An Introductory SAS Course

For usewith Version 8.2

Christina Wassdl
Chenghong Li

Statistical Consultants

Statistical Consulting Service

Purdue Univer sty

January 16, 2002

I. Introduction

What isSAS?

SASisasdtatistical software package that allows the user to manipulate and analyze datain many different
ways. Because of its capabilities, this software package is used in many disciplines (not just statistics!),

including medical sciences, biological sciences, and social sciences. Knowing the SAS programming
language will help you not only in your current class or research, but also possibly in obtaining ajob.

How to obtain SAS

SASVersion 8.2 (the latest version) isinstalled on all ITaP (Information Technology at Purdue) machines
inal ITaP labs around campus. To get into the program, click Start, All Programs, Standard Software,
Statistical Packages, and finally SAS. If youwould like to install SAS Version 8.2 on your home computer
or laptop, Stewart Center Room B14 has CDs available free of charge to students, faculty, and staff to do
this. (Remember to take your student ID to sign out CDs over night!)

After you open SAS

After you open SAS, you will see three windows, the program editor, an explorer window, and the log
window. Also, thereisan output window that is hidden until you actually have output. The program editor
iswhere you will type the program that you will eventually run. It works almost exactly like Microsoft
Word. (You can cut, paste, move the cursor, etc.) The enhanced program editor will give you color-coded
procedures, statements, and options (more on these later) that will help you to find errorsin your program
before you even runit. Thelog window will inform you of any errorsin your program and the reason for
theerrors. Thiswindow isEXTREMELY IMPORTANT if you hope to figure out what is wrong with your
program. Always check it first to see if your program ran properly! The output window iswhere, once you
run your program from the program editor, your output appear. (Note: Y ou can also cut, paste, etc. from
the log and output windows.) With the explorer window, you can open\view datayou have read into SAS.
Click on libraries, then the work folder, and thiswill show you any datasets you have read into or created in
SASfor that session.

Reading datainto SAS

There are three basic options (others do exist) for reading datasets into SAS so you can begin analysis.
1) With aninfile statement:
Using aninfile statement will bring datain from adifferent drive (i.e. A, H, C, F) and make them
available for the entire SAS session that you run. To do this, the commands could be, for
example, if your datawere saved on a diskette:

data al;
infile “A:\fil enane’;
i nput x1 x2;

Y ou must also hame your dataset. Y ou can name it anything you like; hereitisnamed al. The
input statement identifies the variables in your dataset so you can use them for analysis. They can
a so be named whatever you would like; here they are named x1 and x2.

2) Importing the dataset:
To import the data from another drive, go to File, then import data. In afew seconds, awindow
will pop up and ask you the format of thefileto import. Click on the pull-down menu and select
your filetype (i.e. Excel, Lotus, text, etc.). Then, click next which will take you to awindow that
asksthefile spathname. Typein the place where your file exists (e.g., H:\StatHW\data). Or, if

you are not exactly sure where your fileis, click on browse, and thiswill help you to locate it.
Click next again, and then it will ask you to name your data set. This can be anything you would
like. Once you nameit, you must continue to use this namein your program to reference this
particular dataset. Click next one more time, and then click on the finish button.

3) Using the cardsor datalines statements:
Another option isto put your dataset directly into the program editor. This generally works best
when your dataset isfairly small (e.g., for aclass assignment). The codefor thisis:

data ail;

i nput x1 x2;
cards;

your data here

OR

dat al i nes;
your data here

Itisvery important that the last semi -colon go on the next line after all of the data (as shown
above), otherwise your last observation will be deleted!

Important basic syntax to know:

In order to successfully run any program, you need the following basic elements:

1) asemi-colon at the end of every line

2) adata statement that names your data set (unless you import the data set)
3) input statement (unless you import the data set)

4) at least one space between each word or statement

5) arun statement

A semi-colon isthe way to tell SASthat a particular operation, procedure, or statement isfinished, and tells
SASto look for the next one. The data statement names your data set so you can reference it later in your
program. Theinput statement tells SAS the names of the variablesin your data set so that they can also be
referenced later. Only one spaceisrequired to tell SAS that things are separate. If you have more than one
space, that isfinetoo. A run statement tells SAS to process the previous bit of code that you wrote. If
there is norun statement, SAS will not process anything. (Lack of semi-colons and run statementsare two
most common mistakes in aprogram.)

