Statistics 512

Major Exam 1

Monday, October 9, 2013

NAME:

Materials permitted:

This exam is open-book and open-note. Anything on paper is allowed. Calculators are allowed. HOWEVER, computers, phones, or any devices capable of wireless communications are not permitted.

Please

- do not open the exam until I say you may
- do not cheat on this exam (do not copy from or communicate with any other person) Sign Here:
- write your solution clearly and legibly so that I can follow it
- cross out your mistakes; do not erase large quantities of work hand it in
- you have **60 minutes**, at which time all papers will be collected.
- unless otherwise stated, use $\alpha = 0.05$.

- A SLR model fit to 25 data points gave $b_0 = 3$, $b_1 = -2$, $\bar{X} = 3$, $s_X = 2$, $s_Y = 5$, $\sum e_i^2 = 230$.
 - [4 points] Find the residual when the response variable is -5 and the explanatory variable is
 5. Is the point above or below the line?

Solution: $\hat{Y}_i = 3 - 2 \times 5 = -7 \implies e_i = -5 + 7 = 2$, and the point is above the line.

- 2. [4 points] Compute root MSE for this model. Solution: $s = \sqrt{MSE} = \sqrt{\frac{230}{23}} = \sqrt{10} \approx 3.16.$
- 3. [4 points] Calculate the correlation between X and Y. Interpret this value. **Solution:** $r = -2 \cdot \frac{2}{5} = -0.8$. There is a strong negative association (correlation) between X and Y. If you use $s_Y = 5.1$, then r = -0.79
- 4. [5 points] What is SSR for this model? **Solution:** SSR = SST - SSE, but $SST = \frac{SSR}{R^2} = \frac{SSE}{1-R^2} = 639 \implies SSR = 409$. If you use $s_Y = 5.1$, then SSR = 370.
- 5. [4 points] Construct a 95% confidence interval for the slope. [Hint: find SS_X first]. **Solution:** $b_1 \pm t_{23} \times s\{b_1\}$. But, $SS_X = (n-1) \cdot s_X^2 = 96 \implies s\{b_1\} = 0.323$. The C.I. is $-2 \pm 2.069 \times 0.323 \implies (-2.67, -1.33).$
- 6. [4 points] Test the hypothesis H_a : $\rho \neq 0$.

Solution: $H_0: \rho = 0.$ $t_s = t_{23} = \frac{r\sqrt{n-2}}{1-r^2} = -6.2.$ $t_c = 2.069.$ Since $|t_s| > t_c$ we reject $H_0.$ or $t_s = \frac{b_1}{s\{b_1\}} = \frac{-2}{0.323} = -6.2$, which gives the same conclusion. or Since 0 falls outside the 95% C.I. for β_1 , we reject H_0 .

7. [5 points] You suspect the slope is less than -1.5, test this claim.

Solution:
$$H_0: \beta_1 = -1.5 \quad vs \quad H_a: \beta_1 < -1.5.$$

 $t_s = t_{23} = \frac{-2+1.5}{0.323} = -1.55.$
 $t_c = -1.714.$
Since $t_s < t_c$ we fail to reject H_0 .

8. [4 points] Find a 95% interval for the mean response when the explanatory is 5.

Solution:
$$\hat{Y} \pm t_{23} \times s \times \sqrt{\frac{1}{n} + \frac{(X_h - \bar{X})^2}{SS_X}}$$

 $-7 \pm 2.069 \times \sqrt{10} \times \sqrt{\frac{1}{25} + \frac{(5-3)^2}{96}} \Rightarrow (-8.87, -5.13)$

- 9. [4 points] You are running an experiment and would like to calibrate the explanatory variable, find a calibrated value for the explanatory when the response is −5.
 Solution: Â = -^{b₀}/_{b₁} + ¹/<sub>b₁</sup> · Y_h = 1.5 + ⁵/₂ = 4.
 </sub>
- 10. [2 points] If the power for detecting a change in β_1 is 0.07, what can you say about the α level? Solution: $\alpha \leq 0.07$.

Good Luck! ©