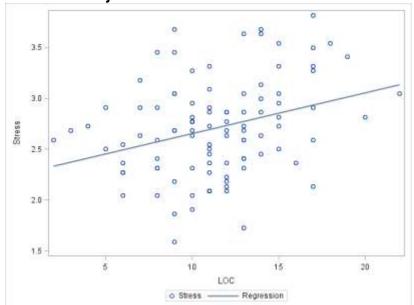
Author: Leonore Findsen, Cheng Li

Example: (Data Set: loc.txt)

Job Stress and Locus of Control Many factors, such as the type of job, education level, and job experience, can affect the stress felt by workers on the job. Locus of control (LOC) is a term in psychology that describes the extent to which a person believes he or she is in control of the events that influence his or her life. Is feeling "more in control" associated with less job stress? A recent study examined the relationship between LOC and several work-related behavioral measures among certified public accountants in Taiwan. LOC was assessed using a questionnaire that asked respondents to select one of two options for each of 23 items. Scores ranged from 0 to 23. Individuals with low LOC believe that their own behavior and attributes determine their rewards in life. Those with high LOC believe that these rewards are beyond their control. Each accountant's job stress was assessed using the averaged score on 22 items, each scored on a five-point scale. The higher the score, the higher the perceived job stress. We will consider a random sample of 100 accountants.

- a) Make a scatterplot of the data (including the least squares regression line) with LOC on the x axis and Stress on the Y axis. Briefly describe the relationship between the iob stress and LOC.
- b) Compute the correlation coefficient between Stress vs. LOC.
- Find the equation of the least-squares regression line for predicting Stress from LOC.
- d) What is r^2 for these data?
- e) Obtain the residuals and plot them versus LOC. Is there anything unusual to report? Please explain.
- f) Do the residuals appear to be approximately Normal? Explain your answer.
- g) Based on your answers for parts (a), (e) and (f), do the assumptions for the linear regression analysis appear reasonable? Explain your answer.
- h) Construct and interpret the 95% confidence interval for the slope and y-intercept.
- i) Does Job Stress increase with LOC? Carry out a test of significance on the slope. State hypotheses, give a test statistic and *P*-value, and state your conclusion.
- j) Briefly summarize what your data analysis shows.

Solution:


```
data job;
  infile 'W:\PC-Text\loc.txt' firstobs = 2 delimiter = '09'x;
  input Subject LOC Stress;
run;

*Scatter plot;
proc sgplot data=job;
  scatter y=Stress x = LOC;
  reg y=Stress x = LOC;
run;

proc corr data=job;
  var LOC Stress; *Only these variables will be printed out;
  run;
```

Author: Leonore Findsen, Cheng Li

a) Make a scatterplot of the data (including the least squares regression line) with LOC on the x axis and Stress on the Y axis. Briefly describe the relationship between the job stress and LOC.

The plot looks linear with a positive correlation. However, there may be a problem with constant standard deviation at the low and high values of LOC. I am not sure about the strength because the scale on the y-axis is so small. I do not see any outliers.

Author: Leonore Findsen, Cheng Li

b) Find the correlation between Stress vs. LOC.

	The SAS System								
The CORR Procedure									
		2 V	ariables:	LOC St	ress				
Simple Statistics									
Variable	N	Mean	Std Dev	Sı	um	Minimum	Maximum		
LOC	100	11.40000	3.69821	11	140	2.00000	22.00000		
Stress	100	2.71045	0.47263	271.045	544	1.59091	3.81818		
	Pearson Correlation Coefficients, N = 100 Prob > r under H0: Rho=0								
				LOC		Stress			
	L	oc	1.0	00000		0.31228			
	0.0016						/		
	Stress 0.31228 1.00000								
			0	.0016					

The correlation coefficient between Stress vs. LOC is 0.31228. This looks like there is a weak association between Stress and LOC. Therefore, the strength is low.

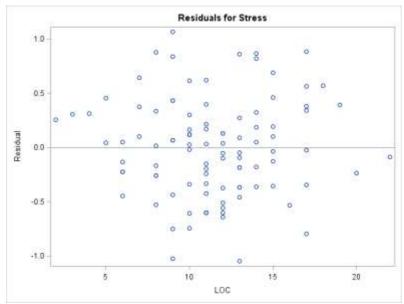
Note: only include the last table circled in red in your report.

c) Find the equation of the least-squares regression line for predicting Stress from LOC.