An example of thisfollows:

data yourdat aset nane;

infile “H\Stat HW yourfi |l enane. dat’ ;

i nput variablel variable2 (up to however many vari abl es that
you have);

If you use the cards or datalines statements instead, they must both be preceded by the input statement.
An example of using the cardsstatement to read in datais on the following page.

II. Data Stepsand Procedures

Data Steps and Procedures

What isa data step? How arethey useful?

A SASprogram is composed of two parts: data steps that deal with data cleaning and data format, and
procedures that perform required statistical analyses and/or graphically present the results. Data stepsare
important for several reasons. First, the dataset may not bein a SAS compatible format, although thisis
usually not the case for the datasets in class examples or exercises. Second, sometimes you need to extract
some of the variables or some of the observations from the dataset to perform analysis. Third, different
procedures may require the same dataset in different format. A data step is needed to transform the dataset
into the appropriate format for a procedure.

Mathematical operations are listed in the following table:

Function Operator Example
Addition + Height + weight
Subtraction - Height — weight
Multiplication * Height * age
Division / Weight / height
Power **or Weight ** 2
Equal =oreq Weight =120
Unequal <>orne Weight <> 120
Lessthan <orlt Weight < 120 or weight It 120
L ess than or equal to <=orle Weight le 120
Greater than > or gt Weight gt 80
Greater than or equal to >=or ge Weight ge 80

Manipulating variables in a data step (recoding, if/then statements)

To illustrate the data manipulation, let’ s take a sampl e data set:

data ail;

i nput gender $ age wei ght;
cards;

M 13 143

M 16 132

F 19 140

M 20 120

M 15 110

F 18 95

F 22 105

Suppose you want a data set of females only. The following SAS code will create a new data set call aa and
store those observations whose val ue for the variable gender isnot ‘M’. The set al statement after the data
aa statement tells SAS to make a copy of the dataset al and save it asaa. Theif/then statement deletesthe
observations in dataset aa whose gender variable hasavalue ‘M’. Quotation marks are used on M because
gender isacategorical variable. Thedollar sign ($) isused when you have atext variable rather than a
numerical variable (i.e., gender coded as M, F rather than as 1 denoting male and 2 denoting femal€).

data aa;
set al;
if gender eq 'M then delete;

or
if gender eq 'F';
run;

If you want to include those who are 16 years or older, you can do:

data ab;

set ail;

if age It 16 then delete;
run;

Y ou can also select variables from a dataset for analysis. The statement iskeep or drop. For example, if
you do not need the variable age in your analysis, you can do:

data ac;

set al;

drop age;
or

data ac;
set al,
keep gender weight;

Thislast statement will create a dataset that only contains the two variables specified, gender and weight.
What isa procedure?

A SAS program is composed of one or more (statistical) procedures. Each procedure isaunit, although
some are needed to run others. Some often-used procedures for statistical analysis are explained in detail.

Proc print

The output of this procedure isthe data set that you specified by writing data=dataname option after the
print key word. Thisdata= option iscommon for almost every SAS procedure. Itisagood habit to use
this option all the time so that you know with which dataset you are working. Thisishelpful especially
when there are multiple datasets, which is usually the case when you are performing statistical analysis
using SAS. Here' san example of how proc print works. In the data step section, we created a data set
called al with three variables (gender, age, weight), and seven observations. It'sagood ideato always
check if SAS hasread in your dataset correctly before performing any analyses on the data.

proc print data=al;
run;

If you highlight this section of code and click on the run button, you'll see the dataset in the output window
asfollows:
Obs gender age weight

