred}. (That’s why the word mean is in there.) The CL Predict

label tells you that the confidence interval is for the prediction of a new observation.

• The prediction interval for Yh(new) is wider than the confidence interval for Ŷh because
it has a larger variance.

Section 2.6: Working-Hotelling Confidence Bands for

Entire Regression Line

• This is a confidence limit for the whole line at once, in contrast to the confidence
interval for just one Ŷh at a time.
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• Regression line b0 + b1Xh describes E(Yh) for a given Xh.

• We have 95% CI for E(Yh) = Ŷh pertaining to specific Xh.

• We want a confidence band for all Xh – this is a confidence limit for the whole line at
once, in contrast to the confidence interval for just one Ŷh at a time.

• The confidence limit is given by Ŷh ±Ws{Ŷh}, where W 2 = 2F2,n−2(1− α). Since we
are doing all values of Xh at once, it will be wider at each Xh than CI’s for individual
Xh.

• The boundary values define a hyperbola.

• The theory for this comes from the joint confidence region for (β0, β1), which is an
ellipse (see Stat 524).

• We are used to constructing CI’s with t’s, not W ’s. Can we fake it?

• We can find a new smaller α for tc that would give the same result – kind of an “effective
alpha” that takes into account that you are estimating the entire line.

• We find W 2 for our desired α, and then find the effective αt to use with tc that gives
W (α) = tc(αt).

Confidence Band for Regression Line

See program knnl061.sas for the regression line confidence band.

data a1;

n=25; alpha=.10; dfn=2; dfd=n-2;

w2=2*finv(1-alpha,dfn,dfd);

w=sqrt(w2); alphat=2*(1-probt(w,dfd));

tstar=tinv(1-alphat/2, dfd); output;

proc print data=a1;run;

Note 1-probt(w, dfd) gives the area under the t-distribution to the right of w. We have
to double that to get the total area in both tails.

Obs n alpha dfn dfd w2 w alphat tstar

1 25 0.1 2 23 5.09858 2.25800 0.033740 2.25800

data a2;

infile ’H:\System\Desktop\CH01TA01.DAT’;

input size hours;

symbol1 v=circle i=rlclm97;

proc gplot data=a2;

plot hours*size;
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Figure 2: Working-Hotelling 95% Confidence Region for the Line

Estimation of E(Yh) Compared to Prediction of Yh

Ŷh = b0 + b1Xh

s2{Ŷh} = s2
[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
s2{pred} = s2

[
1 +

1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
See the program knnl061x.sas for the clm (mean) and cli (individual) plots.

data a1;

infile ’H:\System\Desktop\CH01TA01.DAT’;

input size hours;

Confidence intervals:

symbol1 v=circle i=rlclm95;

proc gplot data=a1;

plot hours*size;

Prediction Intervals:

symbol1 v=circle i=rlcli95;

proc gplot data=a1;

plot hours*size;

run;
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Figure 3: 95% Confidence Intervals for the Mean

Section 2.7: Analysis of Variance (ANOVA) Table

• Organizes results arithmetically

• Total sum of squares in Y is SSY =
∑

(Yi − Ȳ )2

• Partition this into two sources

– Model (explained by regression)

– Error (unexplained / residual)

Yi − Ȳ = (Yi − Ŷi) + (Ŷi − Ȳ )∑
(Yi − Ȳ )2 =

∑
(Yi − Ŷi)

2 +
∑

(Ŷi − Ȳ )2

(cross terms cancel: see page 65)

Total Sum of Squares

• Consider ignoring Xh to predict E(Yh). Then the best predictor would be the sample
mean Ȳ .

• SST is the sum of squared deviations from this predictor SST = SSY =
∑

(Yi − Ȳ )2.

• The total degrees of freedom is dfT = n− 1.
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Figure 4: Prediction Intervals

• MST = SST/dfT

• MST is the usual estimate of the variance of Y if there are no explanatory variables,
also known as s2{Y }.

• SAS uses the term Corrected Total for this source. “Uncorrected” is
∑

Y 2
i . The

term “corrected” means that we subtract off the mean Ȳ before squaring.

Model Sum of Squares

• SSM =
∑

(Ŷi − Ȳ )2

• The model degrees of freedom is dfM = 1, since one parameter (slope) is estimated.

• MSM = SSM/dfM

• KNNL uses the word regression for what SAS calls model

• So SSR (KNNL) is the same as SS Model (SAS). I prefer to use the terms SSM
and dfM because R stands for regression, residual, and reduced (later), which I find
confusing.