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confidence Limits		
Intercept	1	2.25550	0.14691	15.35	<.0001	1.96395	2.54704	
LOC	1	0.03991	0.01226	3.25	0.0016	0.01557	0.06425	

Stress = 2.2550 + 0.03991 LOC

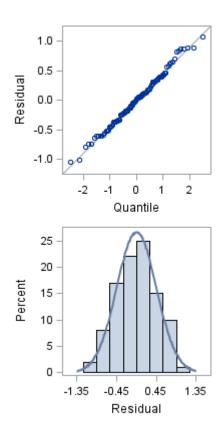
Author: Leonore Findsen, Cheng Li


d) What is r^2 for these data?

Root MSE	0.45128	R-Square	0.0975
Dependent Mean	2.71045	Adj R-Sq	0.0883
Coeff Var	16.64948		

 $r^2 = 0.0975$

This does not look very good.


e) Obtain the residuals and plot them versus LOC. Is there anything unusual to report? Please explain.

I see no pattern here so the association seems to be linear. There might be a problem with constant standard deviation at the high and low values. Since the scale of the residuals is so small, I would say that constant standard deviation is valid. I do not see any outliers.

Author: Leonore Findsen, Cheng Li

f) Do the residuals appear to be approximately Normal? Explain your answer.

It looks like the residuals are normal because on the QQ plot the points are close to the line and the line on the histogram seems to match the histogram.

g) Based on your answers for parts (a), (e) and (f), do the assumptions for the linear regression analysis appear reasonable? Explain your answer.

Assuming that we have an SRS, the three other assumptions are met; linear, constant standard deviation of the residuals and normality of the residuals, therefore linear regression analysis appears to be reasonable.

h) Construct and interpret the 95% confidence interval for the slope and y-intercept.

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confidence Limits		
Intercept	1	2.25550	0.14691	15.35	<.0001	1.96395 2.54704		
LOC	1	0.03991	0.01226	3.25	0.0016	0.01557 0.06425		

Author: Leonore Findsen, Cheng Li

Slope:

95% CI (0.01557, 0.06425)

We are 95% confident that the population slope of Stress vs. LOC is between 0.01557 and 0.06425,

Intercept:

95% CI (1.96395, 2.54704)

We are 95% confident that the population y-intercept is between of Stress vs. LOC is between 1.96395 and 2.54704.

i) Does Job Stress increase with LOC? Carry out a test of significance on the slope. State hypotheses, give a test statistic and *P*-value, and state your conclusion.

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confidence Limits		
Intercept	1	2.25550	0.14691	15.35	<.0001	1.96395	2.54704	
LOC	1	0.03991	0.01226	3.25	0.0016	0.01557	0.06425	

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	1	2.15651	2.15651	10.59	0.0016				
Error	98	19.95776	0.20365						
Corrected Total	99	22.11426							

Step 1: Definition of the terms

 β_1 is the population slope

Step 2: State the hypotheses

 H_0 : $β_1 = 0$ H_a : $β_1 \neq 0$

Step 3: Find the Test Statistic, p-value, report DF

 $t_{ts} = 3.25$

DF = 98

P-value = 0.0016

(Note that the F test statistic = $10.59 = 3.25^2$ and the P-values are identical)

Step 4: Conclusion:

 α = 0.05

Since $0.0016 \le 0.05$, we should reject H₀

The data provides strong evidence (P-value = 0.0016) that there is an association between job stress and LOC.

6

STAT 350: Introduction to Statistics

Department of Statistics, Purdue University, West Lafayette, IN 47907

Author: Leonore Findsen, Cheng Li

j) Briefly summarize what your data analysis shows.

Assuming that the standard deviation is constant, the assumptions are met. The data shows that there is a slight association between Stress and LOC. The weak association is also seen by the small values of r and r^2 . Therefore, there is a possibility that there is a slight association, but prediction is not recommended from this study because of the small value of r^2 .