1 M 13 143
2 M 16 132
3 F 19 140
4 M 20 120
5 M 15 110
6 F 18 95
7 F 22 105

If you want to see only some variablesin the data set, you could add a statement after the proc print linein
theformat of var gender age;. Thiswould generate output similar to that shown above except the

weight variable would not be included.
Proc univariate

It isone of the most important procedures for elementary statistical analysis. It outputs the basic statistics
of one or more variables, and has optional statements to generate qgplots and histograms. Sample code
follows:

proc univariate data=al;
var wei ght;

qapl ot ;

hi st ogr am

run;

The var statement isoptional. Without this statement, aunivariate analysisis performed for all numeric
variablesin the order they appear in the dataset.

Proc capability

It has avariety of functionsincluding creating anormal qq plot, histogram, and probability plots, although
it is often used to create anormal qq plot in elementary statistical analysis. A normal qq plot and a
histogram can be created using the code in the univariate example, just replacing univariate with
capability.

Proc sort

Proc sort sorts the observationsin adataset by some variablesin either ascending or descending order. For
example:

proc sort data=al out=a2;
by gender;
run;

The observations of dataset al are sorted in ascending order, by default, of the variable gender, and the
sorted datais saved in a dataset named a2. Without the out =a2 option, the unsorted dataset named al will
be replaced by the sorted dataset. Y ou can also sort the observationsin the descending order of some
variable by specifying the descending option in the by statement, e.g. by gender descendi ng. If
you need to sort by more than one variable, list all the variablesin the by statement. For example, by
gender age will sortintheascending order by gender, and then the observations with the same gender
value will be sorted in the ascending order by the values of age.

Proc means

This procedure produces simple univariate descriptive statistics for numeric variables. It also calculates
confidence limits for the mean, and identifies extreme values and quartiles. Here’'s an example for mean
and its confidence limit calculation:

proc neans data=a2 al pha=0.05 cl m nean nmedian n nmin max;
run;

The mean, median, sample size, minimal value, maximal value, and 95% confidence intervals will be
computed for variables age and weight. The al pha option specifies the confidence level for the confidence
limit, clmtells SAS to calculate the confidence interval of the mean. Since gender is a categorical variable,
no mean will be computed for it.

If you have alot of variables and you only want to cal cul ate the mean for some of them, use the var option
and list the variables after the keyword var. If you want the means of the variables by group, usethe by
option. For example,

proc neans data=a2 al pha=0.05 cl m nean;
var wei ght;

by gender;

run;

tells SAS to compute the mean and confidence interval of weight for each value of gender, i.e. male and
female. If the by statement is used, the observations need to be sorted by the same variable before the proc
meansprocedure. Note data a2, the sorted dataset, was used in our proc meansexample.

Proc summary

It computes descriptive statistics on numeric variablesin a SAS dataset and outputs the results to a new
SASdataset. The syntax of proc summary isthe same as that of proc means. An example follows:

proc sumrary data=a2 print;
var wei ght;

by gender;

out put out =3;

run;

Proc summary will not run without either the print option or the output statement.
Proc corr

This procedureis used for calculating the correlation between numeric variables. For example, the Pearson
correlation coefficient and its P-value can be computed.

proc corr data=al;
var age weight;
run;

A correlation coefficient matrix is created:

Pearson Correl ation Coefficients, N=7
Prob > |r| under HO: Rho=0

age wei ght
age 1. 00000 -0.43017
0. 3354
wei ght -0.43017 1. 00000
0. 3354

The correlation coefficient between age and weight in this exampleis-0.43017, and 0.3354 isthe P-value
for testing the null hypothesis that the coefficient iszero. In this case, the P-valueis greater than 0.05, and
the null hypothesis of zero coefficient cannot be rejected.

