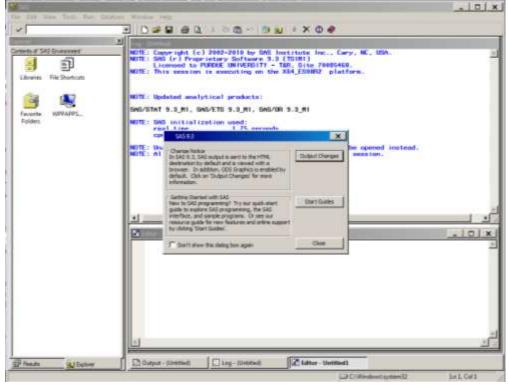
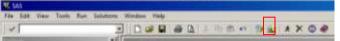
Introduction to SAS


Getting Started

1) Download all of the files, sas programs (.sas) and data files (.dat) into one of your directories. I would suggest using your H: drive if you are using a computer at Purdue or goremote.

2) Run SAS


There are two ways to run SAS on an ITAP computer.

- 1) On ITAP Computers: Select All Programs \rightarrow Standard Software \rightarrow Statistical Packages \rightarrow SAS 9.3b.
- 2) Using goremote: Go to <u>https://goremote.itap.purdue.edu/Citrix/XenApp/auth/login.aspx</u> and log in using your career account. Find the program by selecting Standard Software → Statistical Packages → SAS 9-3 64-BIT.
- 3) No matter how your run the program, you should see a screen like the following:

You may want to look at the Start Guides, but unless you have used a previous version of SAS, looking at the Output Changes will not be beneficial. Click on Close.

- To load up your sas program, go to File → Open Program and locate and open the program of interest, say start.sas.
- 5) You will see the program in the Editor window. To run the program click the 'running man' icon indicated by the red box. You have to be sure that the Editor window is active.

Getting the data into SAS

There are two ways of getting your data into SAS; you can either enter the data by hand or you can load from a pre-existing file.

Sample code for entering data by hand:

```
*from data in the code this example is Example 2.2.4, liter size of sows;
data litter;
input piglets sows @@;
datalines;
5 1 6 0 7 2 8 3 9 3 10 9 11 8 12 5 13 3 14 2;
;
```

run;

proc print data=litter; run;

The colors of the file indicate different things: blue: keywords from the program black: items that you enter green: comments yellow highlight: inputted data bluegreen: numbers in code purple: titles and text

@ @: data is in rows instead of columns

Additional notes common to all SAS source codes:

1) Each line always ends in a semicolon, ;

2) 6) You should always have the statement 'quit;' at the end of each script.

Sample code loaded from pre-existing file:

```
*from a file;
data liter2;
infile 'H:\My Documents\Stat 503\pigs.dat';
input piglets sows;
run;
proc print data=liter2;
run;
```

Creating a Histogram

The following code creates the same histogram as in Fig. 2.2.4.

```
data liter3;
infile 'H:\My Documents\Stat 503\Ex.2.2.4.dat';
input piglets;
run;
proc print data=liter3;
run;
title1 'Surviving Piglets';
*creates a histogram using the classes 5, 6, ...., 15;
proc univariate data=liter3 noprint;
histogram piglets / endpoints = 5 to 15 by 1;
run;
```

If you would want to change the classes, you would change what the classes are, you would change the numbers after the keyword 'endpoints'. The first two numbers indicate the range and the last indicates the the size of the bin. For example, if you would want bins from 10 – 50 with a width of 5, you would type 'histogram piglets / endpoints = 10 to 50 by 5;'

Manipulating data sets

To following code exemplifies how you copy one set to another one and add another variable. data a2;

```
set liter3;
original = 'yes';
run;
```

```
proc print data=a2; run;
```

output:

Surviving Piglets

Obs	piglets	original
1	5	yes
2	7	yes
3	7	yes
4	8	yes
5	8	Yes

To combine two data sets, use the following code:

```
data a3;
  piglets = 15; output;
  piglets = 16; output;
run;
data a4;
  set a2 a3;
run;
proc print data=a4; run;
```

This will add the following rows to the above data set:

Obs	piglets	original
37	15	
38	16	

output from univariate

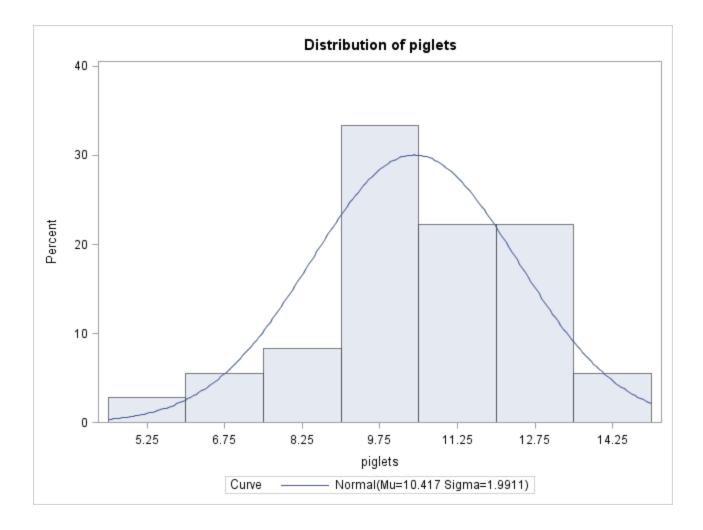
Finally, we have discussed in class the descriptive stattistics, the are in proc univariate. In addition, we can generate the histogram (automatically) and the QQ-Plot (Chapter 4). These last two plots are used to determine if the distribution is normal.

```
proc univariate data=liter3;
  var piglets; /*gives many numerical summaries for the variable piglets*/
  histogram piglets/normal; /*histogram*/
  qqplot piglets; /*qqplot*/
run;
```

Output:

Surviving Piglets					
		IATE Procedure le: piglets			
	Мо	ments			
Ν	36	Sum Weights	36		
Mean	10.4166667	Sum Observations	375		
Std Deviation	1.99105141	Variance	3.96428571		
Skewness	-0.4792508	Kurtosis	0.48822726		
Uncorrected SS	4045	Corrected SS	138.75		
Coeff Variation	19.1140935	Std Error Mean	0.3318419		

	Basic Statistical Measures				
Loc	ation	Variability			
Mean	10.41667	Std Deviation	1.99105		
Median	10.50000	Variance	3.96429		
Mode	10.00000	Range	9.00000		
		Interquartile Range	2.50000		


Tests for Location: Mu0=0					
Test	ę	Statistic	p Va	lue	
Student's t	t	31.39045	Pr > t	<.0001	
Sign	Μ	18	Pr >= M	<.0001	
Signed Rank	S	333	Pr >= S	<.0001	

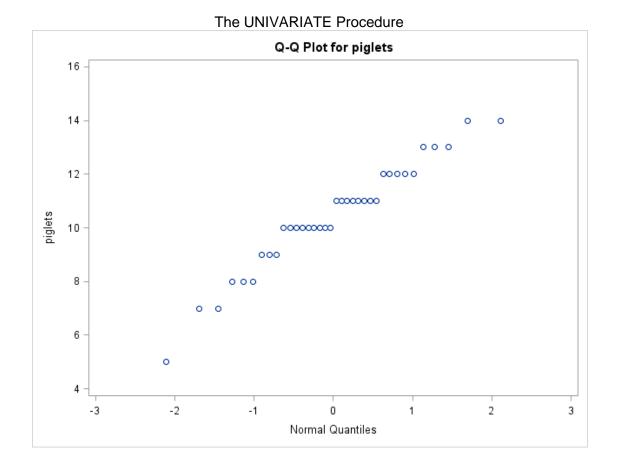
Quantiles (Definition 5)		
Quantile	Estimate	
100% Max	14.0	
99%	14.0	
95%	14.0	
90%	13.0	
75% Q3	12.0	
50% Median	10.5	
25% Q1	9.5	
10%	8.0	
5%	7.0	
1%	5.0	
0% Min	5.0	

Extreme Observations			
Low	Lowest		est
Value	Obs	Value	Obs
5	1	13	32
7	3	13	33
7	2	13	34
8	6	14	35
8	5	14	36

Surviving Piglets

The UNIVARIATE Procedure

Surviving Piglets


The UNIVARIATE Procedure Fitted Normal Distribution for piglets

Parameters for Normal Distribution			
Parameter Symbol Estima			
Mean	Mu	10.41667	
Std Dev	Sigma	1.991051	

Goodness-of-Fit Tests for Normal Distribution				
Test	S	statistic	p Valu	е
Kolmogorov-Smirnov	D	0.16711886	Pr > D	0.012
Cramer-von Mises	W-Sq	0.11409952	Pr > W-Sq	0.073
Anderson-Darling	A-Sq	0.59245060	Pr > A-Sq	0.118

Quantiles for Normal Distribution			
Percent	Quantile		
	Observed	Estimated	
1.0	5.00000	5.78479	
5.0	7.00000	7.14168	
10.0	8.00000	7.86503	
25.0	9.50000	9.07372	
50.0	10.50000	10.41667	
75.0	12.00000	11.75961	
90.0	13.00000	12.96830	
95.0	14.00000	13.69165	
99.0	14.00000	15.04854	

Surviving Piglets