Error Sum of Squares

• SSE =
∑

(Yi − Ŷi)
2

• The error degrees of freedom is dfE = n− 2, since estimates have been made for both
slope and intercept.
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• MSE = SSE/dfE

• MSE = s2 is an estimate of the variance of Y taking into account (or conditioning
on) the explanatory variable(s)

ANOVA Table for SLR

Source df SS MS

Model (Regression) 1
∑

(Ŷi − Ȳ )2 SSM
dfM

Error n− 2
∑

(Yi − Ŷi)
2 SSE

dfE

Total n− 1
∑

(Yi − Ȳi)
2 SST

dfT

Note about degrees of freedom
Occasionally, you will run across a reference to “degrees of freedom”, without specifying
whether this is model, error, or total. Sometimes is will be clear from context, and although
that is sloppy usage, you can generally assume that if it is not specified, it means error
degrees of freedom.

Expected Mean Squares

• MSM , MSE are random variables

• E(MSM) = σ2 + β2
1SSX

• E(MSE) = σ2

• When H0 : β1 = 0 is true, then E(MSM) = E(MSE).

• This makes sense, since in that case, Ŷi = Ȳ .

F -test

• F = MSM/MSE ∼ FdfM ,dfE = F1,n−2

• See KNNL, pages 69-70

• When H0 : β1 = 0 is false, MSM tends to be larger than MSE, so we would want to
reject H0 when F is large.

• Generally our decision rule is to reject the null hypothesis if

F ≥ Fc = FdfM ,dfE(1− α) = F1,n−2(0.95)

• In practice, we use p-values (and reject H0 if the p-value is less than α).
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• Recall that t = b1/s(b1) tests H0 : β1 = 0. It can be shown that t2df = F1,df . The two
approaches give the same p-value; they are really the same test.

• Aside: When H0 : β1 = 0 is false, F has a noncentral F distribution; this can be used
to calculate power.

ANOVA Table
Source df SS MS F p
Model 1 SSM MSM MSM

MSE
p

Error n− 2 SSE MSE
Total n− 1

See the program knnl067.sas for the program used to generate the other output used in
this lecture.

data a1;

infile ’H:\System\Desktop\CH01TA01.DAT’;

input size hours;

proc reg data=a1;

model hours=size;

run;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 252378 252378 105.88 <.0001

Error 23 54825 2383.71562

Corrected Total 24 307203

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 62.36586 26.17743 2.38 0.0259

size 1 3.57020 0.34697 10.29 <.0001

Note that t2 = 10.292 = 105.88 = F .

Section 2.8 General Linear Test

• A different view of the same problem (testing β1 = 0). It may seem redundant now,
but the concept is extremely useful in MLR.

• We want to compare two models:

Yi = β0 + β1Xi + ϵi (full model)

Yi = β0 + ϵi (reduced model)
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Compare using the error sum of squares.

Let SSE(F ) be the SSE for the Full model, and let SSE(R) be the SSE for the Reduced
Model.

F =
(SSE(R)− SSE(F ))/(dfE(R) − dfE(F ))

SSE(F )/dfE(F )

Compare to the critical value Fc = FdfE(R)−dfE(F ),dfE(F )
(1 − α) to test H0 : β1 = 0 vs. Ha :

β1 ̸= 0.

Test in Simple Linear Regression

SSE(R) =
∑

(Yi − Ȳ )2 = SST

SSE(F ) = SST − SSM(the usual SSE)

dfE(R) = n− 1, dfE(F ) = n− 2,

dfE(R) − dfE(F ) = 1

F =
(SST − SSE)/1

SSE/(n− 2)
=

MSM

MSE
(Same test as before)

This approach (“full” vs “reduced”) is more general, and we will see it again in MLR.

Pearson Correlation

ρ is the usual correlation coefficient (estimated by r)

• It is a number between -1 and +1 that measures the strength of the linear relationship
between two variables

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2

• Notice that

r = b1

√∑
(Xi − X̄)2∑
(Yi − Ȳ )2

= b1
sX
sY

Test H0 : β1 = 0 similar to H0 : ρ = 0.
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R2 and r2

• R2 is the ratio of explained and total variation: R2 = SSM/SST

• r2 is the square of the correlation between X and Y :

r2 = b21

(∑
(Xi − X̄)2∑
(Yi − Ȳ )2

)
=

SSM

SST

In SLR, r2 = R2 are the same thing.
However, in MLR they are different (there will be a different r for each X variable, but only
one R2).
R2 is often multiplied by 100 and thereby expressed as a percent.
In MLR, we often use the adjusted R2 which has been adjusted to account for the number
of variables in the model (more in Chapter 6).

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 252378 252378 105.88 <.0001

Error 23 54825 2383

C Total 24 307203

R-Square 0.8215

= SSM/SST = 1− SSE/SST

= 252378/307203

Adj R-sq 0.8138

= 1−MSE/MST

= 1− 2383/(307203/24)
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