Procdim

It performs simple and multiple regression, analysis of variance (ANOVA), analysis of covariance,
multivariate analysis of variance, and repeated measures analysis of variance.

proc gl m data=al;
nodel wei ght =age;
out put out=a3 p=pred r=resid;

run;

performs asimple linear regression with weight as the dependent variable and age the independent variable.
The predicted values of weight (the dependent variable) and the residuals are saved in a new dataset called
a3 using the output statement. For multiple regression where you have more than one independent
variable, simply list in the model statement all the variables on the right hand side of the equal sign with
one space in between, e.g.

nodel wei ght =age hei ght;

In the case of ANOVA, aclass statement is needed for categorical variables before the model statement.
Thefollowing code isan ANOV A analyzing the effect of gender on weight. It tests whether the weight is
the same for females and males.

proc gl m dat a=al;

cl ass gender;

nodel wei ght =gender ;
run;

Proc reqg

Procregisaprocedure for regression. It iscapable of more regression tasks thanproc glm It allows
multiple model statements in one procedure, can do model selection, and even plots summary statistics and
normal qg-plots.

Y ou can specify several PLOT statements for each MODEL statement, and you can specify more than one
plot in each PLOT statement.

proc reg data=al;
nodel wei ght =age;

pl ot wei ght *age;

pl ot predicted. *age;
pl ot residual.*age;
pl ot nqq. *residual . ;
run;

In the above example, asimple regression is performed with weight as the response and age as the
explanatory variable. The plot statements request four plots. weight versus age, predicted values of weight
versus age, residuals versus age, and normal qq plot versusresiduals. Predicted., residual., and nqg. are
keywordsthat SAS recognizes. Make sure you keep adot after the word.

Basic Options and Statementswithin the Procedures

What isan option or statement?

A statement is acommand nested within the procedure commands that tells SAS a bit more about the
procedure you want to perform or in some cases, allows you to make your analysis more specific. An
option is something that even further describes a statement, or in some cases, it may also further describe a
procedure. Some statements are necessary while others are optional

TheVar Statement
In many of the above SAS procedures, avar statement is either required or may be needed if you are

dealing with alarge data set with many variables. For example, if you are using the proc corr procedure
(outlined above), you may want to tell SAS which variablesin your dataset you are interested in obtaining

correlationsfor. It would work asfollowsif you had three variables for which you needed to obtain the
correlations:

proc corr data=yourdat aset nane;
var V1 V2 V3;
run;

If you have a dataset with many variables, but you only want to check normality assumptions for afew of
them, use:

proc univari ate data=yourdat aset;
var responsel responsez;
run;

The By Statement

The by statement is required for the proc sort procedure. After using it in proc sort, you can then useitin
other procedures. For example, say you were interested in performing regressions of height on weight by
gender. First, you would want to sort your dataset by gender as follows:

proc sort data=yourdataset;
by gender;
run;

Then, you can use the sorted data to obtain two separate regressions, one for males and one for females as
follows:

proc reg data=yourdataset;
nodel wei ght =hei ght ;

by gender;

run;

(We will get to the model statement shortly!)
The Class Statement

The class statement tells SA S that you have avariablein your data set that is categorical. For example, if
you had datafrom an experiment with 20 subjects where five subjects received treatment 1, five received
treatment 2, five received treatment 3, and the final five received treatment 4, treatment would be
considered a categorical variable, and thus must appear in the class statement of the glmprocedure. The
most common usage of the class statement for you will most likely be in the univariate, means, and gim
procedures. Itisrequired for the gim procedureonly if you have a categorical variable such as gender.
The coding of the above example could ook asfollows

proc gl m dat a=your dat aset ;
cl ass treatnent;

nodel resp=treatmnent;

run;

where resp isthe response for each of the 20 subjects.
TheModd Statement
By now, you have already seen the model statement in afew of the above examples. The model statement

tells SAS which model you would liketo use for your data. The dependent or response variable always
goes on the left of the equal s sign while the independent variable(s) come after the equals sign on the right.

The above glmexample shows how the model statement works. For the procedure statements you have
learned thus far, the model statement isonly required (and accepted) in the glmand reg procedures.

The model statement also supports many optionsin both gimandreg. For example, in the glmmodel
statement, options exist for choosing the types of sums of squares and asking for confidence and prediction
intervals. Inproc reg, the model statement has options for these same things, plus many other options such
as standard errorsfor the regression coefficients, step-wise regression and specialized regression
diagnostics. An example of how to use optionsin the model statement isasfollows:

proc reg data=yourdataset;
nodel wei ght =hei ght / stb;
run;

(following the earlier example of weight and height). Y ou must always use the forward slash to tell SAS

that there are options coming after the model statement. Y ou can use as many options as you need in one
model statement, but just make sure that all of them are separated by one space. The option stb asksfor the
standardized regression coefficients.

The M eans and L smeans Statements

Oftenin an analysis, once differences are found among groups, we would like to see exactly where those
differences occur; thisis donein SAS by the use of the means and | smeans statements in proc glmor proc
reg. Both the meansand Ismeans statements can be used in conjunction with avariety of options. If you
have no missing values in your data set, your design is a balanced one and you use no covariates, you can
use the means statement. However, if missing values exist or thereis an imbalance in your design, or you
have covariates on your model, you must use |smeans to obtain the proper means and comparisons. An
examplefollows:

proc gl m dat a=your dat aset ;

cl ass treatnent;

nodel resp=treatnent;

neans treatment / |ines tukey bon;
run;

The means statement will perform means comparisonsfor all four treatment groupsin thiscase. The
options lines, Tukey, and Bon are used. The lines option displays the means comparisonsin amore
readable format. The Tukey and Bonferroni options correspond to two types of means comparisons
procedures. Many other options for different means comparison procedures also exist (i.e. Dunnett, least
squared differences, Duncan, Scheffe, Student-Newman-Kuels). When using the |smeans statement, the
syntax isahit different.

| smeans treatnent / adj =tukey stderr;

When using Ismeans, you must use the “ adj=" option to obtain Tukey and Bonferroni comparisons, for
example. Thestderr option givesthe standard errors for the least squares (Is) means.

Optionsin the Procedures

Some options contained in the procedures come not in the model or the means statements, but directly after
the proc statement. An example of thisis:

proc gl m dat a=your dat aset al pha=. 05;
cl ass treatnent;

nodel resp=treatnment;

means treatment / |ines tukey bon;
run;

10

In this example, it becomes apparent that the “ data=" option isreally an option in the procedures
statement. The alpha=.05 option tells SASthat for any confidence intervals, significance testing, etc. you
want an alphaof .05. (Thisoptionis such that any testsin the model statement, |smeans, means, and any
confidence interval s outputted with the output statement are performed at the .05 level).

Another useful example of optionsin the proc statement is with proc univariate. By using optionsin the
procedures statement, you can obtain stem-and-leaf plots, normal probability plots, boxplots, and tests for
normality.

proc univari ate data=yourdataset nornmal plot;

var responsel responsez2;

run;

The normal option gives the Shapiro-Wilks test of normality, while the plot option produces the stem-and-
leaf plot, boxplot, and normal probability plot.

Output Statements (used in many procedur es)

How does the output statement normally work?

The basic function of the output statement isto create a new dataset containing both the information in the
old dataset plus any new diagnostics or statistics that the procedure has created. For example, if you
specify adataset for your reg procedure, you may want to output that dataset along with predicted values
and residual values.

Optionsfor obtaining predicted values, residual values, and other statistics and diagnostics

Thisishow it works:

proc reg data=one;

nodel response=varl var2;
out put out=two r=res p=pred;
run;

So, now you have a data set named “two” which contains everything that dataset one contains, plusthe
predicted and residual values from your proc reg model. Now, you can make diagnostic plots as follows:

proc gpl ot data=two;
pl ot res*pred;

pl ot res*varl;

pl ot res*var?2;

run;

These plots can help to assess hormality, independence of observations, and constancy of variance.
There are many other options besides residual and predicted values depending on which procedure you are
using for your analysis. By looking in the SAS help menu, you can find the keywords (e.g., for residuals,

the keyword isjust r=) for other diagnostics such as Cook’ s distance, standard errors, prediction, etc.

Another example of an output statement used with the proc univariate statement:

proc univariate nornmal plot data=old;

var yl;

out put out =new max=maXi MumM M N=m ni "Mum Mean=mnean,;
run;

11

Thiswill give the mean, maximum, and minimum vauesfor y1in the data set “new”. Note that max, min,
and mean are how SAS recognizes that you are asking for these values. What comes after the equals sign
(=) iswhatever Y OU choose to name that new value or variable.

How can | be sure that correct values and variables were output?

The best way to assess whether your output statement worked isto use the proc print procedure as follows
(building from the univariate example above):

proc print data=new,
run;

Thiswill print out all variables and valuesin your new data set.
How does SA S know which dataset to use?

If you are working with multiple datases that you have output from multiple procedures (e.g., you have
one data set that SAS made from a proc glmand another from a proc reg), you must always name the data
set you wish to use, otherwise SAS will use the dataset just previously used by default.

I11. Working with Graphicsin SAS

Thetwo basic graphic proceduresin SAS are proc plot and proc gplot. These two procedures are fairly
similar; however, proc gplot will usually allow you to produce better |ooking and more sophisticated
graphs than proc plot.

Proc Plot

Inproc plot, there are afew nicetricks to know. For example, if you are checking constancy of variance
assumption and want to plot the residual variable against more than one independent variable (on separate
graphs) you can use:

proc pl ot data=di ag;

pl ot res*(x1 x2 x3);

run;
(Note that the diag dataset must have been created from a previously run proc reg statement, and thus
would contain, in addition to the original dataset the residual values, predicted values, etc.)
Thisway, you don’t have to write more than one plot statement.

Another option (using the previous example) to have all three plots on the same graph isto use overlay:

proc pl ot data=di ag;
pl ot res*(x1 x2 x3) / overlay;
run;

Proc plot contains some options both on the proc statement itself and the plot statement for adjusting the
axes, labeling points, and controlling the size of the plot. These can be found in the help menu.

Proc gplot

Proc gplot has more options and can produce fancier, color graphics. The basics to know about gplot are
how to chose symbols and how to draw regression lines. The following example will introduce you to a
few of the optionsin gplot.

synmbol val ue=circle i=r ci=red cv=bl ue;
proc gpl ot data=new,

pl ot y*x1,;

run;

The symbol value statement has many other options other than circle (e.g., triangle). Thei=r statement
draws the linear regression line and gives the linear regression equation (in the log window, not the output
window). The ci=red option makes the regression line red and the cv=blue makes the plotted points show
up as blue. The remaining statements are similar to proc plot. Gplot also has the capability to overlay plots
and many other options for adjusting axes values, changing colors, changing the legend, etc. which can be
found in the help menu.

Exporting graphs

Often, it is helpful to export SAS graphicsto a Word and/or a Power Point document. Graphs export best
from proc gplot, but it is also possible to export graphs constructed with proc plot, but they may not look as
nicein the Word or Power Point documents. There are many different formats in which to save graphs and
many options for exporting graphs. The ones presented here arein no way exhaustive of all options.
Sometimes, it just takes trial and error to find the best way to export a graph from SAS.

Exporting to Word:

1) Fromproc gplot, click in the graph you wish to export, pull down the Edit menu, and click on
copy. Then, gointo Word, pull down the Edit menu, and click on *paste special”. Use the option
“Picture” to pastethe graph. Thisis probably the simplest way.

2) Click on the graph you wish to export, pull down the File menu, and go to “Export as Image”.

Y ou can choose avariety of different formatsin which to save the graph. After you choose your
format, go to the Word document. Pull down the Insert menu, click on “object”, click on “from
file”, and put the pathname where your file islocated.

For both of these ways, using the gplot optionsfirst to control the size of the graph may produce better
results, although you can size the graph somewhat onceit isin Word.

Exporting to Power Point:

1) Savethegraph first asaBitmap file (.bmp) by going to the “ Export as Image” as described above.
Then, go to your Power Point document and choose the blank slide format. Pull down the “Insert”
menu, and go to the “picture” option, and then to the “from file” option. Browseto find your file
and then click “insert”. Thiswill fit the graph nicely to the slide size.

2) The same process can also be achieved by using the “ paste special” and “picture” or “bitmap”
options as described above for the Word documents.

IV. Miscellaneous SAS | ssues
Savethefile

Now you are familiar with program editor window, log window, and output window. 1f you want to save
the work you' ve done in asession, you' Il need to save the contents of each window separately. Usually,
you only need to save the program; you can always run the program to get the log and output. To savea
program file, you' Il need first to make sure the program editor is the active window, then go to file and
select save command. Similarly, you can save alog file when alog window is active, or an output file
when the output window is active.

Y ou do not have to run the entire program every time you make a correction to your SAS program. Each
SAS procedureisrelatively independent of other procedures. Aslong asyou have the dataset you need in
this procedurein SAS, you can run only part of the program by highlighting the part of the program you
want to run and then clicking the run button in the tool bars.

13

Missing values

a. Dotsfor missing observations. |If your data set has missing values, you'll need to specify them asa
dot in the SAS dataset.

b. What if data set does not have dots? Y ou can add a dot to the corresponding missing val ue locations
using adata step. For example, if you have two variables, X and Y, in your data set, and 10
observations. The ninth value of Y ismissing. The following code with an if statement will do:

data a2; set al;
If _n_eq 9 then Y=

c. Readingindata@@. You'veaready learned that when you input your dataset after a CARDS or
DATALINES statement, every observation needs to be on an individual line. In case you want to
make better use of the window and want to have more than one observation per line, @@ is the syntax
that tells SAS where the end of one observationis. For example:

data bi;

input x y z @

cards;

1.1 2.2 3.3 4.4 5.5 6.5

It may be that your variables are data strings instead of numbers, for example gender or disease type.
We call these variables categorical. Inthiscase, SAS wants you to specify which variables are
categorical by adding a$ sign right after the name of the variable in the input statement. Sample code
follows:

data b1l;

input state $ county $ nane $ gender $ weight;
cards;

i ndiana tipp brown female 125

d. What if my Excel datafileisnot reading properly into SAS or not at all?
If the Excel datafileisnot reading into SAS at all, most likely it’ s because your Excel datafileis open.
The Excel file must be closed before you import it into SAS. There are other reasons that the Excel
datafileisnot reading in properly. It could bethat the data type of your Excel cellsisnot correctly
defined. Inappropriate reading also happens when you do not have a header in thefirst row, since the
import procedure takes the first row as header by default. However, this can be changed during the
import procedure under options.

How do you know if SASisreading your dataset correctly? Usethe proc print procedure and seeif
the dataset in SAS iswhat you expected.

Exporting to Excel, Access, or SPSS (.txt, .xIs, .prn)

Exporting adata set to Excel isthe opposite procedure of the import process. If you go to FILE and then
select EXPORT DATA, an export wizard window pops up. Then just follow the wizard through the
following steps.

Step 1: Choose a data set that you created in the WORK library (where the SAS datasets are stored
autonetically by SAS). Click next button when you are done.

Step 2: Choose the file type you want to export to. Available typesinclude Excel, Access, dBase,
delimited file, and many others. Choose Excel 2000 and then click next.

14

Step 3: Typein the directory path where you want to save your datafilein. If you are not sure of
the path, click on the browse button and find the location. At thistime, you may click on the OK
button to finish the export.

To export the data to Access, procedures are basically the same except that you need to choose Access type
or SPSSin step 2 of the above exporting procedure.

How to usethe help menu

The SAS help menu is helpful if you want to self-improve your knowledge of SAS procedures. There are
two ways of getting SAS help. Oneisto go to the help menu and then SAS system help. Then go to the
Index tab and type in the name of the procedure. SASwill give you the syntax of the procedure aswell as
some examples. If you have a specific question, you can use the Search tab, and type in the key word of
your question. The other way of getting help is go to the books and training and then online doc. Online
doc iseasier to browse.

15

